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MILYUTIN MAPPINGS AND THEIR
 
APPLICATIONS
 

Dusan Repovs and Pavel V. Semenov* 

Abstract 

This is a survey on Milyutin mappings and their 
applications in the geometry of Banach spaces, 
the theory of continuous selections of multivalued 
mappip.gs and the problem of local triviality of 
fibrations. 

1. Introduction 

A well-known classical theorem asserts that every compact 
metric space X can be expressed as a continuous image of 
the Cantor set K, 'P : K ---+ X. Consider the corresponding 
Banach spaces C(K) and C(X) of all real-valued continuous 
functions, equipped with the usual sup-norm. Then cp induces 
the natural composition map cp* : C(X) ---+ C(K), defined by 
rp*(g) = gorp, for every 9 E C(X). 

It is easy to see that cp* is an injective continuous linear 
operator and moreover, it is an isometry. Hence, <p*(C(X)) is 
a linear subspace of C(K). However, in general one cannot say 
anything more about the additional properties of this inclusion. 
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More generally, one can ask the following question: Given a 
continuous surjection 'P : X ---+ Y between arbitrary completely 
regular spaces X and Y, what properties does the inclusion 
'P* : C(Y) ---+ C(X) between the corresponding Banach spaces 
(of bounded real-valued continuous functions) have? 

In the case when 'P : X ---+ Y is a Milyutin mapping, much 
more can be established about such inclusions. Namely, we 
shall see that in such a case the embedded subspace 'P*(C(Y)) 
is closed and complementable in C(X), i.e. there exists a pro
jector (linear retraction) P : C(X) ---+ C(X) of C(X) onto 
'P* (C (Y) ), hence 

C(X) ~ 'P*(C(Y)) EB KerP, 

where "'-' denotes an isomorphism. 
Moreover, the norm of this projector P is the smallest pos

sible, IIPII = 1. Observe that for projectors it is always true 
that 

IIPII = liP 0 Plj ::; IIPI1 2 ==> IIPII ~ 1. 

So, P looks very much like an orthogonal projector in a Hilbert 
space, since IIP(f)" ::; Ilfll, for everyf E C(X). 

The plan of this survey is first, to introduce Milyutin map
pings, then show that there exist many interesting examples, 
and finally, describe their applications to: 

(i)	 The geometry of Banach spaces; 

(ii)	 The theory of continuous selections of multivalued map
pings; and 

(iii)	 The problem of local triviality of fibrations. 

2. Milyutin Mappings 

First, let us illustrate the important role of complementable 
spaces in geometry of Banach spaces by considering the prob
lem when are two Banach spaces A and B isomorphic, A ~ B. 
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An answer was provided in the mid 1960's by Bessaga and 
Pelczynski. Their decomposition principle [1] says that 

(A ~ BEBC,B ~ AEBD,A ~ AffiA,B rv BffiB) ~ A rv B. 

In fact, 

A '" BtBC ~ (BEBB)tfJC rv BtB(BtBC) ~ BtBA ~ AEB(AtBD) 
~ (A EB A) tB D rv A EB D rv B. 

In reality, A and B do not appear in a symmetric form, i.e. 
only the properties of either A or B are well-known. In such 
cases one can substitute the last two conditions A ~ AtBA and 
B '" BtBB by the requirement that A be infinitely divisible. We 
shall use the fact that infinite divisibility of A is a consequence 
of the isomorphism: 

A rv CO(A) = {(ai)~llai E A, Jim lIail! = O}. 
~-+oo 

In this situation, a different version of the Bessaga-Pelczynski 
decomposition principle implies that A rv B (cf. [12]). 

Definition 2.1. Let X and Y be completely regular spaces. 
Then a continuous surjection rp : X ~ Y is called a Milyutin 
mapping if there exists a continuous map v : Y ~ P/3(X), such 
that 

supp(vy) C <p-l(y), Y E Y. 

Here P{3(X) is the set of all probabilistic (Le. countably 
additive, nonnegative, normed, and regular) measures on the 
Stone-Cech compactification (3X, whose supports lie inside X, 
supp(jj) C X C f3X. The space P/3(X) is endowed with the 
weak-star topology, induced by the natural inclusion P/3(X) C 

C(j3X)* into the first conjugate Banach space. More precisely, 
the basis of neighborhoods of a point jjo E P/3(X) consists of 
the sets 
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The inclusions 8Upp(Vy ) C cp-l(y), for every y E Y, in Defi
nition 2.1 mean that for each y E Y, the measure vy is con
centrated precisely in the preimage cp-l(y), Le. vy(B) = 0, for 
every Borel subset B of X \ cp-l(y). 

Proposition 2.2. Let cp : X ~ Y be a Milyutin mapping. 
Then there exists a projector P : C(X) ~ C(X) such that 
ImP = rp*(C(Y)). In other words, C(Y) is complementable in 
C(X). 

Proof (1) Define P as follows: 

[P(f)](x) = 1 fdvep(x) , f E C(X).
ep-l(ep(x)) 

(2)	 Let us verify that ImP:) <p*(C(Y)). Let f E cp*(C(Y)). 
Then f = go <p, for some 9 E C(Y). Hence 

[P(f)](x) = [P(g 0 cp)](x) 

= 1 (g 0 rp)dvep(x)
ep-l(ep(x) 

= (g 0 cp)(x) 1 1 · dvep(x)
ep-l (ep(x» 

= (g 0 cp)(x) = j(x). 

Thus P(f) = f· 

(3)	 On the other hand, let j E C(X). We want to find 9 E 

C(Y) such that P(f) = 9 0 cp. It is easy to see that the 
following is a solution : 

g(y) = 1 jdvy. 
ep-l (y) 

Hence ImP = cp*(C(Y)). 
It remains to verify that PoP = P. But for every f E C(X), 

we have (P 0 P)(f) = P(Pf) = Pf since Pi E rp*(C(Y)). 0 
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The construction in (3) above yields a correspondence 

A : C(X) -4 C(Y), (Af)(y) = 1 fdvy • 
cp-l(y) 

which is usually called a regular averaging operator. Having 
already defined 

'P* : C(Y) ~ C(X), 'P*(g) = go 'P 

we observe that 

A 0 'P* = idc(y), 'P* 0 A = P. 

Theorem 2.3. (Existence of Milyutin mappings) For 
every paracompact space X there exist a O-dimensional (in 
dim sense) paracompact space X o and a Milyutin mapping 'P : 
X o -4 X of X o onto X such that <p is perfect (i.e. closed 
and with compact point-inverses) and <p is inductively open 
(i.e. <p-l admits a lower semicontinuous selection). Moreover, 
when X is metrizable (resp., separable metric, Polish, compact, 
uncountable metric compact) one can assume that Xo is also 
metric (resp., separable metric, Polish, compact, a Cantor set). 

For X the unit interval [0,1], this theorem was proved by 
Milyutin [11], via a surprising construction of a suitable map
ping of the Cantor~ set onto the unit interval. For compact 
metric spaces and for compact topological groups the result 
is due to Pelczynski [13], who in fact proved that the prod
uct of Milyutin mappings is again a Milyutin mapping. For 
(nonmetrizable) compacta Theorem 2.3 was proved by Ditor 
[4]. For Polish spaces and A not necessarily regular, this is a 
result of Etcheberry [6], and for Polish spaces and A regular, it 
was proved by Choban [3]. Valov [20] proved this theorem for 
the class of all products of metrizable spaces and for the class 
of p-paracompact spaces. In the general case, this result was 
proved by Repovs, Semenov and Scepin [15]. 
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The name "Milyutin mappings" was introduced by Scepin 
[18]. Pelczynski used the term "Milyutin space" for a space 
which admits (in our terminology) a Milyutin surjection from 
a Cartesian power of the two-points set D = {a, I}. 

Question 2.4. Does there exist a version of Theorem (2.3) 
for normal (normal and countably paracompact) spaces'? 

3. An Application to the Geometry of Banach Spaces 

Recall that the original Banach problem was asking for a proof 
of the existence of an isomorphism between the Banach spaces 
C([O, 1]) and C([O, I] x [0,1]). Milyutin proved in his 1952 
dissertation (and published in 1966 [11]) a considerably more 
general answer. For the history of this question see [13]. 

Theorem 3.1. For every uncountable metric compactum X, 
the Banach space C(X) is isomorphic to the Banach space 
C(K), where K is the Cantor set. 

Proof Let X be an uncoutable metric compactum (hence 
a continual compactum). Then X contains a homeomorphic 
copy K' of the Cantor set K. Let A = C(K) and B = C(X). 
Clearly, A rv eo(A) and hence A is infinitely divisible. More
over, due to the Dugundji simultaneous extension theorem we 
have that 

B rv C(K') €I' KerQ rv C(K) €I' KerQ rv A E9 KerQ, 

for some projector Q : B ~ B. 
It therefore suffices, by the Pelczynski decomposition princi

ple, to verify that C(X) is complementable in C(K). But this 
follows due to the existence of a Milyutin mapping 'P : K ~ X 
from the Cantor set K onto X (cf. Theorem (2.3) and Propo
sition (2.2)). D 
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We remark that such methods work in a more general set
ting and not only for compact spaces X (cf. [2,6, 20]). 

Theorem 3.2. [6] Suppose that X is a Polish space (i.e. 
separable, completely metrizable space). Then: 

(i)	 BC(X) is isomorphic to BC(NOO), provided that X con
tains an uncountable closed subset which is not locally 
compact at any point; and 

(ii)	 BC(X) is isomorphic to BC(K x N), provided that X is 
locally compact and contains a closed noncompact subset 
in which every nonempty (relatively) open set contains a 
two-points subset. 

In this theorem BC denotes the Banach space of all bounded 
continuous functions and Nco denotes the countable Cartesian 
power of the set of natural numbers N or, equivalently, the 
space of all irrational numbers or, the Baire space B(oo). 

Theorem 3.3. [20] Suppose that X = II{Xa I a E A}, where 
cardA = A is infinite and each X a is a complete metric space 
of weight T. Then Ck(X) is isomorphic to Ck(B(T)A). 

Theorem 3.4. [20] Suppose that X = M x II{Xa I a E A}, 
where cardA = A, M is a complete metric space of weight T 

and each X a is a compact metric space. Then 

(i)	 Ck(X) is isomorphic to Ck(B(T) x DA), provided that M 
is nowhere locally compact and the weight of each open 
subset of M is T,. and 

(ii)	 Ck(X) is isomorphic to Ck(Tr x DA), provided that M is 
locally compact. 

Here, B (T) is the Baire space, Tr is the discrete set of car
dinality T and Ck stands for the topological vector space of all 
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continuous functions endowed with the compact-open topol
ogy. 

4.	 An Application to the Theory of Continuous 
Selections of Multi-valued Mappings 

Hereafter, 2Y shall denote the family of all nonempty closed 
subsets of a topological space Y and F : X ---+ 2Y a lower 
semicontinuous mapping. A mapping G : X ---+ 2Y is called a 
selection of F, provided that G(x) c F(x), for every x E X. As 
a rule, we shall consider singlevalued continuous selections f : 
X Y, f(x) E F(x). A selection of a lower semicontinuous ---t 

mapping F exists under some strong restrictions on spaces X 
and Y, and the family of all values of F. There are four classical 
selection theorems for a paracompact domain X - all due to 
Michael [7, 8]: 

(1)	 Zero-dimensional theorem: If dim X = 0 and Y is a com
plete metric space then there exists a continuous single
valued selection of F; 

(2)	 Convex-valued theorem: If all values of F are convex sub
sets of a Banach space Y, then there exists a continuous 
singlevalued selection of F; 

(3)	 Compact-valued theorem: If Y is a complete metric space, 
then F admits an upper semicontinuous compact-valued 
selection H, which in turn, admits a lower semicontinuous 
compact-valued selection G; 

(4)	 Finite-dimensional theorem: If dimX = n + 1 and Y 
is a complete metric space, each of values of F is an n
connected subset of Y, and the family of all values of F 
is equi-Iocally n-connected, then there exists a continuous 
singlevalued selection of F. 

The zero-dimensional selection theorem is the simplest. It 
turns out that one can derive two other selection theorems 
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from the zero-dimensional one. This can be proved by using 
the theory of Milyutin mappings. 

Theorem 4.1. [15] The convex-valued and compact-valued 
selection theorems are corollaries of the zero-dimensional the
orem. 

Sketch of Proof Let F : X ---+ 2Y be a lower semicontinu
ous convex-valued mapping from a paracompact space X to 
any Banach space Y. Apply Theorem (2.3) to obtain a zero
dimensional paracompact space Xo and a Milyutin mapping 
rp : Xo ---+ X with compact point-inverses. 

The composition G = F 0 <p is a lower semicontinuous map
ping on X o with closed (and convex) values G(x) c Y. We ap
ply the zero-dimensional Michael selection theorem to the map
ping G : Xo ---+ 2Y , to get a singlevalued continuous selection 
9 : Xo ---+ Y, g(z) E G(z), z E X o. Let v : X ---+ P(3(Xo) be 
a mapping associated with the Milyutin mapping rp. 

In order to get a selection f : X ---+ Y of the given mapping 
F we define, for any x EX: 

f(x) = 1 gdvx E Cl(conv(g(<p-l(x)))) c F(x). 
<,0-1 (x) 

In other words, f (x) is the barycenter of the compactum 
g( rp-l (x)) c F(x), with respect to the probabilistic measure 
Llx . This barycenter lies in F(x), due to the convexity and 
closedness of the values of the mapping F. 

Moreoyer, the mapping H = 9 0 rp-l is an upper semicon
tinuous compact-valued selection of F and the composition of 

2xothe lower semicontinuous selection of rp-l : X ---+ with 
g : X o ---+ Y yields a lower semicontinuous compact-valued se
lection of H. 0 

In this theorem some problems arise with verification of the 
continuity of f, since measure Vx continuously depends on x, 
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whereas the domain of integration cp-l(X) depends on x only 
upper semicontinuously. For the proof one must use the con
struction of the Milyutin mapping cp : Xo ~ X from Theorem 
(2.3). Note, that for a compact X this can be done by using 
the coincidence of the closures of a convex subset of Y in the 
weak topology and in the original topology of Y (cf. [19]). 

The universality of the zero-dimensional selection theorem 
works in more general situations. In fact, one can construct an 
integration theory in a complete metric space with a suitable 
axiomatic "convex structure" (cf. [9]), and then prove the 
convex-valued selection theorem exactly as above. 

Observe, that in the original proof [9], a desired singleval
ued selection was obtained as a uniform limit of a sequence of 
8-continuous singlevalued selections. As a simple variation of 
such a generalization we have the following Torunczyk's ver
sion of a Bartle-Graves type theorem [1; Proposition 11.7.1]. 

Theorem 4.2. Let X and Y be complete linear metric (in 
general, nonlocally convex) spaces. Let u : Y ~ X be a sur
jective linear mapping with the kernel a locally convex space. 
Then there exists a continuous mapping f : X ~ Y such that 
u 0 f = idx . 

Proof It suffices to apply the construction from the proof 
of Theorem (4.1) to the case F = u-1 and observe that the 
barycenter of a subcompactum of a point-inverse u-1(x) (with 
respect to the probabilistic measure) lies in u-1(x). 0 

In the same manner one can derive the following Michael's 
selection theorem. 

Theorem 4.3. Let F : X ~ E be a lower semicontinu
ous mapping from a paracompact space X into a complete lo
cally convex topological vector space E and let the union M 
of all values of F admit a compatible metric such that each 
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value F(x) is a complete subset of M, x E X. Then there ex
ists a continuous singlevalued mapping f : X --+ E such that 
f(x) E Cl(conv(F(x))), for all x E X. 

Here, completness of E means that the closed convex hull 
of a subcompactum is also compact. The original proof of 
Theorem (4.3) [10] appeared as a final result of a series of pa
pers concerning improvements of the Arens-Eells theorem on 
suitable embeddings of a metric space into a Banach space. 
Our approach shows that one can weaken the hypotheses of 
Theorem (4.3), by assuming only the completness of values 
F (x), and that the first conjugate E* separates points of E. 
The completeness gives existence of an integral above, and the 
uniqueness of this integral follows from the last separation as
sumption. 

Question 4.4. Does the zero-dimensional selection theorem 
also imply the finite-dimensional selection theorem? 

5.	 An Application to the Theory of Local Triviality of 
Fibrations 

It is a standard question in topology when is a surjective map
ping a locally trivial fibration. Clearly, a necessary condition 
is that all point-inverses are homeomorphic and (in the metric 
compact case) that point-inverses of close points are home
omorphic under small transformations. Such mappings are 
called completely regular. 

Definition 5.1. A mapping f : X --+ Y between metric spaces 
(X, d) and (Y, p) is said to be completely regular if for each 
Yo E Y and for each c > 0, there exists 8 > 0 such that the 
inequality p(y, Yo) < 8 implies existence of a homeomorphism 
h : f-l(y) --+ f-l(yo) such that d(x, h(x)) < c, for all x E 
f-l(y). 
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Question 5.2. Under what conditions is a completely regular 
mapping a locally trivial fibration? 

A classical answer was given by Dyer and Hamstrom for 
finite-dimensional Y. It turns out that the answer is positive 
whenever Y is a complete metric space with dim Y :::; n + 1, 
the preimages f- 1(y) are compacta, and the homeomorhisms 
group H (f-1 (y)) is locally n-connected (cf. [5]). For infinite
dimensional Y or for dim(f-1(y)) 2: 4, the answer is in general 
negative ([16]). For one-dimensional compact polyhedral fibers 
the answer is positive without any restrictions on dim Y. 

Theorem 5.3. [16] Let f : X ----+ Y be a completely regu
lar mapping between compact metric spaces such that point
inverses are homeomorphic to a fixed one-dimensional polyhe
dron. Then f is a locally trivial fibration. 

However, in the proof of the Theorem (5.3), compactness 
is essential because it uses separability of the Banach space 
of continuous functions on metric compacta and the Michael 
selection theorem for lower semicontinuous mappings with con
vex nonclosed values which are subsets of a separable Banach 
space. 

Earlier, Pixley [14] used this approach for the case when 
fibers are homeomorphic to the unit interval. So, for the non
compact case such a technique does not work. The following 
two theorems give many examples of Milyutin mappings with 
some additiona~ properties. On the other hand, as a corol
lary we obtain a positive answer to Question (5.2) when point
inverses are homeomorphic to the line. 
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Theorem 5.4. [17] Every open surjection 'P : X ----+ Y be
tween Polish spaces is a Milyutin mapping with the associated 
mapping v : Y ----+ P(X) such that 

8Upp(Vy ) = 'P-1(y),y E Y. 

The equality in the assertion of Theorem (5.4) means that 
the value of measure vy is positive at every nonempty open 
subset of the preimage 'P-1(y). Such mappings 'P are called ex
act Milyutin mappings. Note that in a contrast with Theorem 
(2.3), the point-inverses of an exact Milyutin mapping are in 
general, noncompact subsets of the domain. So, here we work 
in general with P(X), not with P{1(X). 

Note, that Polish spaces are precisely the completely metriz
able separable spaces and we can assume that X is a subset 
of the Hilbert cube. However, in the following corollary the 
values of the associated mapping automatically have compact 
supports. 

Corollary 5.5. Let M be a Polish space and exp(M) the set 
of all subcompacta of M, endowed with the Vietoris topology. 
Then there exists a continuous mapping 

jj : exp(M) ----+ P(j(M) 

such that SUPP(J.lK) = K, for every subcompactum K eM. 

Proof. The projection p : M x exp(M) ----+ exp(M) onto the 
second factor is an open surjection between Polish spaces. To 
complete the proof it suffices to apply Theorem (5.4) with Y = 

exp(M), 

x = {(m,K)\ K E exp(M),m E K} c M x exp(M) 

and <p the restriction of ponto X. o 
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Theorem 5.6. [17] Every completely regular mapping cp 
X ----+ Y between Polish spaces with point-inverses without iso
lated points is an exact lvlilyutin mapping, with the associated 
mapping 1/ : Y ----+ P(X) such that 

1/y ({X}) = 0, 

for all y E Y and x E cp-l(y). 

An exact Milyutin mapping <p with the property that 
1/y ( {x}) = 0 is called atomless. Observe that the proofs of 
Theorems (5.4) and (5.6) essentially use the zero-dimensional 
Michael selection theorem. 

Corollary 5.7. A completely regular mapping cp : X --+ Y 
between Polish spaces is a locally trivial fibration, provided that 
its point-inverses are homeomorphic to the real line. 

Proof For each y E Y, there exists a unique point my E 
<p-l(y) such that ({J-l(y) \ {my} consists of two open rays with 
measures equal to 1/2 (with respect to vy ). The existence of 
such an intermediate point follows from the atomlessness of 
measure vy whereas its uniqueness follows from the exactness 
of vy. Moreover, the regularity of cp implies that m : Y --+ X is 
a continuous selection of '{J-l. 

For a fixed y E Y, we pick one of the components of cp-l (y) \ 
{my} and a point, say ny, from this component such that 

We can find disjoint c:-neighborhoods of the points my and ny, 
and the regularity of cp at the point y gives us a neighborhood 
U(y) such that for each z E U(y), there exists a unique com
ponent of <p-l(z) \ {mz } with the unique point, say nz , in this 
component such that 
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Moreover, n : U(y) -4 X is also a continuous selection of <p-l. 

Let us show that cp-l(U(y)) is homeomorphic to the Cartesian 
product U x (-1/2, 1/2). Define the homeomorphism h by 

h(z) = (cp(z), v<p(z) ([m<p(z) , z])) E U x [0,1/2) 

if z and n<p(z) are in the same component of cp-l(cp(z)) \ {m<p(z)}, 
whereas in the case when m<p(z) separates the points z and n<p(z) , 
define h by 

h(z) = (cp(z), -v<p(z)([z, m<p(z)])) E U x (-1/2,0]. 

This completes the proof.	 o 
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