
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



Topology Proceedings 
Volume 22, Summer 1997, 305-340 

EMBEDDING OF SIMPLICIAL ARCS INTO THE 
PLANE 

Piotr Minc* 

Abstract 

Suppose cp : G1 ~ Go is a simplicial map be
tween graphs and ho is an embedding of Go into 
t11e plane. In this paper we study under what 
conditions G1 can be embedded into the plane 
with an embedding sufficiently close to ho 0 cpo 
We answer this question in the case when G1 is 
an arc. 

1. Introduction 

By a graph we understand a one-dimensional finite simplicial 
complex. If G is a graph then V (G) will denote the set of ver
tices of G and f, (G) will denote the set of its edges. By an edge 
we understand the closed segment between two vertices. Two 
vertices belonging to an edge are called adjacent. A simplicial 
map of a graph G1 into a graph Go is a function from V (G1) 

into V (Go) taking every two adjacent vertices either onto a 
pair of adjacent vertices or onto a single vertex. In this paper 
we will not distinguish between a graph and its geometric real
ization. We will assume that every graph is a space which is the 
union of finitely many arcs (edges) that may intersect only at 
common endpoints (vertices). We will assume that each edge 
is parametrized by some homeomorphism of the interval [0,1]. 
It is important to note, however, that a graph, either abstract 
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or geometric, has a fixed collection of vertices and any change 
in this collection changes the graph. Each simplicial map be
tween graphs can be uniquely extended linearly (according to 
the parametrization) from vertices edges to form a continuous 
map. We will not distinguish between the simplicial map and 
its continuous representation. 

A graph with a geometric realization homeomorphic to an 
arc is simply called an arc. Observe that two arcs are iso
morphic in the simplicial category if and only if they have the 
same number of vertices. A connected graph without a simple 
closed curve is called a tree. A tree consisting of three edges 
having a common vertex is called a simple triode A graph with 
three vertices and three edges is called a simple triangle. If u 
and v are two adjacent vertices of a graph, by [u, v] we will 
denote the edge between u and v. Additionally, if a and bare 
two points (not necessarily vertices) of a tree, by [a, b] we will 
denote the arc between a and b. 

Generally it is difficult to establish whether an atriodic one
dimensional continuum can be embedded into the plane. For 
instance, it is still unknown whether an atriodic version of the 
fixed-point-free tree-like continuum constructed by D. P. Bel
lamy in [1] can be embedded in the plane (see comments to 
Problem 1 in [3]. In many cases, where one can embed a given 
continuum in the plane, the following technique is used. Sup

il G 12 G Is .. f hpose G0 +-- 1 +-- 2 +-- ... IS an Inverse system 0 grap s 
with continuous (not necessarily simplicial) bonding maps. It 
is very well known that if we place each Gi into the plane with 
an embedding hi so that hi+1 is sufficiently close to hi 0 Ii, then 
the limit of {hi(Gi )} in the plane is homeomorphic to the in
verse limit of the system. For example, this technique is used 
to embed in the plane continua constructed by W. T. Ingram 
([5], [6]) and by J. F. Davis and W. T. Ingram ([4]. An ear
lier application of the technique in its version for patterns was 
given by R. H. Bing who proved in [2, theorem 4] that each 
snake-like continuum can be embedded into the plane. Snake
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like continua (also known as chainable continua) are inverse 
limits of arcs. Bing observed, in the language of patterns, that 
if f : 11 ---+ 10 is a map between two arcs, ho is an embedding 
of 10 into the plane and € is a positive number, then there is 
an embedding hI of 11 into the plane such that hI is €-close 
to ho 0 f. Observe that the restriction of the last theorem to 
simplicial arcs 10 and 11 and a simplicial map f yields an equiv
alent statement. It is essential, however, that both 10 and II 
are arcs. Motivated by the embedding technique and the Bing 
theorem, we will study the combinatorics of the following prob
lem. 

Question 1.1. Suppose a graph Go is embedded in the plane 
and'P is a simplicial map of a graph G1 into Go. Under what 
conditions can <p be be approximated by an embedding of Gi 
into the plane? 

We will answer this question fully in the case when Gl is an 
arc and give a necessary condition for an arbitrary Gl . Before 
we explain the results of the paper let us first consider a few 
examples. 

Example 1.2. Let Go be a graph with vertices Vo,···, V4 

embedded into the plane as shown in the left side of Figure 
1. Suppose that Gl contains two exclusive arcs ao - al - a2 
and bo - bl - b2 with cp (ao) = VI, cp (al) = Va, cp (a2) = V3, 

cp (bo ) = V2, <p (b1 ) = Vo and cp (b2 ) = V4. If G1 is mapped into 
the plane in such a way that each edge e is mapped close to 
the embedding <p (e), then the images of the arcs ao - al - a2 
and bo - bl - b2 must intersect (see the right side of Figure 1). 

Example 1.3. Let Go be a simple triad embedded into the 
plane (see the left side of Figure 2). Suppose G l contains two 
exclusive simple triods G~ and G1. Let cp : G l ---+ Go be a 
simplicial map sending each of G~ and G1 onto Go. If G1 
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is mapped into the plane in such a way that each edge e is 
mapped close to the embedding <p (e), then the images of the 
triads G~ and Or must intersect (see the right side of Figure 2). 

Examples 1.2 and 1.3 illustrate two basic obstacles not al
lowing the simplicial map <p from Question 1.1 to be approxi
mated by an embedding. In the first example <p forces two arcs 
to cross each other. In the second example we cannot embed 
to disjoint copies of the same triod close to each other. 

In this paper we consider the operation d introduced by the 
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author in [8]. If rp is a simplicial map of a graph G1 to a 
graph Go, then d [rp] is a simplicial map mapping some graph 
D (rp, G1) to some graph D (Go). The n-th iteration of the 
operation is denoted by dn [rp]. It maps a graph Dn (rp, G1) 

into a graph Dn (Go). (We will recall the definitions in the 
next section.) It was proven in [8] that if G1 is an arc with 
k vertices, then D (rp, G1) is an arc (possibly degenerate) with 
less than k vertices. We will notice that any embedding of Go 
into an oriented 2-manifold, induces an embedding of D (Go) 
into another oriented 2-manifold. We will prove (Theorem 4.3) 
that if <p can be approximated by an embedding, then d [rp] can 
also be approximated by an embedding. In the case where G1 

is an arc and cp has no self crossing as in Example 1.2, we 
will prove (Theorem 4.10) that if d [rp] can be approximated 
by an embedding, then cp can also be approximated by an 
embedding. It follows that a simplicial map cp of an arc G1 

with k vertices into a plane graph Go can be approximated by 
an embedding if and only if dn [cp] has no self crossing for each 
n = 0,1, ... , k (Theorem 4.11). The last statement yields a 
computer algorithm to check whether a simplicial map from an 
arc into a plane graph can be approximated by an embedding 
(Remark 4.13). Theorem 4.3 also lets to generalize Example 
1.3 to the following result (see Theorem 4.5). Suppose G is a 
graph embedded in the plane. Suppose rp is a simplicial map of 
a tree T into G such that r.p cannot be factored through an arc. 
Then there are no two exclusive embedding of T approximating 
cp. 

2. Embedding Graphs in Oriented 2-Manifolds 

In this section we observe that every graph can be embedded 
into an oriented 2-manifold with an embedding that is deter
mined globally by its local behavior at every vertex. We start 
with the following definitions. 
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Definition 2.1. If v E V (G) then E (v) will denote the collec
tion of all edges of G that have vasa vertex. Let Jl (v) denote 
the number of elements of E (v). For each v E V (G) arrange 
elements of E (v) into a sequence A (v) = el (v) ,e2 (v) , ... , 
ep,(v) (v). The collection A = {A (v)}vEV(G) will be called a lo
cal ordering of edges of G. 

Definition 2.2. Suppose G is a graph embedded in the inte
rior of an oriented 2-manifold M (possibly with boundary). A 
closed disk B c M will be called a regular ball around a vertex 
v E V (G) if v is contained in the interior of B, v is the only 
vertex of G contained in B and each edge in E (v) intersects 
the boundary of B at exactly one point. If B is a regular ball 
around a vertex v and e E E (v), then we can arrange elements 
of E (v) into a sequence starting with e and going counterclock
wise along the boundary of B. Since the order clearly does not 
depend on the choice of B, we may define the counterclockwise 
order on E (v) starting with e. Let A = {A (v) }vEV(G) be a lo
cal ordering of edges of G. We will say that A agrees with the 
embedding of G into M, if the counterclockwise order on E (v) 
starting with el (v) coincides with A (v) for each v E V (G). 

The proof of the following proposition is easy and will be 
omitted. 

Proposition 2.3. Suppose G is a graph with a local ordering 
A. Then there is an oriented 2-manifold M and an embedding 
of G into the interior of M that agrees with A. 

Definition 2.4. Suppose G is a graph embedded in the in
terior an oriented 2-manifold M. We will say that a com
pact manifold N c M containing G in its interior is a normal 
neighborhood of G if there are two collections of closed discs 
{Bv } vEV(G) and {Ge } eEE(G) such that (see Figure 3) 
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(1)	 N = UVEV(G) Bv U UeEE(G) Ce , 

(2)	 for each v E V (G), Bv is a regular ball around v, 

(3)	 elements of {BV}VEV(G) are mutually disjoint, 

(4)	 elements of {Ce}eE£(G) are mutually disjoint, 

(5)	 Bv n Ce =F 0 if and only if v is a vertex of e, and 

(6)	 if v is a vertex of e then Bv n Ce is an arc containing the 
point e n Bd(Bv ) in its interior. 

It follows from the above conditions that if e is an edge with 
vertices a and b, then e \ (Ba U Bb) is an open arc contained 
in the interior of the disk Ceo The collections {Bv}vEV(G) and 
{Ce}eE£(G) will be called a normal structure on N. 

The proof of the next two propositions is left to the reader. 

Proposition 2.5. Suppose G is a graph embedded in the inte
rior an oriented 2-manifold M. Then there is a normal neigh
borhood N of G in M. 

Proposition 2.6. Let A be a local ordering of edges of a graph 
G.	 Let, for i = 1,2, hi be an embedding of G into an oriented 
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2-manifold M i that agrees with A and let Ni be a normal neigh
borhood of hi (G) in Mi. Then N l and N 2 are homeomorphic. 

Definition 2.7. Suppose G is a graph contained in a normal 
'neighborhood N with a normal structure S given by collections 
{BV}VEV(G) and {Ce}eE&(G). Let 'P be a simplicial map of a 
graph G' into G and let f be a map of G' into N. We will 
say that f is an S-approximation of 'P provided that for each 
e' E [; (G') with vertices a' and b' 

(1) if 'P (a' ) = 'P (b' ) = v, then f (e') c Bv and 

(2) if cp (a' ) = a and cp (b') = b where a and b are two dis
tinct vertices of an edge e E £ (G), then there are points 
a", b" E e' such that f ([a', a"]) C Ba , f ([b' , b"]) c Bb and 
f ((a", b")) C Ce \ (Ba U Bb). 

Example 2.8. Let T be the graph obtained from a simple 
triad by attaching an additional edge to one of its endpoints. 
Let va, ... ,V4 denote the vertices of T as it shown on the left 
side of Figure 4. Suppose L is a simplicial arc with vertices 
Ua, . .. ,Ug. Let 'P : L ~ T be the simplicial map given by 
'P (uo) = 'P (U6) = Vl, 'P (Ul) = <p (Ug) = cp (us) = <p (U7) = Va, 
'P(U2) = V2, CP(U4) = cp(Ug) = V3 and cp(Ug) = V4. The map 
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cp is illustrated on the right side of Figure 4. Each vertex 
u E V (L) is close to its image cp (u) E V (T). The left side of 
Figure 5 shows a normal structure S on some neighborhood 
of T in the plane. The right side of the same figure shows an 
embedding of L into the plane which is an S-approximation of 
cp. 

Let a : T ~ T be the symmetry on T that swaps VI with 
V2 and keeps the remaining vertices of T fixed. Let £' be a 
simplicial arc with vertices u~, ... ,u~. Define cp' : £' ~ T by 
setting <p' (u~) = (J (cp (Ui)) for i = 0, ... , 9. The left side of 
Figure 6 illustrates an embedding of £1 into the plane which is 
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an S-approximation of <p'. The right side of Figure 6 indicates 
that the images of S-approximations of <.p and <.p' must intersect. 

The next proposition will allow us to use S-approximations 
instead of E-approximations. (A map IE : X ~ Y is an E
approximation of a map I : X ~ Y if the distance between I 
and IE is less than €.) 

Proposition 2.9. Suppose G is a graph contained in a normal 
neighborhood N with a normal structure S. Let <.p be a simpli
cial map of a graph G' into G. Then the following conditions 
are equivalent: 

(a)	 There is an embedding h G' ~ N which is an S-
approximation of <.p. 

(b) For each positive number E there is an embedding hE : G' ~ 

N which is an E-approximation of <.p. 

Proof of 2.9. Let S be given by the collections {BV}vEV(G) and 
{Ge } eE£(G)· 

We will outline the idea of the proof before we proceed with 
its formal implementation. If (a) is true, we will first shrink 
all Bv's to make their diameters less than E. We will then 
define h€ satisfying the condition (b) by using the image of 
h intersected with UVEV(G) B v and then, for each edge w E 
£ (G') with vertices a and b such <p (w) E £ (G), connecting 
h (w) n Bt.p(a) with h (w) n Bt.p(b) with an arc almost parallel to 
<p (w) n Gt.p(w). If (b) is true, we will choose sufficiently small 
E, and then replace each disk Bv by a larger disk B~ in such 
a way that the intersection B~ n h€ (w) is connected for each 
w E £ (G'). The disks B~ will be mutually exclusive. Then 
we will define a homeomorphism 9 of N onto itself such that 
9 (B~) = Bv for v E V (G) . Finally, we will define a map h 
satisfying (a) as 9 0 hE. Since implementing this very simple 
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idea is somewhat cumbersome, the detailed proof is supplied 
below. 

Suppose (a) is true. Let E be an arbitrary positive num
ber. There is a homeomorphism 9€ of N into itself such that 
9€ (G) = G and for each v E V (G) we have 9€ (v) = v and 
diam (9€ (Bv )) < E. Clearly, 9€ (S), defined by the collections 
{9€ (Bv )}vEV(G) and {9€ (Ce)}eEE(G) , is a normal structure on 
9€ (N) satisfying (a) with N replaced by 9€ (N). Since 9€ (N) c 
N, the version of the condition (b) with N replaced by 9€ (N) 
implies (b) stated in the proposition. Without loss of generality 
we may therefore replace S by 9€ (S) and assume that the orig
inal normal structure S has the property that diam (Bv ) < E 

for each v E V (G). 
For each edge e E £ (G) let Pe : [0, 1] ---+ e be the parametriza

tion of e. Let Se be the first point in [0, 1] such that Pe (se) E Ce 

and let te be the last point in [0,1] such that Pe (te) E Ceo 
Let Te be a homeomorphism of Ce onto [Se, te] x [-1,1] such 

that Te (Cen Bpe(o») = {Se} x [-1,1]' Te (Cen Bpe(l») = {tel X 

[-1,1] and T e (Pe (x)) = (x,O) for each x E [Se, t e]. Since diame
ters of Bpe(o) and B pe (l) are less than E, there are numbers s~ and 
t~ such that Se < s~ < t~ < te, diam (Te-1 ([Se, S~] x [-1,1])) < 
E and diam (Te-1 ([t~, teJ x [-1,1])) < E. There is a positive 
number TJe such that diam (Te -1 ( { X} x [-TJe, TJe])) < E for each 
x E [Se, te). Let qe : [Se, te) ---+ [TJe, 1] be a map such that 
qe (se) = 1, qe (te) = 1 and qe (x) = TJe for each x E [s~, t~]. Fi
nally, let 'e denote the map of [se, tel X [-I,ll into itself given 
by Ie (x,y) = (x,yqe(x)). 

Let We denote the set of edges w E £ (G') such that ep (w) = 

e. For each w E We let Pw : [0,1] ---+ W be the parametrization 
of w such that ep (Pw (x)) = Pe (x) for each x E [0,1]. Let 
aw be the point h (w) n Bpe(o) n Ce and let bw be the point 
h (w) n Bpe (l) n Ceo By f w we denote the linear function from 
[se, teJ into [se, t e] x [-1,1] such that f w (se) = Te (aw ) and 
f w (te ) = T e (bw ). Observe that since h is an embedding, the 
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images of fw's are mutually exclusive for w EWe' 
For each w E We' we will define a map (J'w : [0, 1] ~ N in 

the following way: 

(i)	 (J'w restricted to [0, Se] is an embedding of [0, se] into h (w) 
such that (J'w (0) = h (Pw (0)) and (J'w (se) = aw, 

(ii)	 (J'w restricted to [Se, tel is equal to r e-1 0 Te 0 f w and 

(iii)	 (J'w restricted to [te , 1] is an embedding of [te , 1] into h (w ) 
such that o"w (te) = bw and (J'w (1) = h (Pw (1)). 

Observe that o"w is an embedding of [0,1] into N such that 
the distance between 0"w (x) and Pe (x) is less than € for each 
x E [0,1]. 

Finally, we are now able to define he' For each edge u E 
[; (G') such that 'P (u) is a vertex of G, let he restricted to u be 
the same as h restricted to u. For each edge w E [; (G') such 
that 'P (w) is an edge of G, let he restricted to w be equal to 
o"w 0 Pw -1. It may be verified that so defined hu satisfies the 
condition (b). 

Now, we will suppose (b) is true and prove (a). 
Let C1 be a positive number less than the distance between 

v and the complement of Bv for each vertex v E V (G) . Let 
C2 be a positive number less than the distance between e and 
the complement of B v U Ce U Bu for each edge e E £ (G) with 
vertices v and u. 

For each edge e E £ (G) let me be a point in e that belongs 
to the interior of Ceo Recall that E (v) we denote the set of 
edges of G having vasa vertex for each vertex v E V (G). 
If e E E (v), let I [v, e] denote the subarc of e between v and 
me' Let u denote the other vertex of e and let J [v, e] be the 
subarc of e between me and U. Notice that I [v, e] = J [u, e] 
and J [v, e] = I [u, e]. Clearly, J [v, e] n Bv = 0. Let b be a 
positive number such that the distance between Bv and J [v, e] 
is greater than b for each vertex v E V (G) and each edge 
e E E(v). 
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Choose c > 0 less than the minimum of Cl, C2 and 8. Let 
he : G' ~ N be an embedding €-approximating <po 

As before, for each edge e E £ (G), let We denote the set of 
edges w E £ (G') such that <p (w) = e. 

Suppose e is an edge of G and w E We. Let v and u denote 
the vertices of e. Let W v and W u denote the vertices of w in 
such an order that <p (wv ) = v and <p (wu ) = u. Let w~ be 
the last point on the edge w directed from W v to W u such that 
he (w~) E Bd (Bv ). Similarly, let w~ be the last point on the 
edge w directed from W u to W v such that he (w~) E Bd (Bu ). 

Let Aw,v be the subarc of w between Wv and w~. Similarly, let 
Aw,u be the subarc of w between W u and w~. Since c < 8, we 
have that <p (w~) E I [v, e]. Since cp (wv ) = v E I [v, e] and cp 
is linear on each edge of G', it follows that cp (Aw,v) C I [v, e]. 
By the choice of c, we get the result that he (Aw,v) n Bu = 
0. By the symmetry between v and u, it follows that that 
he (Aw,u) n Bv = 0. 

There is a collection of disks {Pw,z}wEWe,z=v,U with the fol
lowing properties: 

he (Aw,z) is contained in the interior of PW,z for each w E 
We and z = v,U, 

Pw,z is contained in the interior of CeUBz for each w E We 
and z = v,U, 

PW',v n Pw",u = 0 for any w', wI! EWe' 

PW',z n PW",z c B z for any w' :f=. wI! E We' and z = U, v, 

Bd (pw,z)nhe (w) consists of a single point for each w E We 
and z = v,U. 

Let Qe,v be the union of BvUUWEWe Pw,v and all components 
of Ce \ UWEwe Pw,v that do not contain Ce n Bu. Similarly. let 
Qe,u be the union of Bu U UWEWe Pw,u and all components of 
Ce \ UWEWe Pw,u that do not contain Ce n Bv. Observe that 
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Qe,v and Qe,u are disjoint disks. Let C~ denote the closure of 
Ce \ (Qe,v U Qe,u). Notice that C~ is a disk whose intersection 
with each of the disks Qe,v and Qe,u is an arc. It follows from 
the construction that the set h€ (w) nC~ nQe,z is a single point 
for z = v,u. 

For each v E V (G), let B~ = UeEE(v) Qe,v. Clearly, 

(1) elements of {B~}VEV(G) are mutually disjoint, 

(2) elements of {C~} eEE(G) are mutually disjoint, 

(3) B~ n C~ =I 0 if and only if v is a vertex of e, and 

(4) if v is a vertex of e then B~ n C~ is an arc. 

It follows that there is a homeomorphism 9 of N onto itself 
such that 9 (B~) = Bv for v E V (G) and 9 (C~) = Ce for 
e E £ (G). It may be verified that h = 9 0 h€ : G' ~ N satisfies 
the condition (a). 0 

Definition 2.10. (See Figure 1 and Example 1.2.) Let G 
be a graph with a local ordering of edges A = {A (v)}vEV(G) ' 

where A (v) = el (v) ,e2 (v) , ... ,ep,(v) (v). Suppose that, for 
a certain vertex v, i, j, i' and j' are four integers such that 
1 ~ i < j ~ J1 (v) and 1 ~ i' < j' ~ J1 (v). We will say that the 
pair {ei (v) , ej (v)} crosses the pair {ei' (v) , ej' (v)} if either 
i < j' < j < j' or i' < i < j' < j. Suppose that cp and cp' are 
simplicial maps mapping graphs G1 and G~, respectively, into 
G. We will say that cp crosses cp' if there are arcs L C G1 and 
L' c G~, there is a vertex v E V (G) and there are four edges 
ei (v), ej (v), ei' (v) and ej' (v) such that cp (L) = ei (v) U ej (v), 
cp' (L') = ei' (v) Uej' (v) and the pair {ei (v), ej (v)} crosses the 
pair {ei' (v) ,ej' (v)}. If cp = cp', we will say that cp crosses 
itself (or has a self crossing). Observe that a crossing (or self 
crossing) depends on the local ordering A. We will always 
understand that a crossing (or self crossing) occurs in some 
local ordering. If the range graph is embedded in an oriented 
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2-manifold we will implicitly assume that the local ordering 
agrees with the embedding. 

3.	 The Operation d 

We start this section by recalling some definitions introduced 
in [8]. 

Definition 3.1. (See [8, 2.1.].) For a graph G, let D (G) be 
the graph such that 

(1)	 the set of vertices of D (G) consists of edges of G and 

(2)	 two vertices of D (G) are adjacent if and only if they in
tersect ( as edges of G). 

In particular, in the trivial case, when G contains no edges, 
D (G) is empty. Since £ (G) = V (D (G)), we will use the 
same notation for vertices of D (G) and edges of G. Some
times, however, it will be more convenient for us to denote 
by v* the edge of G corresponding to a vertex v of D (G). 
We will use the notation D2 (G) = D (D (G)) and, in general, 
Dn (G) = D (Dn-l (G)). Figure 7 illustrates the first tree iter
ations of the operation D on the graph T defined in Example 
2.8. Edges of T are denoted by a, b, c and d. The same letters 
are used to denote the corresponding vertices of D (T). Edges 
of the graph D (T) and the corresponding vertices of D 2 (T) 
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are denoted bye, !, 9 and h. Finally, edges of D 2 (T) and the 
corresponding vertices of D3 (T) are denoted by letters i, j, k, 
m and n. 

Definition 3.2. (See Figure 8.) Suppose G is a graph and 
A = A (V)VEV oiG is a local ordering of edges of G, where 
A (v) = el (v) ,e2 (v) , ... , eJ.t(v) (v). We will define D (A) = 
{A (V)}VEV(D(G)). Let u be a vertex of D (G). Then u* is an 
edge of G. Let a and b be vertices of u*. Let E (u) be the set of 
edges in D (G) that have u as a vertex. Recall that E (a) and 
E (b) denote the sets of edges of G with one vertex at a and b, 
respectively. For each e E E (a) U E (b) that is different than 
u*, let (e) denote the edge in E (u) between u and the vertex 
of D (G) representing e. Observe that every edge of E (u) is 
equal to (e) for some edge e =f u* of either E (a) or E (b). The 
edge u* is present in both A (a) = el (a) ,e2 (a) , ... ,ep,(a) (a) 
and A (b) = el (b) ,e2 (b) , ... ,ep,(b) (b). There are integers j = 

1, ... ,J-L (a) and k = 1, ... ,J-L (b) such that ej (a) = ek (b) = u*. 
We will define A (u) as the following sequence: (el (a)), (e2 (a)), 
... , (ej-l (a)), (ek+l (b)), (ek+2 (b)), ... , (elJ.(b) (b)), (el (b)), 
(e2 (b)), ... , (ek-l (b)), (ej+l (a)), (ej+2 (a)), ... , 
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(eJL(a) (a) ). 

We will denote D (D (A)) by D2 (A) and, in general, we will 
use the notation Dn (A) = D (Dn-1 (A)). 

Observe that if A is a local ordering of edges that agrees 
with the embedding of the graph T shown in Figure 7, then 
D (A), D2 (A) and D3 (A) agree with the shown embedding of 
D (T), D 2 (T) and D 3 (T), respectively. 

All graphs in Figure 7 are planar. It should be noted, how
ever, that D (G) is not necessary planar even if G is. For ex
ample, if G consists of 5 edges meeting at the common vertex, 
then D (G) is the Kuratowski graph K s. Definition 3.2 allows 
us to circumvent this difficulty. If a graph G is embedded in 
the plane, or more general, in an oriented 2-manifold, there is a 
local ordering A that agrees with the embedding. Proposition 
2.3 lets us embed D (G) in an oriented 2-manifold so that the 
embedding agrees with D (A). This natural embedding will be 
essential in our further considerations. 

Definition 3.3. (See [8, 2.4.]) Suppose 'P : G' ---+ G is a 
simplicial map between graphs. For every (closed) edge e E 
£ (G), let JC (e) denote the set of components of cp -1 (e) which 
are mapped by c.p onto e. Denote by JC (c.p) the union of all 
JC (e). Let D (cp, G') be the graph such that 

(i)	 the vertices of D (<p, G') are elements of JC (<p), and 

(i)	 two vertices of D ('P, G') are adjacent if and only if they 
intersect ( as subgraphs of G'). 

Let d [c.p] : D (c.p, G') ---+ D (G) be the map defined by d [cp] (v) 
= cp (v) for every vertex v E D (cp, G'). 

Every vertex v E D (C{J, G') is also a subgraph of G'. We 
will denote this subgraph by v* when we need to distinguish 
between the two roles of the same object. 
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<p 

Fig. 9. 

Observe that d ['P] is empty if no edge of G is in the image 
of 'P. 

We will denote the map d [d rep]] by cf2 ['P] and its domain 
D (d ['P] ,D ('P, G')) by D2 ('P, G'). In general, we will use the 
notation dn ['P] = d [dn

- 1 ['P]] for the n-th iteration of the oper
ation d on 'P. Also, Dn (ep, G') = D (dn - 1 [cp] , Dn-l (cp, G')) will 
denote the domain of dn ['P]. Thus, we have dn ['P] : Dn ('P, G') ~ 

Dn (G). 

Example 3.4. Let cp : L ~ T and 'P' : L' ~ T be as in 
Example 2.7. The first graph in Figure 9 indicates an embed
ding of L into a normal neighborhood of T approximating the 
map 'P (see also Figure 5). The next three graphs in Figure 
9 indicate embedding of D ('P, L), D2 (cp, L) and D3 (ep, L) into 
normal neighborhoods of D (T), D 2 (T) and D3 (T) approxi
mating the maps d rep], cf2 ['P] and d3 rep], respectively (see also 
Figure 7). Observe that D ('P, L), D2 ('P, L) and D3 (ep, L) are 
arcs. In fact, if the domain of a simplicial map 'l/J is an arc 
with n vertices, then the domain of d [1/;] is an arc (possibly 
degenerate) with at most n - 1 vertices ([8, Proposition 2.7.]). 

Figure 10 indicates the similar embeddings for ep'. Notice 
that d3 [ep] crosses d3 [ep'] in the sense of Definition 2.10. We 
will show that only such crossings may prevent existence of an 
embedding approximating a simplicial map defined on a graph 
whose components are arcs. 
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Fig. 10. 

4. Approximations of cp and d [cp] By Embedding 

We will need the following proposition in the proof of Lemma 
4.2. 

Proposition 4.1. Suppose R ,is a disk and H is a connected 
graph contained in R in such a way that the set Q = HnBd (R) 
consists of finitely many points. Let U be a neighborhood of H 
in R. Then there is a point p and a set of arcs {P (q)}qEQ 
contained in U such that for each q E Q we have 

(1) P (q) is an arc with endpoints at p and q, 

(2) P (q) n Bd (R) = {q} and 

(3) P (q) n UrEQ\{q} P (r) = {pl. 

The proof of the above proposition is easy and will be omit
ted. 

Lemma 4.2. Let G be a graph embedded in a normal neigh
borhood N with a normal structure S. Let A be a local ordering 
of edges that agrees with the embedding of G into N. Suppose 
the graph D (G) is embedded in a normal neighborhood N with 
a normal structure S in such a way that the embedding agrees 
with D (A). Suppose cp is a simplicial map of a graph G1 into 
G. Finally, suppose that there exists an embedding f of G1 
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into N that is an S-approximations of ep. Then there exists an 
embedding 1 of D (ep, G1) into N which is an S-approximations 
ojd[epJ. 

Proof of 4·2. Let the normal structure S be defined by the 
collections {Bv } vEV(G) and {Ge } eEE(G)· Similarly, suppose the 

normal structure S is defined by the collections {Bv } 
vEV(D(G)) 

and {C } . 
e eEE(D(G)) 

Let s be an arbitrary edge of G and let a and b denote 
the vertices of s. Recall that E (a) (or E (b)) denotes the set 
of edges of G that have a (or b) as a vertex. Since s is an 
edge of G, it is also a vertex of D (G). In this context, E (s) 
denotes the set of edges of D (G) that have s as a vertex. As in 
Definition 3.2., for each tEE (a) U E (b) that is different than 
s, let (t) denote the edge of E (s) between s and the vertex of 
D (G) representing t. Let Rs denote the union Ba U Cs U Bb. 

Since the embedding of D (G) into N agrees with D (A), there 
is an orientation preserving homeomorphism hs of R s onto Bs 

such that hs (Rs n Ct) = Bs n C(t) for each tEE (a) U E (b) 
that is different than s. 

For an arbitrary edge e E £ (D (G)), let s (e) and t (e) denote 
the vertices of e. Each vertex of D (G) is an edge of G. Since 
s (e) and t (e), understood as vertices of D (G), belong to the 
same edge, they must have a common vertex as edges of G. We 
will denote this vertex as Q (e). Let ge be a homeomorphism of 
Bo:(e) onto Ce such that ge (x) = hs(e) (x) for each x E Bo:(e) n 
Ct(e) and ge (y) = ht(e) (y) for each y E Bo:(e) n Cs(e). 

Let w be an arbitrary vertex of D (ep, G1). Let s denote 
d [ep] (w) and let Hw be the component of f (w*) in Rsnf (G1). 

We will prove the following claim. 

Claim. If u -# w is another vertex of D (<{J, G1) such that 
d [ep] (u) = s, then Hw n Hv, = 0. 
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Proof of Claim. Let Sv denote the union of v* and all the open 
edges of G1 that have a vertex in v* where v is either u or w. 
Since Hv = f (Sv) n Rs' to prove the claim, it is enough to 
show that Su n Sw = 0. Suppose to the contrary that Su and 
Sw intersect. Since u* n w* = 0, there is an edge z E £ (G1 ) 

with one vertex in u* and another in w*. It follows that ep (z) is 
either s or a vertex of s. Since both u* and w* are components 
of ep -1 (s), the edge z must be contained in both u* and w*. 
Consequently, we have that u* = w* which contradicts u =J w. 
So the claim is true. D 

Let Uw be a neighborhood of Hw in Rs chosen so that Uw's 
are mutually exclusive. We will use Proposition 4.1 with R = 

h s (Rs ) = Bs ' H = h s (Hw ) and U = h s (Uw). Let Qw, Pw and 
Pw (q) denote, respectively, Q, P and P (q) from the conclusion 
of the proposition. 

For an arbitrary vertex w E V (D (tp, G1 )), we define j (w) = 
Pw. We will extend this definition to an arbitrary edge z E 

£ (D (ep, G1)). By [8, Proposition 2.6], d [ep] (z) is an edge of 
D (G). We will denote this edge bye. Let u and v denote 
the vertices of z in such an order that d [ep] (u) = s (e) and 
d [ep] (v) = t (e). Observe that u* n v* =J 0 and tp (u* n v*) = 
Q (e). Let c be a component of u* n v*. Since u* is connected 
and ep (u*) = s (e), there is an edge u' of u* intersecting c but 
not contained in c. Observe that ep (u' ) = s (e), because other
wise u' would be contained in c. Similarly, there is an edge v' of 
v* intersecting c but not contained in c such that tp (v') = t (e). 
The intersection f (u' ) n Bo:(e) n Cs(e) is a one point set will, be 
denoted by quo Similarly, let qv = f (v') n Bo:(e) n Ct(e). Since 
u' U C U v'is connected, there is an arc L C f (u' U c U v') with 
endpoints at qu and qv. Notice that L c Bo:(e) and the inter
section of L with the boundary of Bo:(e) consists of qu and qv· 

Observe that ge (qu) = hs(e) (qu) E Qu and ge (qv) = ht(e) (qv) E 
Qu. The set Z = Pu (ge (qu)) U ge (L)_U Pv (ge (qv)) is an arc 
with its endpoints at Pu and Pv. Let f restricted to the edge 
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z be a homeomorphism of z onto Z such that J(u) = Pu and 
1(v) = Pv· It may be verified that so defined 1 satisfies the 
conclusion of the lemma. D 

The following theorem is a corollary of the lemma and Propo
sition 2.9. 

Theorem 4.3. Let G be a graph embedded in an oriented 2
manifold M and let A be a local ordering of edges of G that 
agrees with the embedding. Suppose the graph D (G) is embed
ded in an oriented 2-manifold M in such a way that the embed
ding agrees with D (A). Let'P be a simplicial map of a graph G l 

into G with the property that for each positive number € there is 
an embedding he : G1 ~ M which is an €-approximation of 'P. 
Then, the map d ['P] has the same property. That is, for each 
positive number €, there is an embedding he : D ('P, G1) ~ M 
which is an €-approximation of d ['P]. 

Example 4.4. (Ingram map [5]) We will consider here an 

inverse system T(O) ~ T(l) A T(2) ~ . .. whose inverse limit 
defines the Ingram (non chainable and atriodic) continuum. 
Let T be the extended simple triod from Example 2.8. For 
each n = 0, 1, ... , let hn be a homeomorphism of T onto a 
certain graph T(n). Let v~n) denote hn (Vi) for i = 0, ... , 4. 
Let in : T(n+l) ~ T(n) be a continuous map defined in the 
following way (see Figure 11): 

(1) in (v~n+l)) = vfn) , 

(2) the arc [v~n+l), vin+l)] is mapped by a homeomorphism 

onto [vfn) , v~n)], 

(3) a point p(n+l) is selected in the interior of [v~n+l), v~n+l)], 

(4) the arc [v~n+l),p(n+l)] is mapped by a homeomorphism 
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onto [v in) ,v~n)], 

(5) the arc [p(n+l) ,v~n+l)] is mapped by a homeomorphism 

onto [v~n), vt)] , 
(6) the arc	 [v~n+1), v~n+1)] is mapped by a homeomorphism 

onto [vin),v1n)] , and 

(7) the arc	 [v~n+1), v1n+l)] is mapped by a homeomorphism 

onto [v1n),v~n)] . 

,•, ~ 

~ , ,':' 
• •	 • :::;:rI' 
~ , 
~ , 

~	 V o 

d[~ ] 

Fig. 11. 

Suppose the graph T(O) has only five vertices v~O), .•. , viO) . 
By using piece-wise linear homeomorphisms in the definition of 
fn and selecting vertices of T(n+l) we can make in to be a sim
plicial map. Figure 11 illustrates the maps fo : T(l) ---+ T(O) , 

d [fo] : D (fo, T(l») ---+ D (T(O») and d? [fo] : D2 (fo, T(l») ---+ 

D 2 (T(O») (each vertex ofthe domain is close to its image). No

tice that d? [fo] maps a simple triod contained in D 2 (fo, T(l») 
onto a simple triod contained in D 2 (T(O»). This makes it im
possible to find two embeddings closely approximating d? [fo] 



328 Piotr Mine 

with disjoint images. It follows from Theorem 4.3 that any 
two embeddings sufficiently closely approximating fo must in
tersect. It should be noted here that it would be easy to prove 
the last statement elementarily by drawing one embedding in 
the plane and eliminating all possible positions for the other. 
The proof by elimination of all possible cases does not work, 
however, for more complicated functions. Consider for exam
ple'rpn = fa 0 fl o ... fn-l mapping T(n) onto T(O). By using the 
argument from [8, 5.12], one could prove that d2n [',On] maps 
a simple triod contained in D2n (I.pn, T(n») onto a simple triod 

contained in D2n (T(O»). It would follow from Theorem 4.3 
that any two embeddings sufficiently closely approximating 'Pn 
must intersect. An alternate proof will follow from Theorem 
4.5 generalizing the statement to any simplicial map that can
not be factored through an arc. Since the Ingram continuum is 
not chainable, rpn cannot be factored through an arc (see also 
[8,5.12]). 

Theorem 4.5. Suppose rp is a simplicial map of a tree Y into 
a graph G embedded into an oriented 2-manifold Mo. If rp can
not be factored through an arc, then there is a positive number 
€ such that any two embeddings of Y into Mo €-approximating 
rp must intersect. 

Before we prove Theorem 4.5 we need to state the following 
proposition. We leave its proof to the reader. 

Proposition 4.6. Suppose 'l/J is a simplicial map of a tree 
G' into a graph Go embedded into an oriented 2-manifold Mo. 
Suppose G' contains a connected (possibly degenerate) subgraph 
Y' and tree edges A, Band C each intersecting Y' such that 
'l/J (Y') is a single vertex and 'l/J (Y' U A U B U C) is a simple 
triode Then there is a positive number € such that any two em
beddings of G' into Mo €-approximating'P must intersect. 
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Proof of 4·5. Let A be a local ordering of edges of G that 
agrees with the embedding of G into Mo. By Proposition 2.3, 
we may assume that Dn (G) is embedded into an oriented 2
manifold Mn with an embedding that agrees with Dn (A) for 
each positive integer n. 

By [8, Theorem 2.13.], dn [c,o] is not empty for each positive 
integer n. It follows from [8, Proposition 2.16] that there is a 
positive integer n such that Dn (c,o, Y) contains a simple trian
gle. Let k be the least integer such that Dk+1 (c,o, Y) contains 
a simple triangle. By using [8, Proposition 2.16] again, we es
tablish that D k (c,o, Y) is a tree. It follows from [7, Proposition 
3] that D k (cp, Y) contains a connected subgraph Y' and tree 
edges A, Band C each intersecting Y' such that dk [cp] (Y') is 
a single vertex and 'l/J (Y' U A U B U C) is a simple triode By 
Proposition 4.6, there is a positive number €such that any two 
embeddings of Dk (cp, Y) into Mk €-approximating dk [cp] must 
intersect. Now, Theorem 4.5 follows from Theorem 4.3 used k 
times. 0 

The next lemma shows that the implication from Lemma 
4.2 may be reversed if the domain of cp is an arc without self 
crossings (see Definition 2.10). 

Lemma 4.7. Let G be a graph with a local ordering of edges 
A. Suppose the graphs G and D (G) are embedded into their 
respective normal neighborhoods N (with a normal structure 
S) and N (with a normal structure S) such that the embed
dings agree with A and D (A), respectively. Let L be a graph 
whose components are simplicial arcs (possibly degenerate) and 
let cp : L ~ G be a simplicial map that does not cross itself. 
If there is an embedding j of D (c,o, L) into N which is an S
approximations of d [cp], then there is an embedding f of L into 
N that is an S-approximations of cpo 
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In the proof of the lemma we need the following two propo
sitions. 

Proposition 4.8. Suppose R is a disk and 11,12 , ... ,lk are 
mutually exclusive arcs contained in the boundary of R in the 
counterclockwise order. Suppose that, for each i = 1, , k, 
there is a sequence of mutually exclusive arcs 11-1, 11-2 , , Il , 

k	 k 1l i , l i - , ... ,/1+1 contained in Ii in the counterclockwise order 
inherited from the boundary of R. Let IC be a collection of pairs 
of integers such that 

(1)	 if (i, j) E JC then 1 :::; i < j ~ k and 

(2)	 if i, j, i' and j' are integers such that 1 ~ i < i' < j < 
j' :::; k and (i, j) E IC then (i', j') ti: JC. 

Then there is a collection of mutually exclusive disks {Zi,j} (i,j)EK 

contained in R such that Zi,j n Bd (R) = If U I; for each 
(i,j)EIC. 

Proof of 4.8. We will prove the proposition by induction on 
the number of elements of](. Suppose that the proposition 
has been proven for any disk R' and any collection JC' which 
has less elements than IC. Take (i, j) E IC. Let](l be the 
set of the pairs (i',j') E JC \ {(i,j)} such that i ~ i' < j' ~ 

j. Let JC2 be the set of the pairs (i', j') E JC \ {(i, j)} such 
that either j' :::; i or j :::; if. Observe that ](1 u JC2 = IC \ 
{(i,j)}. There a disk Zi,j C R such that Zi,j n Bd (R) = 
If U Ij. The set Ij \ Int (Zi,j) has two components. We will 
denote them Ij and 1'1 in the counterclockwise order. Observe 

I j-1 Ij-2 I i+1 t· d' If Ththat t he arcs j 'j , ... , j are can aille In j. e arcs 
I i-I Ii-2 I1Ik I k - 1 /j+1 t· d· I"j 'j , ... , j j' j , ... , j are Call aille III j. 

The set Ii \ lnt (Zi,j) also has two components. We will 
denote them I: and Ii' in the clockwise order. Observe that 

1j-1 1j-2 I i+1 . d· I' Th I i - 1t he arcs i 'i , ... , i are contalne In i' e arcs i , 
2 I k 1 1j +11i 

i -	 , ... , IIIk - , ... , i are con aine t· d· I"i'ii' i	 In 
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P' Q' 

p 

--------

Q P Q 

B 

Fig. 12. 

The set R \ rnt (Zi,j) consists of two disjoint disks. We will 
name them R1 and R2 in such an order that I; and Ij is con
tained in R1 and 1;' and Ij' is contained in R2 . Since K1 and K2 

have less elements than JC we may now apply the proposition 
to the pair R1 , JC1 and to the pair R2 , K 2 . The resulting col
lections {Zi' ,j'}(i' ,j')EJCl and {Zi" ,j" } (i" ,j")EJC2 together with Zi,j 
form the required collection {Zi,j} (i,j)EJC' 0 

Figure 12 is an illustration for the next proposition. The 
left side shows the disk B (the rectangle) with the collection 
of arcs F inside. The right side shows the same disk B parti
tioned by arcs P' and Q' into the disks Bp , B' (gray) and BQ . 

The proof of the proposition is left to the reader. 

Proposition 4.9. Suppose B is a closed disk and P and Q 
are two disjoint arcs in the boundary of B. Let F be a finite 
collection of mutually exclusive arcs contained in B so that, 
for each F E F, the intersection of F with the boundary of B 
is equal to F n (P U Q) and it is either empty or consists of 
one or both endpoints of F. Then B can be partitioned into 
three closed discs B p, B' and BQ such that PcBp, Q c BQ, 
B p n BQ = 0, the sets P' = Bp n B' and Q' = BQ n B' are 
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arcs and, for each F E F, we have 

(1) the set F	 n B' is not empty and it has at most two com
ponents, 

(2) each component	 of F n B' is an arc with one end in P' 
and the other in Q' and 

(3) the F	 n B' has two components only when both endpoints 
of F belong to one of the the arcs P and Q. 

Proof of 4.7. Let the normal structure S be defined by the 
collections {Bv } vEV(G) and {Ge } eEE(G)· Similarly, suppose the 

normal structure S is defined by the collections {Ev } 
vEV(D(G)) 

and	{d } . 
e eEE(D(G» 

Let a be an arbitrary vertex of G and let 8 be an arbitrary 
element of E (a). Let b denote the other vertex of 8. Recall that 
E (a) (or E (b)) denotes the set of edges of G that have a (or b) 
as a vertex. Since 8 is an edge of G, it is also a vertex of D (G). 
In this context, E (s) denotes the set of edges of D (G) that 
have s as a vertex. As before, for each e E E (a) U E (b) that 
is different than 8, let (e) denote the edge of E (8) between 
8 and the vertex of D (G) representing e. Let Ea (8) be the 
set of edges of E(s) in the form (e) where e E E(a) \ is}. 
Similarly, let Eb (8) be the set of edges of E (8) in the form (e) 
where e E E (b) \ is}. Clearly, E (8) = Ea (s) U Eb (8). Since 
the embedding of D (G) into N agrees with D (A), there are 
disjoint arcs J [a, s] and J [b, 8] in the boundary of Es such that 
E s n C(e) C J [a, s] for each e E Ea (s), and E v n C(e) C J [b, 8] 
for each e E Eb(s). 

Let F' (s) be the collection of components of the set 
j (D (r..p, L)) n Es • Observe that all nondegenerate elements of 
F' (s) are arcs intersecting the boundary of Es at either one or 
both endpoints and contained in the interior of Es otherwise. 
All degenerate elements of F' (s) are single points contained in 
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the interior of Bs . Let F (s) be a collection of mutually exclu
sive arcs obtained from F' (s) by including all of its arcs and 
replacing each singleton in F' (s) by a small arc contained in 
the interior of Bs. 

Now use Proposition 4.9. with B = Bs ' P == Ja, s, Q == 
J [b, s] and :F == F of s. Set B~ == B', JI [a, s] == pI, JI [b, s] == 
Q', B [a, s] == Bp and B [b, s] == BQ where B' , pI, Q', Bp and 
BQ are obtained from the proposition. Additionally, for each 
F E F (s), let U (F) be a neighborhood of F in Bs chosen so 
that the sets U (F)'s are mutually exclusive. 

For each edge s E £ (G) with vertices a and b, we may 
choose a a neighborhood H s of Cs in Cs U Ba U Bb in such a 
way that the sets Hs's are mutually exclusive. Let h be an 
orientation preserving homeomorphism of UsEE(G) Bs into N 
such that h (Bs ) C Hs , h (JI [a, s]) = CsnBa and h (JI [b, s]) = 
Cs n Bb for each s == [a, b] E £ (G). Observe that h (J [a, s]) C 
Ba and h (J [b, s]) eBb. 

For each vertex a E V(G), letRa = Ba\UeEE(a)Int (h (Be)). 

Observe that Ra is a disk. Let el (a) ,e2 (a) , ... ,eJ1.(a) (a) be 
the edges of E (a) arranged according to the local ordering 
A. For each i == 1,2, ... , J.L (a), let Ii (a) = h (J [a, ei (a)]). 
Observe that 11 (a) ,12 (a) , ... ,IJ1.(a) (a) are mutually exclusive 
arcs contained in the boundary of Ra in the counterclock
wise order. For each i = 1,2, ... , J.L (a) and for each j == 
1,2, ... , J.L (a) such that j =I i, let If (a) = h (Bei(a) n C'<ej(a»). 

Since the embedding of D (G) into N agrees with D (A), the 
arcs Bei(a) n C(ei+l(a»Bei(a) n C(e.;+2(a)} , · · · ,Bei(a) n C(el'(4>_1(a)) , 

Bei(a) n C(el'(4> (a)) , Bei(a) n C(el (a)} , Be.;(a) n C(e2(a)} , · · · , Bei(a) n 
C(ei-2(a» , Bei(a) n C(ei-l(a», are contained in the boundary of 
Bei(a) in the counterclockwise order. Since h is an orientation 
preserving homeomorphism, the images of the arcs are con
tained in the same order in the boundary of h (Bei(a)). Since 
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Ra is outside of h (Be; (a) ), the order of the arcs on the bound

ary of Ra is reversed and the arcs 1;-1 (a) ,1;-2 (a) , ... ,II (a) , 
/ J.t(a) ( ) IJ.£(a)-1 ( ) I i+1 () t· d· I ( ). hi a, i a , ... , i a con alne In i a In t e coun
terclockwise order inherited from the boundary of Ra . 

Let JCa be the collection of pairs of integers such that if 
(i, j) E lCa then 1 :s; i < j :s; Jl (a) and there is an arc Li,j C L 
such that ep (Li,j) = ei (a) U ej (a). Since L does not cross itself 
the collection lCa satisfies the second condition in the state
ment of Proposition 4.8. It follows from the proposition that 
there is a collection of mutually exclusive discs {Zi,j (a)} (i,j)EK',a 

contained in R a such that Zi,j (a) n Bd (Ra ) = II (a) U IJ (a). 
For an arbitrary edge e E £ (D (G)), let Be and V e denote 

the vertices of e. Each vertex of D (G) is an edge of G. Since 
Be and Ve , understood as vertices of D (G), belong to the same 
edge, they must have a common vertex as edges of G. We will 
denote this vertex as Q (e). For any vertex a E V (G), let Ka 

be the set of these edges e E £ (D (G)) for which Q (e) = a and 
there is (i, j) E JCa such that ei (a) and ej (a) coincide with Be 

and Ve in some order. We will refer to the pair i, j as i [e] and 
j [e]. Observe that K,a n K,b = 0 for a =1= b. 

For each a E V (G) and each e = [8, t] E Ka there is a 
homeomorphism he of Ce onto Zi[e],j[e] (a) such that he coincides 
with h on each of the sets Bs n Ce and Bv n Ceo 

All nondegenerate components of L are arcs. We choose a 
direction on each of them. As usual, if band c are two points 
of the same component, [b, c] denote the arc between band c. 

For an arbitrary vertex w E V (D (<p, L)), let v denote the 
vertex d [<p] (w). Since v is a vertex of D (G) it is also an edge 
of G. We will denote this edge by v*. The set w* C L is 
a maximal arc mapped by ep onto the edge v*. Let bw and 
Cw denote the endpoints of w* with bw < Cw. Let Pw and 
qw denote the vertices <p (bw ) and <p (ew), respectively. Notice 
that Pw and qw may coincide. Let b'w be the last vertex on 
w* such that <p ([bw, b~]) = Pw. Let c~ be the first vertex such 
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that 'P ([c~, Cw]) = qw· Clearly b~ < c~ and 'P maps the arc 
[b~, c~] onto v*. Let b~ a point inside of the first edge of [b~, c~] 

and let c~ a point inside of the last edge of [b~, c~] such that 
b~ < c~. Observe that the arcs in the form [b~, c'~] are mutually 
exclusive. 

Suppose bw is not the first vertex in its component in L. 
In this case, let Zf be the last vertex of L less than bw . Since 
Zf tfi w*, 'P (Zf) is not a vertex v*. Let Zf. denote the edge in 
G between 'P (bw ) and <.p (Zf.)' The component of Zl in <p-l (Zf) 
is a vertex of D (<p, L). We will denote this vertex by .e (w). 
Observe that cl(w) = bw and b~ = Cf(w)· 

Now, suppose Cw is not the last vertex in its component in 
L. In this case, let Zr be the first vertex of L greater than 
bw • Since Zr tfi w*, <p (zr) is not a vertex v*. Let zr denote the 
edge in G between <p (bw ) and <p (zr)' The component of Zr in 
<p-l (zr) is a vertex of D (<p, L). We will denote this vertex by 
r (w). Observe that b~(w) = Cw and c~ = br(w)' 

Let .e denote the edge between wand .e (w) and let r denote 
the edge between wand r (w). Observe that each edge of 
D (<p, L), with w as a vertex, is either .e or r. 

Let Fw denote the only element of :F (v) such that 1(w) E 
Fw . If neither .e nor r is defined, Fw is contained in the interior 
of Bv . If, on the other hand, at least one of the points .e and 
r is defined, then Fw = Bv n j (.e U r ). Consequently, the set 
Fw n Bd (Bv ) = Bd (Bv ) n j (e u r) consists with at most two 

points X w E j (f) and Yw E j (r). Observe that, if defined, the 
points Xw and Yw belong to J [Pw, v] and J [qw, v], respectively. 

Claim. There is an embedding gw of [b~, c~] into U (Fw ) such 
that 

(1)	 if 'P (u) = t then 9w (u) E B [t, v] for any vertex u E 

V ([b~, c~]) and a vertex t of v*, 

(2)	 if <.p (e) = t then gw (e) C B [t, v] for any edge 
e E £ ([b~, c~]) and a vertex t of v*, 
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(3)	 the set gw (e) n J' [t, v] has at most one point for each edge 
e E £ ([b~, c~]) and a vertex t of v*, 

(4)	 gw (b~) = Xw if f exists and 

(5)	 gw (c~) = Yw ifr exists. 

Proof of Claim. We will prove the claim in the case where both 
points Xw and Yw are defined. The proof in the remaining case 
is very similar with less conditions to satisfy. 

Suppose Pw =I qw· In this case J [Pw, v] =I J [Pw, v] and, 
consequently, Fw n 13~ has only one component. We start the 
construction of gw by embedding the arc [b~, b~] into 13 [Pw, v] 
such that gw (b~) = Xw. Then we continue embedding the first 
edge, say el, of [b~, c'w] in the following way. If <p (el) = Pw, 
we embed el in 13 [Pw, v]. Otherwise, we cross 13~ parallel to 
Fw . We continue the process extending gw to other edges one 
by one. Suppose that gw is defined on the first vertex u of an 
edge e. If 'P (e) = 'P (u), we embed e in 13 [<p (u) ,v]. Otherwise, 
we cross 13~ parallel to Fw. While zigzagging through 13~, we 
make each new crossing outside of the previous ones so that 
the point Yw may be reached by 9w (c'~). 

Now, suppose Pw = qw· In this case J [Pw, v] = J [Pw, v] 
and, consequently, Fw n B~ has two components. We can de
note these components by F' and F" in such a way that P' 
is between xy and F". Since <p ([b~, c'w]) = v*, there is vertex 
z E [b~, c'w] such that r.p (z) =I Pw. We construct gw like in the 
previous case. The only difference is that while crossing B~ 
with edges from [b~, z] we keep close to F' and then we keep 
close to F" when crossing B~ with edges from [z, c~] so that 
the points Xw and Yw may be reached by 9w (b~) and 9w (c~), 

respectively. D 

Now, we will construct an embedding f : L ---+ N by patch
ing different definitions on different portions of L. 
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1. Define f on every interval of the form [b~, c~] by setting 
f = h 0 gw. 

2. Suppose u and ware vertices of D (<p, L) such that u == 
e(w) and, consequently, w = r (u). Observe that <p ([c'u' b~]) == 
qu = Pw· We will denote this vertex by a. Let s = d [ep] (u) 
and v = d [ep] (w). So defined s and v are vertices of D (G) 
and as such are edges of G. Since a is a common vertex of 
s and v, understood as edges of G, s and v, understood as 
vertices of D (G), belong to an edge which we will denote by 
e. Since ep ([bu , Cw]) is equal to the union of edges s and v, we 
have the result that e E Ka . The vertices u and w form an edge 
[u, w] E £ (D (<p, L)). The set T = j ([u, w]) nCe is an arc with 
ends at Yu and X w . Let gu,w be a homeomorphism of [c~, b~] 

onto T such that gu,w (c~) = Yu and gu,w (b~) = Xw. Finally, 
we may define f on [c'~, b~]. Observe that f (c~) = h (Yu) and 
f (b~) = h (xw ) have been already defined. Since he coincides 
with h on each of the sets Bs nCe and Bv nCe , we may extend 
the embedding by defining f on [c'~, b~] as the composition 
he 0 gu,w. 

3. Suppose, for some w E V (D (<p, L)), bw is the first point 
of its component in L. Observe that f (b~) E Bpw have been 
already defined. We extend the definition of f on [bw , b~] by 
embedding [bw , b~] into Bpw sufficiently close to f (b':v) so that 
f ([bw , b~]) meets the image of previously defined portion of f 
only at f (b':v). 

4. Suppose, for some w E V (D (cp, L)), Cw is the last point 
of its component in L. Observe that f (c~) E Bpw have been 
already defined. We extend the definition of f on [c~, Cw] by 
embedding [c~, ew] into Bqw sufficiently close to f (c'~) so that 
f ([c~, Cw]) meets the image of previously defined portion of f 
only at f (c~). 

5. Finally, if L' is a component of L mapped by ep onto a 
single vertex a, let f on L' be defined as an embedding into 
Ba in such a way that f (L') does not intersect the image of 
previously defined portion of f. 
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One may verify that so defined f is an embedding of L into 
N satisfying the conclusion of the lemma. 0 

The following theorem is a corollary of 4.3, 4.7 and 2.9. 

Theorem 4.10. Let G be a graph embedded in an oriented 2
manifold M and let A be a local ordering of edges that agrees 
with the embedding. Suppose the graph D (G) is embedded in an 
oriented 2-manifold M with an embedding agreeing with D (A). 
Let L be a graph whose every component is an arc (possibly 
degenerate) and let rp : L ~ G be a simplicial map. Then the 
following two conditions are equivalent: 

(1) For	 each positive number E, the map rp can be E

approximated by an embedding of L into M. 

(2)	 The map rp does not have a self crossing and for each pos
itive number E, the map d [rpLcan be E-approximated by an 
embedding of D (rp, L) into M. 

The following theorem gives a combinatorial condition equiv
alent to the existence of an embedding closely approximating 
a simplicial map from an arc to a plane graph. 

Theorem 4.11. Let G be a graph embedded in an oriented 2
manifold M and let A be a local ordering of edges that agrees 
with the embedding. Suppose L is graph whose every compo
nent is a simplicial arc (possibly degenerate) and'P : L ~ G 
is a simplicial map. Then the following two conditions are 
equivalent: 

(1) For	 each positive number € , the map ep can be € 

approximated by an embedding of L into M. 

(2)	 The map a;n [ep] does not cross itself in DnA for each n = 
0,1, .... 
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Proof of 4.11. Applying repeatedly Theorem 4.10. we get the 
result that the condition 1 implies 2. It follows from [8, ?] that 
Dk (rp, L) = 0. Since the empty map dk [ep] can be trivially 
approximated by an embedding, Theorem 4.10 can be used to 
establish the implication 2 =} 1. D 

Remark 4.12. Let k be the number of vertices of the longest 
component of the graph L from the statement of theorem 4.11. 
It follows from [8, ?j that each component of D k - 2 (ep, L) has 
no more than 2 vertices. Thus, it is enough to take n == 

0,1 ... ,k - 3 in the condition 2 of Theorem 4.11. 

Remark 4.13. Observe that the condition 2 of Theorem 4.11 
can be easily verified on a computer. Hence, Theorem 4.11 
and Remark 4.12 yield a computer algorithm to check whether 
a simplicial map from an arc (or a collection of arcs) into a 
graph contained in an oriented 2-manifold can be approximated 
by an embedding. 

Theorem 4.11 shows that self crossing on some level of the 
operation d is the only obstacle preventing a map ep of an arc 
into a planar graph to be approximated by an embedding. If 
the domain of ep is a tree then an €-approximation could be 
prevented by two triods as in Example 1.3. (See also Theorem 
4.5.) 

Question 4.14. Let G be a graph embedded in an oriented 2
manifold M and let A be a local ordering of edges that agrees 
with the embedding. Suppose 'P is a simplicial map of tree T 
into G. Are the following two conditions equivalent? 

(1)	 For each positive number €, the map ep can be E

approximated by an enlbedding of T into M. 

(2)	 For each n = 0,1, ... we have that the map dn [cp] does not 
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cross itself in Dn (A) and dn [cp] does not map two disjoint 
open simple triads onto the same triad. 
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