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A BITOPOLOGICAL GELFAND THEOREM FOR 
C*-ALGEBRAS 

John Mack* 

Abstract 

I. M. Gelfand, in his delightfully elegant repre­
sentation theorem, showed that any commuta­
tive C*-algebra is isometrically isomorphic with 
an algebra of complex-valued continuous func­
tions. It is the purpose of this paper to obtain 
a "Gelfand type" representation of an arbitrary 
(not necessarily commutative) C*-algebra, as an 
algebra of continuous mappings. The key idea, 
here, is to assign two topologies to the base space 
and then require continuity with respect to both 
topologies. The first of these topologies is the 
familiar hull-kernel topology while the second is 
the co-compact dual of the first. 

1. Introduction 

In this paper, we give a representation for not necessarily com­
mutative C*-algebras that is an analogue of Gelfand's beautiful 
theorem. 

Theorem 1.1. (Gelfand) Let A be a commutative C*-algebra. 
Then M ax(A), the maximal ideal space of A with the hull­
kernel topology, is a locally compact Hausdorff space. Further, 

* A preliminary version of this paper was presented in the Topology 
in Computer Science Session of the 12th Summer Conference on General 
Topology and its Applications, held at the Nipissing University, North 
Bay, Ontario, August 12-16, 1997. 
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A is isometrically isomorphic with Coo(Max(A)), the algebra 
of all complex-valued continuous functions that vanish at infin­
ity. 

Here we bring together ideas from C*-algebra representation 
theory as described by Fell, Dauns and Hofmann in [Fe] and 
[DR] with the topological and bitopological concepts from [Ko], 
[HK] and [HKMS] and the lattice theory notions from [G&]. 

The necessary bitopological concepts are outlined in section 
2, while section 3 provides information about the lattice I d(A) 
of closed ideals of a C*-algebra A. The basic structure, called 
a field of C*-algebras, which is used for the representation the­
orem, is generated in section 4. The represention is described 
in two separate theorems 5.5 and 6.4. Theorem 5.5 gives the 
representation for algebras with identity while 6.4 takes care 
of C*-algebras lacking a unit. Part (a) of 6.4 asserts: 

Any C*-algebra is isometrically isomorphic to an al­
gebra of pairwise continuous sections which vanish at 
infinity. 

2. Bitopological Spaces 

Definition 2.1. A bitopological space (X, 7, 7*) consists of a 
set X with two topologies 7 and 7*. 

The generic example for the bitopological spaces that we 
deal with here is (R, w, (J), i.e. the reals R with the left ray, 
W, and the right ray, (J, topologies. More generally for a com­
plete lattice, L, the lower topology w is the topology that has 
the collection {L\ i a : a E L} as a subbasis. A subset U of 
L is Scott-open provided (i) U is an upper set (i.e., U =1 U) 
and (ii) sup D E U implies that U n D is non-empty for each 
directed set D in L. The Scott topology a on L consists of 
all Scott-open sets. See 1.3, p. 99 in [G&]. For continuous 
lattices, such as we consider in this paper, the Scott topology 
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is equal to the co-compact topology of w, that is, the coars­
est topology for which each w-quasicompact, saturated set is 
closed. See [G&, 5.1, p. 258]. 

Definition 2.2. For bitopological spaces (X, 7,7*) and (Y, v, v*) 
and a map f : X ~ Y, the function f is pairwise continuous 
if it is continuous both as a map from (X,7) to (Y, v) and as a 
map from (X, T*) to (Y, v*). For a property P, the bitopological 
space (X, T, T*) is pairwise P if both (X, 7,7*) and (X, 7*,7) 
have the property P. 

Remark. A pairwise continuous map is continuous with re­
spect to the join 7 V 7* of the two topologies, but the converse 
fails, in general. A real valued function f defined on R is pair­
wise continuous from (R, w, a). to (R, w, a) if and only if f is 
order preserving and continuous with respect to the join topol­
ogy (= the usual topology on R). 

The separation properties for bitopological spaces are anal­
ogous to those for topological spaces. We list some of the 
definitions here for easy reference. For more details, see [Ko]. 

Separation and Compactness Definitions for Bitopo­
logical Spaces 2.3. A bitopological space, (X, 7, 7*), is de­
fined to be: 
(a) completely regular if whenever x E U E 7, there is a pairwise 
continuous f : (X, T, r*) ~ ([0,1], w, a) such that f(x) = 0 and 
f(y) = 1 whenever y tJ. U; 
(b) regular if whenever x E T E T, then there are aT-open U 
and a 7*-closed D such that x E U cDc T; 
(c) completely Hausdorff if whenever x ~ 7-cl{y} , there is a 
pairwise continuous f : (X, 7, 7*) ~ ([0,1], w, a) such that 
f(x) = 0 and f(y) = 1; 
(d) pseudoHausdorff if x tJ. 7 -cl{y} implies there are disjoint 
T E T and T* E 7* such that x E T and y E T*; 
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(e) joincompact if it is pairwise pseudoHausdorff and its join 
topology 7 V 7* is compact Hausdorff. 

The implications that hold for topological spaces also hold 
for the bitopological separation properties defined above and 
each bitopological property implies the corresponding separa­
tion property for the join topology, as stated in 2.4 below. 

Theorem 2.4. For any bitopological space (X, 7, 7*): 
(aJ Joincompact => completely regular:::} regular:::} pseudo­
Hausdorff. Furthermore, this string of implications remains 
valid when "regular" is replaced by "completely Hausdorff". 
(bJ For any of the properties P = regular, completely Haus­
dorff, or completely regular, if (X, 7, 7*) is pairwise P then 
7 V 7* has P. Additionally, subspaces and products of spaces 
satisfying P, also satisfy P. 
(cJ Products and 7 V 7* -closed subspaces of joincompact spaces 
are joincompact. 

3. Closed Ideals of A 

For a C*-algebra A, let I d(A) denote the set of all norm closed, 
two sided ideals of A. When ordered by set inclusion, Id(A) be­
comes a complete lattice. The zero ideal is the smallest element 
of I d(A) while the entire algebra A is the largest. With the 
lower, w, and the Scott, 0", topologies as defined in section 2, 
(Id(A), w, 0") becomes a joincompact bitopological space. The 
common refinement w V a of the lower and Scott topologies is 
the Fell topology, as described in [F]. Each primitive ideal is 
closed and each proper closed ideal I is the intersection of all 
primitive ideals which contain I. The set of all primitive ideals 
is denoted by Prim(A). Unless stated otherwise, the topology 
on Prim(A) is taken to be the hull-kernel topology (= the re­
striction of w to Prim(A)). 
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Notation. We will use the notation of [G&] for lower and 
upper sets in the lattice Id(A). Specifically, for an ideal I in 
Id(A), we have i I = {J: JE Id(A) I c J} and for a subset 
S of Id(A), we have i S = U{i I : I E S}. The set S is an 
upper set if S =i S. The symbols 1 I, 1 S and the term lower 
set are defined in a similar way. 

Definition 3.1. (Glimm). For a pair P, Q of primitive ideals, 
P rv Q means that f(P) = f(Q) for all complex-valued contin­
uous functions on Prim(A). This relation partions Prim(A) 
into equivalence classes. An ideal is a Glimm ideal if it is the 
intersection of an rv equivalence class. A closed ideal is Glim­
mal if it contains a Glimm ideal. Glimm(A) denotes the set 
of Glimm ideals; Glimmal(A) , the set of Glimmal ideals and 
Glimmal'(A), the set of all proper Glimmal ideals. 

Definition 3.2. For a C*-algebra A (with or without an iden­
tity), the centroid of A, denoted by R(A) or simply R, is the 
set of all self maps r : A --+ A for which (r(a))b = a(r(b)) 
for all a and b in A. When the coordinate-wise operations 
of addition, multiplication and involution are assigned to R, 
then R becomes a commutative C*-algebra with unit 1, where 
1(a) = a for all a E A. 

Remark. (a) For r E Rand P E Prim(A), there is a complex 
number f(P) so that r(a) - f(P)a E P for all a E A. 
(b) If P E Prim(A), then Mp = {r : r[A] c P} is a maximal 
ideal of R. A maximal ideal M of R is fixed if M = M p for 
some P E Prim(A). Otherwise M is a free ideal. 

Theorem 3.3. (Dauns-Hofmann) The map r --+ f is an iso­
metric isomorphism of R onto C(Prim(A)), the algebra of all 
complex-valued continuous functions on Prim(A) with the hull­
kernel (= w) topology. (See page 121 in [DHJ.) 
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Theorem 3.4. Let M be a maximal ideal of R. Then 
(a) MA = {r(a) : rEM a E A} is closed ideal of A. 
(b) M is a fixed ideal in R if and only if M A is a proper 
ideal in A. Furthermore if M is fixed, then M = M p for each 
P E Prim(A) for which MAc P. 
(c) Glimm(A) = {MA : M E Max(R), M is fixed}. 

Theorem 3.5. Let I be a proper ideal in Glimmal(A). 
(a) Then there exist M E Max(R) , G E Glimm(A) , each 
uniquely determined by I, and P E Prim(A) so that G = 
MA c I c P and M = M p . Also r(a) - f(P)a E G for all 
a E A. 
(b) Iff is extended to Glimmal'(A) by theformulaf(I) = f(P) 
where P E (i I) n Prim(A), then the extended function is 
continuous with respect to the w topology. If A has a unit, 
then this extended map is also continuous with respect to the a 
topology. (See section 7 of [HKMSj.) 

4. Basic Construction 

In this section, we develop the basic structure needed for the 
representation theorems 5.5 and 6.5, which are proved in sec­
tions 5 and 6. The construction used here is an adaptation to 
bitopological spaces of the methods developed in [DR] and [M]. 

Definition 4.1. (a) A field of sets (E, X, Y, ¢J) consists of sets 
E, X and Y and a surjective map 4> : X x Y ~ E, for which 
there exists a map p : E ~ X such that po ¢J is the projection 
of X x Y onto X. For x E X, the stalk over x is the set 
¢J({x} x Y) in E. A section s is a map from X to E for which 
p 0 8 is the identity map on X. 
(b) The field (E,X, Y,¢J) is a field of topological spaces if in 
addition to the field properties, E, X and Yare topological 
spaces for which the map ¢J is continuous and open. 
(c) The field (E, X, Y, ¢) is a field of C*-algebras if Y and each 
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of the stalks are C*-algebras so that the restriction of ¢ to 
{x} x Y, for each x, is a homomorphism of C*-algebras. 

Let A be a C*-algebra; denote by I d(A) the lattice of closed 
ideals of A. Define E = U{I} x AII where the union is taken 
over Id(A). Let ¢: Id(A) x A ~ E, be the map given by 
¢(I, a) = (I, a + I). Define the map p : E ~ Id(A) by 
p(I,a+I) = I. Then (E,Id(A),A,¢) is afield of sets. 

Definition 4.2. 
(a) Define the map <t> from Id(A) x A x A into E x E by 
<t>(I, a, b) = (¢(I, a), ¢(I, b)). 
(b) Denote by EvE the range in E x E of the map q,. That 
is EvE = <t> (Id(A) x A x A). 

Remark. Observe that EvE = U{p~(I) x p~(I) I I E 

I d(A)}. 

We now transfer the the operations and the norm on A to 
E. Note that the domain of definition for addition and multi­
plication is EVE. 

(I, a + I) + (I, b+ I) = (I, (a + b) + 1) 

(I, a + I) · (1, b+ I) = (I, (ab) + 1) 

A . (I, a + I) = (I, (Aa) + I) for scalars A 

(I, a + I) * = (I, a* + I) 

II (I, a + I) II == II a + I II 

Remark. Note that for addition we have (+) 0 q, = 

¢ 0 (id x (+)) where id denotes the identity map on Id(A). 
A similar equality holds for multiplication. Thus the map <t> is 
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very useful in establishing the continuity of addition and mul­
tiplication in E. 

Notation. Let 'f} be the norm topology on A. Recall that w 
and a denote the lower and Scott topologies on 1d(A). Define [, 
(respectively, U) to be the ¢-quotient topology on E generated 
by the w x "7 (a x "7, respectively) topology on 1d(A) x A. For 
any two topologies 7i and 72, the symbol 7i V 72 will denote 
the common refinement. 

Theorem 4.3. ljthe Fell topology, wVa, is assigned to 1d(A) 
and [, V U to E, then (E,1d(A),A,</J) becomes a field ojC*­
algebras. 

Proof This theorem follows from 4.4(b) below. 

Theorem 4.4. (a) The map </J is open with respect to the a x 'f} 
and U topologies while ~ is open with respect to a x 'f} x 'f} and 
UxU. 
(b) The map </J is open with respect to the (w Va) x 1] and [, VU 
topologies. 

Proof. (a) Let G be a a x "7-open set and choose (11, a1) E. 
¢;'-¢;(G). Then there exist b1 E A so that (a1 - b1) E 11 and 
(11 , b1) E G. Thus there are V E a and a positive real number 
c so that (11, b1) E V x {b : lib - b1 \1 < 2c} c G. Define the 
set Q by Q = {J : II(a1 - b1 ) + JII ~ c}. Then Q is an w­
saturated, w-quasicompact set. (See [D: 3.3.7, p. 75]). Thus 
by [G&, 5.1, p. 258] or [HKMS, 4.4], Q is a-closed. Thus 
(V\Q) x {a: \la-alii < c} is a a x "7-neighborhood of (11,a1) 
that is contained in </J'-</J(G). This proves that </J(G) is U-open; 
whence </J is an open map. That ~ is open follows in a similar 
way. 
(b) The proof of this part is similar to that of (a). This time, 
let G be (w V a) x 'f}-open and let 11, a1 and b1 have the same 
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meaning as in (a). Then there exist U E w, V E a and c: > 0 so 
that (II, bl ) E (U n V) x {b: lib - bIll < 2c:} c G. Define Q as 
in (a). Then (Un(V\Q))x{a: Iia-aill <c:} isa(wVa) x1]­

neighborhood of (II, al) that is contained in ¢+-¢(G). 0 

Lemma 4.5. Let a E A and a real number r 2:: 0 be given. 
Then 
(a) ¢(Id(A) x {b: lib - all ~ r}) is £-closed and 
(b) ¢(Id(A) x {b: lib - all < r}) is U-open. 
(c) If D is w-closed, then ¢(D x {b : lib - all ~ r}) is £-closed. 

Proof. Part (b) follows from the fact that ¢ is a (a x 1])-U-open 
map. 
(a) For fixed a and r, set F == Id(A) x {b : lib - all ~ r}. 
Next, let (II, al) be in the complement of ¢+-¢(F). Then 
II(al - a) + 11 11 > r. Define c: == (1/2)(II(al - a) + 11 11 - r). 
Then U == {J : II(al - a) + JII > r + c:} is w-open. Let 
(I , c) E U x {b : "b - alII < c:}. If x E lEU then II (c- a) +x II 2:: 
II(al-a)+xll-llc-alll. Thus /I(c-a)+III2:: r+c:-Ilc-alll > r. 
Therefore U x {b: lib - alii < c:} is disjoint from ¢+-¢(F). 
(c) For any D c Id(A) , ¢(D x {b : lib - all ~ r}) = ¢(D x 
A) n¢(Id(A) x {b : lib - all ~ r} is £-closed by (a). 0 

Definition 4.6. For c E A the translation Tc in E by c is the 
map Tc : E --+ E so that Tc 0 ¢(I, a) == ¢(I, a + c). 

Proposition 4.7. Each translation Tc is a bitopological home­
omorphi~m from (E, £, U) to itself. 

Proof It is easy to show that Tc is a well-defined map and that 
T-c 0 Tc is the identity on E. Thus it suffices to prove that each 
Tc is pairwise continuous. Since ¢ is a bitopological quotient 
map and Tc 0 ¢ is pairwise continuous for each c, it follows that 
each translation is pairwise continuous from (E, £, U) to itself. 
D 
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We next define two special functions and prove a technical 
lemma that we will use later. For e E A, define the real valued 
functions Ie and ge on E by 

le(I, a+ I) = II(a - e) + III
 
ge(I, a+ I) = lIa - ell - le(I, a+ I).
 

Lemma 4.8. For each e E A, 
(a) Ie is lower (upper, respectively) semicontinuous with respect 
to the £, (U, respectively) topology on E. 
(b) ge is upper (lower, respectively) semicontinuous with respect 
to the £, (U, respectively) topology on E. 
(c) Ie is pairwise continuous as a map from (E, U, £) to 
([0,1], w, 0"). 
(d) ge is pairwise continuous as a map from (E, £, U) to 
([0,1], w, 0"). 

Proof (a) Since ¢ is a quotient map it suffices for the first part 
of (a) to show that Ie 0 ¢ is lower semicontinous on (Id(A) x 
A, w x "I). To this end, let r ~ 0 and (Ii, al) be so that 
Ie 0 ¢(Il , al) > r. Define e = (1/2)(lc 0 ¢(Il , al) - r). Then 
U = {J : 1\ (al - e) + J II > r + e} is w-open. If (I , a) E U x 
{b : lib - alii < e}, then Ie 0 ¢(I,a) = II(a - c) + III ~ 

II (al - c) + III - Iia - alii > r. Thus Ie is lower semicontin­
uous. The second half of (a) is proved in a similar way. 
(b) This follows from (a) and the fact that the norm on A is "I 
continuous. 
(c) and (d) are restatements of (a) and (b) in bitopological 
notation. 0 

Theorem 4.9. (Structure Theorem) With the topologies £', U 
on E defined above, then (E, U, £) becomes a completely regular 
bitopological space so that </> is pairwise continuous. Further­
more, (E,L,U) is completely Hausdorff while (E, Id(A),A, ¢) 
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is a field of C* -algebras with respect to the (w Va) x 'fJ topology 
on X x A and the £ V U topology on E. 

Proof. First we show that (E,U, £) is completely regular. To 
prove this, let 11 E I d(A), a1 E A and GeE be chosen 
so that (11 , a1 + 11) E G E U. Then by the definition of U, 
there exist V E a and an e > 0 so that 11 E V and V x 
{b : lib - alii < e} C ¢+-(G). By the definition of the Scott 
topology, we know that Q = 1d(A) \ V is w-quasicompact and 
saturated; whence Q =1 Q. Thus for each ideal q in Q, the ideal 
11 is not a subset of q. So for each q E Q, there exists a positive 
bq E Ii so that Ilbq + qll > 1. Define Uq = {J : Ilbq + JII > I}; 
then q E Uq E w. Since Q is quasicompact there is a finite F C 

Q, so that {Uq : q E F} covers Q. Set b = ~{bq : q E F} and 
define h on I d(A) by h(I) = min{l, Ilb+III}. Then h is pairwise 
continous (see 7.2 in [HKMS]) from (1d(A), a, w) to ([0,1], w, a) 
while h(I1) = 0 and h(J) = 1 for all J E Q. Next define h on 
E by h(I, a + I) = h(I). Since Ii 0 ¢ = h X idA, the map Ii 
is pairwise continuous as a map from (E, U, £) to ([0,1], w, a). 
Finally set g = eli V (1/e)f al ) /\ 1. Then g is pairwise continuous 
and g(11, al +11) = 0 while g is identically 1 on the complement 
of G. This completes the proof that (E,U, £) is a completely 
regular bitopological space. 

To show that (E, L, U) is completely Hausdorff, let p, q E 

E be so that p fj. £-cl{q} . It is clear from properties of the 
topologies wand a that P i: L-cl{q} if and only if q i: U-cl{p}. 
By the previous paragraph, there is a pairwise continuous g 
from (E, U, £) to ([0,1], w, a) so that g(q) = 0 and g(p) = 1. 
Then f = 1-g is a pairwise continuous function from (E, L, U) 
to ([0,1], w, a) that separates p and q. 

It is immediate from 4.4(b) that (E,Id(A),A,¢) is a field 
of C*-algebras. 0 
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5. Continuous Sections on E 

In this part of the paper we will consider pairwise continu­
ous maps 8: (ld(A),w,a) ~ (E,L,U) which are sections for 
(E,ld(A),p), i.e. maps s so that po 8 is the identity map on 
Id(A). Here p(l, a+1) = I. These pairwise continuous sections 
are the maps that we use to represent C*-algebras with unity. 
(See Theorem 5.5) 

Notation. For a subspace X of 1d(A), the set of all pair­
wise continuous sections from (X, w, a) to (E, L, U) will be 
denoted by ~(X, E). Here wand a denote the lower and Scott 
topologies as well as their relative topologies on the subset 
X. The symbol for the set ~(Id(A), E) will often be short­
ened to ~(E) or simply ~. For a E .A, the section a is de­
fined by a(1) = ¢(1, a). Clearly a is pairwise continuous and 
A = {a : a E A} is a subset of ~(X, E) for any X containing 
Prim(A). 

Definition 5.1. For 8, t E ~(X, E) and A E C, define addi­
tion, multiplication, scalar multiplication, involution and norm 
by 

(i) (8 + t)(1) = 8(1) + t(I); 

(ii) 8· t(1) = 8(1) · t(1); 

(iii) (A8)(1) = A · 8(1); 

(iv) 8*(1) = (8('1))*; 
(v) 11811x = sup{118(I) II I I EX}. 

Recall that these operations were defined for E in 4.2 and 
following. 

Theorem 5.2. With the operations defined above ~(E) be­
comes a C* -algebra. 



A BITOPOLOGICAL GELFAND THEOREM ... 297 

Proof This fact is implicit in the proof of 5.5 below. 

Lemma 5.3. Let s be a section for (E,ld(A),A,¢). 
(a) If s is (w, £) continuous, then I ~ 118(1)11 is lower semi­
continuous. 
(b) If s is (a,U) continuous, then I ~ IIs(I)1I is upper semi­
continuous. 

Proof (a) Let s be (w, £) continuous and r be a real number 
~ o. Set F = {I : IIs(I)11 :::; r}. We must show that F is w 
closed for each r. Note that F = s+-(4)(ld(A) x {a : /lall ~ r} )). 
By 4.5(a) and the (w, £) continuity of s, the set F is w closed. 
This completes the proof of (a). 
(b) Since ¢> is an (a x "7, U)-open map, this part follows in a 
manner similar to (a) . 0 

Convention. For the remaining part of this section, we will 
assume that the C*-algebra A has a multiplicative identity, de­
noted by 1. Also, the center of A will be denoted by Z(A) or 
simply Z. 

Proposition 5.4. If Z E Z, then z(I) - <p(1, z(1)1) for 
I E Glimmal'(A). 

Proof. This assertion follows immediately from 3.5 and the 
definition of a. 

Theorem 5.5. (Representation Theorem) Let A be a C*­
algebra with identity. Set X = Glimmal'(A); then X is an 
w V a closed subspace of 1d(A) that contains Prim(A). Also 
(a) The normed algebra of all pairwise continuous sections 8 : 

X ~ E, is isometrically isomorphic to A. 
(b) If A is a commutative C*-algebra, then X = Max(A) and 
the representation in part (a) reduces to the standard Gelfand 
transform. 
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(c) If Prim(A) is Hausdorff for the hull-kernel topology, then 
X = Prim(A) and the representation in (a) is equivalent to the 
Fell representation of A as a continuous field of C* -algebras. 

Proof Since A has a unit, it follows from the Dauns-Hofmann 
Theorem that (Glimm(A) , a) is compact Hausdorff. (See page 
120 in [DH] or section 7 of [HKMS].) We interrupt the proof 
of 5.5 to prove a pair of lemmas. 

Lemma 5.6. If s is a (a, U) continuous section and c > 0, 
then there exists an a E A so that 118(1) - ¢(1, a) II < c for all 
Glimm ideals I. 

Proof For J E I d(A), there exists aJ E A so that s(J) = 
¢(J,aJ). By 5.3(b) the set VJ = {1 : 118(1) - ¢(I,aJ)11 < c} 
is a-open. Thus the collection V = {VJ } is a a open cover 
of 1d(A). Since Glimm(A) is compact there is a finite parti­
tion of unity that is subordinate to V on Glimm(A). By the 
Dauns-Hofmann Theorem, page 120 in [DH], the center Z of 
A is isometrically isomorphic with the algebra of all complex 
valued a continous functions on Glimm(A). Thus the afore­
mentioned partition of unity can be selected from Z. Specifi­
cally, there is a family {zJ I J E F} in Z+, indexed by a finite 
subset F of Glimm(A) , whose sum is 1 and is so that the 
cozero set associated with ZJ is a subset of VJ n Glimm(A). 
We claim that a = ~ zJaJ, (the sum is over J E F) is the 
element of A that satisfies the conclusion of this lemma. For if 
I E Glimm(A) then 8(1) - ¢(1, a) = 8(1) - ~ zJ(I)¢(1, aJ) = 
~zJ(8(I) - ¢(I,aJ)). Therefore, by 5.4, 118(1) - ¢(I,a)11 :::; 
~zJ(I)118(1) - ¢(1,aJ)11 < c. 0 

Lemma 5.7. If 8 is a (a, U) continuous section, then there 
exists an a E A so that 8(1) = </>(1, a) for all Glimm ideals I. 

Proof By induction and the Lemma above, there exists a se­
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quence {ak} in A so that for each positive integer n and each 
Glimm ideal I, 118(1) - 2:k=1 o'k(I) II < 2-n. By taking the dif­
ference between the partial sums for nand n - 1, it follows 
that Ilo'n(I) II < 2-n + 2-(n-1) = 3 · 2-n . Now sup{llo'n(I) II I 
I E Glimm(A)} = sup{llo'n(P)11 I P E Prim(A)} = Ilanll. 
So Ilanll < 3 · 2-n 

; whence the series 2:~=1 an converges to an 
element a E A. It now follows that 8(1) = a(I) = </>(1, a) for 
all Glimm ideals I. 0 

We now return to the proof of 5.5. 

Assume that 8 is a pairwise continuous section. By Lemma 
5.7 above, there exists a E A so that 8(1) = 0,(1) for all Glimm 
ideals I. Since {I I s(I) = a(1)} equals 8+-(¢(Id(A) x {b: Ilb­
all::; O} )), it follows from Lemma 4.5(a) and the (w, [,) conti­
nuity of s that 8 and a agree on the w-closure of Glimm(A). 
But the latter is, by definition, equal to Glimmal(A). Thus 
~(X, E) = A = {a : a E A}; clearly a ~ a is an isomorphic 
isometric embedding of A into ~(X, E). This completes the 
proof of 5.5(a). 

When A is a commutative C*-algebra with identity, then A 
reduces to Z and E is the product X x C where C denotes the 
complex numbers. (b) is now clear. 

When Prim(A) is Hausdroff, it is clear that X = Prim(A). 
Also, the topologies wand a are each equal to the hull-kernel 
topology. So the complication of dealing with bitopologies is 
removed and we are back in well-established territory. 0 

6. Algebras Lacking a Unit 

Recall (3.2 above) that for any C*-algebra A (with or without 
an identity), the centroid of A, denoted by R(A) or simply R, 
is the set of all self maps r : A ~ A for which (r(a))b = a(r(b)) 
for all a and b in A. For z E Z = Z(A), the center of A, define 
r z by rz(a) = za; then {rz : z E Z}, as a subset of R, can 
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be identified with Z. When the operations and the norm are 
defined in the canonical way, R becomes a commutative C*­
algebra with 1 which contains the center Z of A and equals 
the center when A has a unit. Also, R is the center of the 
multiplier algebra of A. 

In R x A, define the product by (r, a) · (s, b) = (rs, r(b) + 
s(a) + ab). All other operations are defined co-ordinate wise 
and the operator semi-norm is given by 

II(r,a)IIA = sup{llr(x) + axil : x E A, Ilxll ~ I}. 

When assigned the norm II(r, a)11 = max{llrll, II(r, a)IIA}, the 
algebra R x A becomes a C*-algebra. The null space of the 
operator semi-norm is the ideal {(rz, - z) : z E Z} which we de­
note by ~(-Z). Let B be the quotient space (R x A)/~(-Z). 

Then the usual quotient space operations make B a C*-algebra 
which contains isometrically, isomorphic copies of both A and 
R. Furthermore, the center Z(B) of B is that copy of R. 
Finally, by the Dauns-Hofmann Theorem, both Z(B) and R 
are isometrically isomorphic with Cb(Prim(A)), the algebra of 
all bounded complex-valued continuous functions on Prim(A) 
with the hull-kernel topology. Note that if M E Max(R) is so 
that M A = A, then M + A is a primitive ideal of B. Also, if 
Q E Prim(B) is so that Q ::) A, then Q n R = M E Max(R) 
and Q = M + A. Thus Prim(B) (See [D, 2.11.5, p. 61]) can 
be identified with Prim(A) U {M : M E Max(R), M is free} 
and A = n{M + A : M E Max(R), M is free}. (See the Re­
mark below 3.2 for the definition of a free ideal.) Likewise 
Glimm(B) can be identified with Glimm(A) U {M : M E 

Max(R) , M is free} and Glimmal(B) with Glimmal(A)U{M : 
M E Max(R) , M is free}. 

Definition 6.1. When A is a C*-algebra that lacks a unit, let 
B be the algebra with unit constructed above and let 
(E, Id(B), B, 4» be the corresponding field of C*-algebras. For 
X = Glimmal'(B), denote by ~o(X, E) the set of all pairwise 
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continuous sections from (X, a, w) to (E, £, U) which vanish 
outside Glimmal(A) , Le. vanish on the set {M + A : M E 
Max(R), M is free}. A pairwise continuous section s is said 
to vanish at 00 if it vanishes at M + A for each free ideal 
ME Max(R). 

Remark. In the remaining part of this paper, A will be dealt 
with as a subalgebra of B. The base space will be Id(B) with 
its lower wand Scott a topologies. This will enable us to use 
5.5 to establish our main theorem. 

Definition 6.2. Within (E, Id(A), B, </J), define Eo as Eo = 
¢[Id(B) x A]. 

Clearly, all of the sections in ~(X, Eo) vanish at 00; i.e., 
~(X, Eo) C ~o(X, E). 

Lemma 6.3. (aJ If r E R is so that r E ~(Id(B), Eo), then 
r = z for some z E Z(A). 
(b) If for X = Glimmal'(B), r E R is so that r E ~o(X, E), 
then r = z for some z E Z(A). 

Proof (a) Let s = r. Since s[Id(B)] c Eo, there exists aJ E A 
so that s(J) = ¢(J,aJ) for each J E Id(B). We may now pro­
ceed as in Lemmas 5.6 and 5.7, except that here, the ZJ are in 
Z(B) = R. Thus there exists Z E A so that reI) = z(I) for all 
ideals I in Glimm(B). As in the proof of 5.5, the w-continuity 
of these sections, it follows that they agree on Glimmal'(B). In 
particular r(P) = z(P) for all primitive ideals P E Prim(B). 
Whence r = Z ERn A = Z(A). 
(b) The fact that r vanishes at 00 implies that 
r E n{M : M E Max(R) , M is free}. Thus r E n{M + A : 
M E Max(R) , M is free} = A. Whence r E Z(A). 0 

Theorem 6.4. (Main Theorem) For a C* -algebra A and its 
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enlarged unitary algebra B, let X = Glimmal'(B); then X is 
anwVa closed subspace of Id(B) that contains Prim(A). Also 
(a) The C* -algebra ~o(X, E) of all pairwise continuous sec­
tions s : X -4 E that vanish at 00, is isometrically isomorphic 
to A. 
(b) If A is a commutative C*-algebra, then X = Max(R) and 
the representation in part (a) reduces to the standard Gelfand 
transform. 
(c) If Prim(A) is Hausdorff for the hull-kernel topology, then 
X = Prim(B) and the representation in (a) is equivalent to the 
Fell representation of A as a continuous field of C* -algebras. 
(d) (Baker (Ba]) If for Z = Z(A), it is true that ZA = A, 
then the C*-algebra ~o(X, E) of all pairwise continuous sec­
tions s : X -4 E, which vanish at infinity, is isometrically 
isomorphic to A. (In this statement., X = Glimmal'(B) can 
be replaced by the one-point compactijication of M ax(Z).) 

Proof (a) Since a -4 ais an isometric homomorphic imbedding 
of A into ~o(X, E), it suffices to show that the image of A 
exhausts ~o(X, E). Let s E ~o(X, E). Then by 5.5, applied to 
B, there exist r E R and a E A so that s = (r + a)". Define 
the section t by t = s - a. Then t E ~o(X, E) and t = r. By 
6.3(b), there exists Z E Z(A) so that t = z. Thus s = b for 
b = a + z E A. This completes the proof of (a). 

Under the hypotheses of (b) or (c), it is easy to show that 
Prim(A) is a dense, locally compact subspace of the compact 
Hausdorff space Prim(B). Moreover, the two topologies wand 
a agree on Prim(B). In (d), Glimm(A) is a dense, locally 
compact subspace of Glimm(B). Once these facts are known, 
(b), (c) and (d) become corollaries of part (a) . 0 

Example. Let A be the C*-algebra of all compact opera­
tors on a separable, infinite dimensional Hilbert space. Then 
Prim(A) consists of a single point; so R = C . 1 where C is 
the algebra of complex numbers. In this case, B = R x A, 
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while Id(B) consists of three ideals: {O}, A, Band E = 
({O} x B) U ({A} x R) U ({B} x {O}). In this example, the 
ideal A is the point at 00. Thus ~(X, Eo) = ~o(X, E). Note 
that X is, in this case, the set of proper ideals in I d(A). 
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