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ON THE LINDELOF PROPERTY AND
 
TIGHTNESS OF PRODUCTS
 

Oleg Okunev 

Abstract 

We show that for every n ~ w there is a family 
C = {Xi : i < n } of Tychonoff spaces such that 
all but one spaces in C are second-countable, the 
countable power of the product of every proper 
subfamily of C is Lindelof, and the product of 
C has the extent equal to c. We also prove the 
existence for every nEw of a family B = {Y'; : 
i < n} of a-compact spaces all of which but one 
are countable, such that the countable power of 
the product of every proper subfamily of B has 
countable tightness, but the product of B has the 
tightness equal to c. 

In this paper we present two series of examples. The first is 
a series of examples of families of n (for every n ~ w) Lindel6f 
spaces such that all spaces but one in each family are second­
countable, the product of the whole family is not Lindelof, 
but the product of every proper subfamily is Lindelof (and 
even with its countable power). The idea is to continue the 
examples constructed earlier by Przymusinski [Prz] , Lawrence 
[Law], and Okunev and Tamano [aT]; the construction in fact 
is based on a construction in the last paper. 

The second series of examples is of families of n (for every 
natural n) spaces such that in each family all spaces but one are 
countable, the product of every proper subfamily has countable 
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tightness (again, together with its countable power), but the 
product of the whole family has uncountable tightness. An 
example of two spaces one of which is countably tight, the 
other countable, and whose product has uncountable tightness 
was given in [Arhl]. The only uncountable space in each of 
the families is a-compact; note that by a theorem of Malykhin 
[Mal], if one of two spaces is compact, then the tightness of 
their product does not exceed the maximum of the tightnesses 
of factors. The question whether the product of two countably 
tight a-compact spaces can have uncountable tightness was 
open for some time, until it was solved (along with many other 
problems) by Todorcevic in [Tod]. In [Ok2] the Todorcevic's 
example was slightly improved (in one respect) by showing that 
we may assume one of the factors countable. The example 
here uses an idea similar to that used in [Ok2], the duality 
between the Lindelof number and tightness that arises in the 
theory of continuous functions with the topology of pointwise 
convergence. Of course, the sum of all spaces in the nth family 
gives an example of a a-compact, countably tight space whose 
(n - 1)th power has countable tightness, but the nth is not. 

All spaces below are assumed Tychonoff (= Hausdorff com­
pletely regular). The symbol c denotes the cardinality of a 
continuum. For a space X and a subset A of X, we denote 
by X(A) the space obtained from X by retaining the original 
topology at the points of the set A and making the points of 
X \ A isolated. It is well-known that the space X is Tychonoff 
(see e.g. [Eng]). Obviously, X = X(x) , and the space X(0) 

is discrete. For every two sets A, B c X we have the natu­
ral bijection iAB : X A ~ X B that coincides with the identity 
mapping of the space X. 

The following observation is obvious. 

Proposition 1. If A c B eX, then the mapping 
iAB : X(A) ~ X(B) is continuous. 
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A subset A of a space X is called holding [OT] if the count­
able power of the space X(A) is Lindelof. 

From Proposition 1 immediately follows that every superset 
of a holding set is holding. The following statement is proved 
in [OT]. 

Theorem 2. If X is an uncountable Polish space, then there 
is a disjoint family of cardinality· c of holding sets in X. 

The first main theorem of this paper is 

Theorem 3. For every n ~ w there is a family C = {Xi : i < 
n} of spaces such that 

(1) For every i > 0, i < n the space Xi is second-countable, 

(2) For every proper subfamily C' of C, the space (TI C')W is 
Lindeloj, 

(3) The extent of the product TI C is equal to c. 

Proof. Using Theorem 2, we may fix a disjoint family {Ai: 
i < n} of holding sets in the Cantor discontinuum C = 2W

• 

For every i < n, put Bi = U{ Aj : j < n, j =I- i}. Obviously, 
n{ B i : i < n} = 0, and for every i < n, n{ Bj : j < n, j ¥ 
i} = Ai. 

Put X o = C(Bo)' and for every i > 0, i < n, Xi = B i . Obvi­
ously, the condition (1) holds for the family 
C = {Xi: i < n}. 

Let us verify (2). Let C' be a proper subfamily of C. Then for 
some i o < n, the space Xio is not in C'. Each of the sets Bi , i < 
n, i =I- i o contains the set Aio . From Proposition 1 now follows 
that each of the spaces C(Bi ), i < n, i =I- io is a continuous 
image of the space C(Aio). Since the set Aio is holding, the 
countable power of the space C(Aio) is Lindelof. Hence, the 
product (TI{C(Bi ) : i < n, i =J io })W is Lindelof, because it is a 
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continuous image of the space (C(Aio))w. To end verification of 
(2), note that since each Xi, i < n is a closed subspace of C(Bi ), 

the product (TI C')W is homeomorphic to a closed subspace of 
(TI{C(Bi ): i < n, i # io})w. 

Finally, let D be the diagonal in the product TI C, that is, 
the family of all points of TI C whose all coordinates are equal; 
from the definition of the spaces Bi follows that D is actually 
the set of all points in TI C whose all coordinates are equal and 
belong to Ao. 

Obviously, the set D is closed in TI C (it is closed even in the 
weaker topology of the product C x TI {Bi : 1 ::; i < n } ). The 
projection 'ITo : TI C ~ X o maps D onto iXBo(Ao); since every 
holding set in an uncountable Polish space has cardinality c 
([OT]; or we obviously may choose Ao of cardinality c), we 
have IDI = c. Since Ao n Bo = 0, the set iXBo(Ao) c Xo 
is discrete in X o = C(Bo)' and the restriction of 7ro to D is 
continuous and one-to-one. Hence, D is also discrete. 

The proof is complete. 0 

Now we are ready to prove the statement about the tight­
ness. Recall that the tightness of a space X is the minimal 
cardinal T with the property that the closure of every set A 
in X is equal to the union of the closures of subsets of A of 
cardinality :::; T. 

The construction here is dual to Theorem 3; the duality is 
provided by the topology of pointwise convergence on function 
spaces. Recall that for every space X, Cp(X,2) is the space 
of all continuous functions on X with the range 2 = {a, I} en­
dowed with the topology of pointwise convergence, which coin­
cides with the topology on C(X,2) induced by the Tychonoff 
product topology on the set 2x of all {a, l}-valued functions 
on X (see, e.g. [Arh2]). 

Theorem 4. For every nEw there. is a family B = {Yi : i < 
n} of spaces such that 
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(1) Yo is a-compact, and for every i > 0, i < n the space Yi 
is countable, 

(2) For every proper subfamily B' of B, the space (Il B')W has 
countable tightness, 

(3) The tightness of the product Il B is equal to c. 

Proof Let C = {Xi: i < n} be the family constructed in the 
proof of Theorem 3 (we keep further the same notation as in 
the proof of Theorem 3). We will construct the spaces Yi as 
subspaces of the spaces Cp(Xi , {O, I}). 

Let 0 be the family of all nonempty clopen sets in the Can­
tor discontinuum C. Obviously 101 = w. Denote Po = iBox : 
X o ~ C, and for every i < n, i > 0 let Pi : Xi = Bi ~ C be 
the embedding. 

Let X = EB{ Xi : i < n}; assign to every n-tuple 
(F, UI , ... , Un-I) consisting of a finite set F and a sequence of 
clopen sets UI , ... ,Un- 1 E °such that F C UIn·· ·nUn-InAo 
the function fF,Ul,ooo,Un-l : X ~ {O, I} defined by the rule: 

1 if x E Xo and 

Po(x) E n{ Ui : 1 ::; i < n} \ F 
or x E Xi, 1 ::; i < n and Pi (x) ~ Ui . 

o otherwise. 

and put S = {fF,UI,ooo,Un-l : U1, ... , Un - 1 E 0, F C U1 n 
... Un - 1 n Ao and IFI < w}. Obviously, S c Cp(X, {a, I}) 
(note that the points of F are isolated in Xo). 

CLAIM 1. The zero function 0 is a limit point (in Cp(X, 2)) 
for the set S, but is not a limit point for any subset of S whose 
cardinality is less than c. 

A generic neighborhood of 0 in Cp(X, {a, I}) is of the form 
O(K) = {f E Cp (X,2) : flK = O} where K is a finite set in 
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X. Let K i = K n Xi and Fi = Pi(Ki), i = 0, ,n - 1; put 
F = U{ Fi : i < n } n Ao· Fix elopen sets UI , ,Un - I E 0 
so that Pi CUi, n{ Ui : 1 ::; i < n} i- 0 and U{ Ui : 1 ::; i < 
n }nU{ Fi : 0 ::; i < n} = F. It is easy to see that the function 
fF,Ul, ... ,Un-l is equal to °on the set K i , so it is in O(K). From 
n{ Ui : 1 ::; i < n} i- 0 follows that fF,Ul",.,Un-l i- 0, so we 
found a nonzero function from 8 in every neighborhood of 0, 
and the first part of the claim is proved. 

To prove the second part, let 80 be a subset of Sand 
1801< c. Let M = U{ Fee: fF,Ul, ... ,Un-l E So for some 
UI , . · · ,Un - I EO}. Then IMI < C, and since IAol = C, there 
is a point Co E Ao \ M. Let Xi E Xi be the points in Xi such 
that Pi(Xi) = Co, i = 0, ... , n - 1. Then for every sequence 
UI , ... ,Un - I E 0 and every finite F c n{ Ui : 1 ::; i < n} 
such that Co ~ F we have either Co E n{ Ui : 1 ::; i < n}, 
and then !F,Ul, ... ,Un-l (xo) = 1, or for some i E {I, ... ,n - I}, 
Co f/. Ui, and then !F,Ul, ... ,Un-l (Xi) = 1. Thus, the set {f E 
Cp (X, 2) : f(xo) = !(XI) = .. · = f(Xn-I) = O} is a neighbor­
hood of 0 in Cp(X, 2) disjoint with 80 . 

CLAIM 2. The set 8 is a-compact. 

We have 
s = U USU1>...,Un -1>k 

Ul, ... ,Un-1EO kEw 

where SUl, ...,Un-l,k = {fF,Ul, ,Un-l : F c Aon n{ Ui : 1 :==; i < 
n }, IFI < k}. The set 8Ul, ,Un-l,k is the family of all functions 
in 2x that differ from the function f0,Ul, ... ,Un-l at finitely many 
points belonging to a fixed subset of X; a standard argument 
shows that SUl, ... ,Un-l,k is closed in 2x , hence compact. Since 
(] is countable, the set S is a-compact. 

Thus, S U {O} is a a-compact subspace of Cp (X,2) of un­
countable tightness. 

We may identify Cp(X,2) with IT{Cp(Xi , 2) : i < n}; let 
Ti Cp(X, 2) ~ Cp(Xi , 2), i < n, be the projections -(the re­
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striction mappings). Put }Ii = lri(S). Obviously, the product
II{}Ii : i < n} contains S, hence has uncountable tightness. 
This demonstrates (3) for the family B = {}Ii : i < n}. 

Since S is u-compact, YO is u-compact; by the construction, 
the restrictions of the functions in S to Xi with i ~ 1 are 
characteristic functions of intersections of elements of 0 with 
Bi ; it follows that the spaces Y1, · · . , Yn - 1 are countable. 

For every k < n we have l((II{Xj : j < n, j =I k})W) = w; 
obviously, all finite powers of the space (E9{ X j : j < n, j =f 
k }) xw are Lindelof. The product (II{}j : j < n, j =I k})W lies 
in the product (II{Cp(Xj , 2) : j < n, j =I k})W = Cp((E9{ X j : 

j < n, j =I k}) xw), and by the Arhangel'skil-Pytkeev theorem 
(see [Arh2, 11.1.1]) the latter space has countable tightness. 
This proves (2). 0 

Remark. Malykhin proved in [Mal] that for every countable 
family of spaces, the tightness of product of the whole fam­
ily does not exceed the supremum of. the tightnesses of the 
products of finite subfamilies. Therefore, an example as in 
Theorem 4 cannot be constructed for n = w. 

Remark. If desired, it is easy to make the spaces }Ii in Theo­
rem 4 topological groups, see [Ok2]. Similarly, using the tech­
niques in [Okl] and rOT], we may prove that the countable 
power of Cp(Yo) in Theorem 4 is Lindelof and that Xi is home­
omorphic to the closed subspace of Cp(Yi) , i = 0, ... ,n - 1, so 
a family as in Theorem 3 the spaces Xi may be constructed as 
Cp(}Ii). 

The techniques used above appear to be specifically "count­
able"; there is little doubt that the answers to the following 
questions are positive, but there seem to be no ready examples. 

Problems. Is it true that for every cardinal T there is a family 
C of cardinality T such that the Lindelof number of the T-power 
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of the product of every proper subfamily of C does not exceed 
T, yet the Lindelof number of the product of C is greater than 
T? Is there such family with the weight of all spaces but one 
not exceeding T '? 

Is it true that for every cardinal T there is a family B such 
that the tightness of the r-power of the product of every proper 
subfamily of B does not exceed T, yet the tightness of the prod­
uct of B is greater than T? Is there such family with the cardi­
nality of all spaces but one not exceeding T '? 
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