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Abstract 

We consider the problem of finding models for 
logic programs P via fixed points of immedi
ate consequence operators, Tp . Certain exten
sions of syntax invalidate the classical approach, 
adopted in the case of definite programs, using 
iterates of Tp and the Knaster-Tarski theorem. 
We discuss alternatives to the use of this theo
rem based on elementary notions from topolog
ical dynamics. This leads us to consider sim
ple syntactic conditions on P, employing level 
mappings taking values in a countable ordinal" 
which ensure convergence (to models and fixed 
points) of the requisite sequences of iterates. We 
obtain, as a result, a constructive approach to 
the perfect model semantics of Przymusinski for 
locally stratified programs, somewhat along the 
lines of the approach adopted by Apt, Blair and 
Walker for stratified programs. In particular, 
when certain inequalities are sharp, we show the 
existence of unique supported models, which im
proves Przymusinski's results for perfect models. 

* The first named author acknowledges substantial support provided 
by the U.S. Office of Naval Research in presenting the results of this 
paper, and the second named author acknowledges the hospitality of Uni
versity College Cork during its final preparation. We are grateful to an 
anonymous referee for suggesting several improvements in the style and 
presentation of the paper, and for drawing our attention to a flaw in our 
first version of Lemma 3.4. 
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This result is obtained by viewing a Scott domain 
as a generalized ultrametric space, and applying 
a fixed-point theorem due to Priess-Crampe and 
Ribenboim. When I happens to be w, these re
sults extend Fitting's treatment by metric meth
ods of certain non-stratified programs discussed 
by Apt and Pedreschi in termination problems. 

1. Introduction 

Computational logic is concerned with the use of logic as a 
programming language, and broadly consists of the following 
three components. (1) A syntax, or knowledge representation 
language, together with a theorem prover or interpreter. In 
this paradigm, program statements are viewed as axioms, and 
computation is viewed as deduction from the axioms via the 
theorem prover. (2) A distinguished minimal model M (a se
mantics) the purpose of which is to provide any program with 
its "intended meaning". (3) An operator T with the property 
that M is a fixed point of T (perhaps the least fixed point or 
a minimal fixed point of T). Furthermore, one expects (1), 
(2) and (3) to be connected by a result expressing, on the one 
hand, completeness and soundness of the theorem prover and, 
on the other hand, expressing, in terms of T, some form of 
tractability in relation to the process of determining M. 

The classic example of this is provided by definite or positive 
logic programs. In this case, the syntax is simply the Horn
clause subset of first order predicate logic together with SLD
resolution as the theorem prover. Thus, a definite program P 
consists of finitely many clauses of the form A +- Ai, ... ,An in 
which A and all the Ai are atoms, and n 2:: 0; the case n = 0 is 

Mathematics Subject Classification: 68Q55, 54H25 
Key words: Logic programming semantics, level mapping, general

ized ultrametric space, domain, topological dynamics 
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an abuse of notation indicating an empty antecedent or body 
i.e. a unit clause or fact A +-. Here, M is the least Herbrand 
model M p , T is the immediate consequence operator Tp, and 
the requisite connection between the components is established 
by the following well-known theorem of Apt, Kowalski and van 
Emden, see [12], in which ljp(Tp ) denotes the least fixed point 
ofTp. 

Theorem 1.1. For any definite program P, we have Mp = 
ljp(Tp) = Tp i w(f/J) = {A E Bp;P F A} = {A E Bp;P l
A}. 

It is worth drawing attention to the fact that the proof 
of this theorem depends on the lattice-continuity, and hence 
monotonicity, of Tp and on an application of the Knaster
Tarski theorem (the fixed-point theorem for complete partial 
orders). 

Despite the rather restricted syntax, it turns out that any 
partial recursive (computable) function can be computed by 
some definite program P, so that the class of definite programs 
is computationally adequate. Nevertheless, there is a lot of cur
rent interest in the question of making definite programs more 
expressive and more flexible for programming purposes, and 
also in the question of modelling uncertain and non-monotonic 
reasoning etc. Such questions involve many technicalities, but 
in essence can be categorized under the following broad head
ings. (i) The extension of the syntax of definite programs. (ii) 
The enlargement of the set of truth values one uses to include, 
say, three, four, many or even infinitely-many truth values. (iii) 
Changing the underlying logic to permit non-classical logics. 

In this paper, the extension of syntax we undertake is to 
include negated atoms in the bodies of clauses, so that we 
consider normal logic programs i.e. programs which consist of 
finitely many clauses of the form A +- AI, .. ·, Ak1 , -,BI , .. · , 
-,Bh . In such a clause, the symbols A, all the Ai and all the 
B j are atoms, k1 , II ~ 0 and the commas stand for conjunction 
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Le. AI, ... , Ak1 , ...,BI , • .. ,...,BlI denotes Al /\ · · · /\ Akl /\ ...,BI /\ 
... /\ ...,BII . Moreover, the symbol "~" denotes the logical 
connective of material implication. It is worth noting that 
this change to the syntax does indeed give a considerable gain 
in expressiveness, and this point is discussed in [1]. As far 
as issues (ii) and (iii) are concerned, we make no change and 
therefore we confine ourselves in this paper to just the two 
truth values true and false, and deal only with classical first 
order logic. 

Even such a simple change as that we have just made to the 
syntax leads to the following problem. 

Problem 1.2. (1) The operator Tp is no longer monotonic and 
therefore the Knaster-Tarski theorem is no longer applicable, 
yet it remains a central problem to find pre-fixed points and 
fixed points of Tp. 
(2) Some form of Theorem 1.1 should still apply in the new 
context. 

One way round the first of these problems is to define powers 
of the operator Tp in such a way as to recover monotonicity; 
this is the way adopted in [1] and it will be further discussed 
in this paper in §4. An alternative approach is to consider the 
extent to which the methods of Topology and Analysis can be 
used as a substitute for the Knaster-Tarski theorem. Indeed, 
work already undertaken in this direction includes the use of 
lattice topologies [3,4]; the use of metrics and the Banach con
traction mapping theorem [8], see also [7]; the use of metrics 
for multi-valued mappings in the case of disjunctive logic pro
grams [11]; the use of the Rutten-Smyth fixed-point theorem 
for non-expansive operators on quasi-metric spaces [20]. 

The present paper is concerned with this alternative ap
proach, and our main objective is to explore the use of elemen
tary ideas from topological dynamics within the model theory 
of logic programs P. Thus, we concentrate on the issue (1) 
raised in Problem 1.2 and, for reasons which will become clear 
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shortly, do not address (2) at all. In other words, we do not 
investigate the question of the existence of interpreters and 
their completeness and soundness in relation to model theory. 
Indeed, our specific aim is to use ideas connected with con
vergence of sequences of iterates to find models and supported 
models M for P. In fact, the former correspond to pre-fixed 
points of Tp (interpretations M satisfying Tp(M) ~ M), and 
the latter correspond to fixed points of Tp (M is supported if 
it satisfies Tp(M) 2 M, see [1]), and our thinking is based on 
the following simple observation. 

Observation 1.3. Suppose P is a normal logic program and I 
is an interpretation for P. If the sequence of iterates (Tp(I) )nEN 

of I converges in the Cantor topology Q (see §2) to some M 
(it need not so converge), then M is a model for P but not 
n~cessarily a supported model. If, further, Tp is continuous in 
the Cantor topology (it need not be), then M is a supported 
model or fixed point of Tp . 

Note 1.4. A similar fact holds for definite logic programs in 
relation to the Scott topology: Suppose P is a definite program 
and I an interpretation for P. Then the greatest limit M in the 
Scott topology of the sequence (Tp(I))nEN of iterates of I is a 
model for P. If, further, the sequence of iterates is monotone 
increasing (it need not be if I =f:. 0), then M is a fixed point 
of Tp . The proof of this follows from [19, Theorem 6] and 
[20, Lemma 1] and employs the fact that Tp is always Scott 
continuous for any definite P. Indeed, taking I as 0permits one 
to recover the classical fixed-point theory for definite programs 
P, but this will not be discussed further here. 

Observation 1.3 will be proved in §2, but for the moment 
we note that it raises the following question. 

Question 1.5. (1) Can one provide conditions (necessary, suf
ficient or both necessary and sufficient) for the convergence 
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of sequences (Tp(I))nEN of iterates in the Cantor topology in 
terms of the syntax of P? In particular, can one do this when 
I is f!J? 
(2) How general is Observation 1.3 as a means of finding pre
fixed points and fixed points of Tp ? 

In this paper, we propose to consider this question and 
to formulate answers to it in terms of level mappings land 
inequalities between the values l(A) and l(Ai ), l(Bj ) in each 
ground instance A ~ AI, ... ,Ak1 , .BI , ... ,.BlI of every clause 
in a normal logic program P, where l takes values in an ar
bitrary countable ordinal /. Thus, in §2 we establish pre
liminaries and notation and formulate our main definition. 
Briefly, P is called (1) level-decreasing, respectively, (2) strictly 
level-decreasing, respectively, (3) semi-strictly level-decreasing 
if one has, respectively, the following inequalities holding for 
all i, j: (1) l(A) ~ l(Ai ), l(Bj ), (2) l(A) > l(Ai ), l(Bj ), (3) 
l(A) ~ l(Ai ), l(A) > l(Bj ). In fact, see §2 below, the class 
of programs defined by (3) coincides exactly with the class of 
locally stratified programs defined by Przymusinski in [16] and 
in others of his many papers, see in particular [17, 18]. How
ever, the terminology we adopt is more suited to our purposes 
since we intend to distinguish between the conditions (2) and 
(3) quite carefully, and the term "locally stratified" does not 
do this. As a matter of fact, the class of programs defined by 
Condition (1) is too general and will not be considered here 
in detail for the same reasons that it is not considered in [16], 
see§2. Przymusinski [17, 18] has discussed the existence of 
suitable interpreters for locally stratified programs and related 
them to model theory. For this reason, as already mentioned, 
we do not consider procedural semantics at all. Indeed, our re
sults are entirely model-theoretic and may be summarized as 
follows. In §3 we examine the class defined by Condition (2). It 
turns out that in this case Tp is strictly contracting in the sense 
of Priess-Crampe and Ribenboim [14, 15] relative to a general



433 TOPOLOGY AND ITERATES IN ... 

ized ultrametric we define in terms of l, and which necessitates 
thinking of a Scott domain as a spherically complete gener
alized ultrametric space. We show, on using the fixed-point 
theorem of [14, 15], that in this case P has a unique supported 
model which coincides with the perfect model of [16]. This im
proves the results of Przymusinski to the extent that he showed 
uniqueness only of the perfect models. In particular, if l takes 
values in w, then Tp is a contraction mapping relative to the 
ultrametric introduced by Fitting in [8]. We further explore 
this class in §3, briefly relating it to ideas of current interest in 
dynamical systems and computing being developed by Edalat 
in [6] and by us in more detail in [21]. Nevertheless, though of 
interest, the case / = w is too restrictive and it is essential to 
consider arbitrary countable ordinals / for two reasons. First, 
doing this allows us to include arbitrary locally stratified pro
grams within our framework. Second, one can show then that 
the class of strictly level-decreasing programs can compute all 
partial recursive functions, see [21], which is not the case if one 
is confined to w-valued level mappings; some examples of pro
grams which are strictly level-decreasing with respect to level 
mappings taking values in ordinals greater than ware given in 
Example 3.11. Finally, in §4, we examine semi-strictly level
decreasing programs in depth. In this analysis we recover the 
perfect model semantics of [16]. However, what is new here 
is that our approach is very simple and constructive, see Con
struction 4.4, and our methods are rather different from those 
employed in [16]. Moreover, we establish recursion equations, 
see Corollary 4.6, which show very precisely how the iterates 
involved in the construction evolve. Finally, we note that an
other simplification obtained by this approach is that we work 
only with the ordinary iterates of Tp rather than with more 
complicated concepts such as the powers introduced in [1] and 
defined in §4 for convenience. 

It is worth emphasizing the fact that the class of locally 
stratified programs forms a considerably larger class of pro
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grams than the stratified programs, containing, as it does, pro
grams such as the "even numbers" program, see Example 3.12, 
and others considered by Fitting in [8] which are not stratified. 
Even the partial answer we give to Question 1.5 in this paper 
shows, therefore, that the ideas it embodies are a very general 
means indeed of finding models and supported models for logic 
programs. 

2. Preliminaries and Notation 

It will be convenient first to establish some preliminary con
cepts and definitions which will be used throughout the paper. 
Our notation is standard and follows [12]. Indeed, all undefined 
concepts relating to logic programming can be found in [12]. 
Thus, throughout the paper, P will denote an arbitrary normal 
logic program (as defined in the Introduction) whose underly
ing first order language will be denoted by L. We denote by Bp 

the Herbrand base of P i.e. the set of all ground or variable-free 
atoms in L. In fact, we shall usually suppose that L contains 
at least one function symbol of positive arity, so that Bp will 
usually be an infinite set. This assumption is not necessary, 
but without it topological considerations become rather trivial. 
Needless to say, all the results we establish apply in full general
ity whether or not L contains such a function symbol. Next, we 
let Ip denote the set of all Herbrand interpretations for P; as 
usual each Herbrand interpretation will be identified in a natu
ral way with-a subset of Bp , so that Ip is the power set P(Bp ) 

of B p . We use the notation ground(P) to denote the set of all 
ground instances of clauses in P i.e. the set of all instances 
A f- AI, ... , Ak1 , .BI , ... , .BLI of each clause in P in which 
A, Ai, B j belong to Bp or, equivalently, contain no variable 
symbols, see [1]. As already noted, one of the most important 
concepts in the subject is that of the immediate consequence 
operator Tp : Ip ~ Ip. This we define next by: Tp(I) = 
{A E Bp; there is a clause A f- AI, ... ,Ak1 , .BI , ... , .BlI E 



435 TOPOLOGY AND ITERATES IN ... 

ground(P) such that I F Al /\ . · · /\ Ak1 /\ -,BI /\ · · . /\ -,BlI }· 

Notice that in classical two-valued logic, the statement I F 
Al 1\ · · · 1\ Ak1 1\ -,BI 1\ · · · 1\ .BlI is equivalent to the statement 
"AI, ... ,Ak1 E I and B I , · · · ,Bll fj. I". 

Finally, we let l denote a level mapping so that l is simply a 
mapping l : Bp --+ "I, where'Y denotes an arbitrary countable 
ordinal. In fact, "I will be regarded as the set of all ordinals 
n such that n E 'Y Le. the set of ordinals n such that n < 'Y. 
As usual, if n = m + 1 is the successor of m, then we write 
m = n - 1 for the predecessor m of n. We call l an w-Ievel 
mapping in case I = w, and also use the notation N for the 
set of natural numbers (including zero). We let Ln = {A E 

B p ; l(A) < n}, for n ::; 'Y, and put .co = 0. If A E B p and 
l(A) = n, we say that the level of A is n. We call an w-Ievel 
mapping l finite if .en is finite. for each n E N. Without loss 
of generality, we suppose always that the smallest value taken 
by l is zero. 

Note that Ip can be naturally identified with 2Bp , where 2 
denotes the set {a, I}. It can, therefore, be endowed with two 
well-known and important topologies. First, endow 2 with the 
Scott topology. Then, as is well-known, the product topology 
on I p coincides with the Scott topology on I p , viewed as a 
complete lattice, and it is this fact that underpins the obser
vation made in Note 1.4. Second, endow 2 with the discrete 
topology. Then the product topology in this case makes I p 

homeomorphic to the Cantor set. We shall denote this topol
ogy on Ip by Q and refer to it as the Cantor topology on Ip. 
Further details of these facts can be found in [19]. 

There is a simple criterion for convergence of sequences in 
Q. Again, this can be found in [19], but we include it here for 
completeness and in a slightly more comprehensive form, see 
[19, Proposition 4]. Typically, we denote sequences in I p by 
(In)nEN or by (In). 

Proposition 2.1. A sequence (In) in Ip is convergent iff for 
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every A E B p either A eventually belongs to In or A eventually 
does not belong to In (meaning that for all large enough n, 
A E In respectively A ¢ In). If (In) is convergent, then its 
limit I is the set {A E B p ; A eventually belongs to In}. 

Using this proposition we can prove Observation 1.3. 
Proof of Observation 1.3. Let In denote Tp(I) and suppose 
that (In) converges in Q to M. For the first part, we must show 
that Tp(M) ~ M. Let A E Tp(M). Then by definition of Tp , 

there is a clause A ~ AI, ... ,Akl , ....,BI , .. . , ....,BlI E ground(P) 
such that, for all i,j, we have Ai E M and B j fj. M. Since 
(In) converges to M in Q, there is, by Proposition 2.1 applied 
(k l + ll)-times, an no E N such that, for all n 2:: no and for all 
i, j, we have Ai E In and B j ¢ In. From this and the definition 
of Tp it follows that A E In for all n 2:: no + 1 and in turn it 
now follows from Proposition 2.1 again that A EM. 

Next, ifTp is continuous in Q, then a simple argument using 
the uniqueness of limits in Q, which is Hausdorff, shows that 
Tp(M) = M as required. 

Finally, taking P to be the following program: 

r(o) ~ 

p(o) ~ -.r(o) 

p(s(x)) ~ p(x) 

q(o) ~ p(x) 

and taking I = 0 we find that (In) converges in Q to M = 
{r(o), q(o)}, yet Tp(M) = {r(o)} so that M is not supported. 
o 

Of course, in the example just considered, Tp is not continu
ous in Q. Indeed, necessary and sufficient syntactic conditions 
for continuity of Tp were established in [19]. However, we will 
not make much use of continuity of Tp in this work, except in 
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certain of the examples we discuss, and it will be enough to 
note that a sufficient condition for continuity is for P to contain 
no local variables, see [19, Corollary 6] (a variable (symbol) y 
is local if it occurs in the body of a clause but not in the head. 
For exampIe, y is a local variable in the clause p(x) f- p(y)). 

Level mappings as defined above have been used in a num
ber of places in the literature on Logic Programming, where 
they have usually taken values in w. For example, they have 
appeared in the study of termination problems, see [2, 5], in 
completeness problems, and in [8] to define metrics. We are 
now in a position to use them to formulate the main definition 
which we propose to consider in response to Question 1.5, and 
it will become apparent as we proceed that this paper builds 
on the work of [1, 8, 16, 17, 18]. 

Definition 2.2. Let P be a normal logic program, let 1 : B p ~ 

I be a level mapping and let A f- AI, · · · ,Ak1 , .Bl , · · · , .Bh 
denote a typical clause in ground(P). We call P: 
(1) Level-decreasing (with respect to l) if the inequali
ties l(A) ~ l(Ai ), l(Bj ) hold for all i and j in each clause in 
ground(P). 
(2) Strictly level-decreasing (with respect to l) if the in
equalities l(A) > l(Ai ), l(Bj ) hold for all i and j in each clause 
in ground(P). 
(3) Semi-strictly level-decreasing (with respect to l) if 
the inequalities l(A) ~ l(Ai ) and l(A) > l(Bj ) hold for all i 
and j in each clause in ground(P). 

As noted earlier in the Introduction, semi-strictly level
decreasing programs coincide exactly with the locally strati
fied programs defined in [16]. Indeed, if 1 : Bp ~ / is a level 
mapping and we set Hn = l-l(n) for each ordinal n < "I, then 
in this way we set up a one-to-one correspondence between level 
mappings 1 and local stratifications {Hn ; n < /}. Of course, 
Class (2) is a strict subclass and· Class (1) a strict superclass 
of the locally stratified programs. In fact, this latter class of 
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programs, Class (1), can be disposed of immediately as being 
too general, and it will not be considered further. For example, 
it contains the program: 

p(o) +

p(s(o)) +

p(x) +- -,p(x) 

and in this case Tp has no fixed points at all. Since Tp is con
tinuous here, it follows from Observation 1.3 that the sequence 
(Tp(I)) can never converge in Q for any I. It was precisely in 
order to limit "recursion through negation" that stratified pro
grams were introduced by Apt, Blair and Walker, see [1] and 
Van Gelder [24], and extended to locally stratified programs 
by Przymusinski in [16], and why the condition l(A) > l(Bj ) 

is imposed in (2) and (3) of Definition 2.2. 

3. Strictly Level-Decreasing Logic Programs 

The topology Q is of course metrizable, and indeed the follow
ing ultrametric d generates Q whenever we choose a finite level 
mapping l : Bp ~ w (see [20]): if II = 12 , put d(I1,I2 ) = 0; 
otherwise, put d(I1 , 12 ) = 2-n , where II and 12 differ on some 
A E B p such that l(A) = n, but agree on all atoms of lower 
level. This metric was introduced by Fitting in [8] where three 
problematic programs were discussed (the "even numbers" pro
gram, a "game" program and also a "transitive closures of 
graphs" program). In each case, it was shown that Tp is a 
contraction mapping and hence, by applying the Banach con
traction mapping theorem, that each program has a unique 

. supported model. Fitting also discussed a class of programs 
called "acceptable" by Apt and Pedreschi and encountered in 
discussions of termination problems in logic programming, see 
[2, 5]. Indeed, the definition of a strictly level-decreasing pro
gram relative to an w-Ievel mapping is implicit in Fitting's dis
cussion of acceptable programs, although not explicitly given 
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by him in [8]. Notice that the programs just mentioned are not 
stratified so that the methods of [1] are not applicable to them. 
It was precisely for this reason that Fitting introduced the met
ric d and applied the Banach contraction mapping theorem to 
discuss their semantics. 

It turns out, see Theorem 3.9, that if P is strictly level
decreasing with respect to an w-Ievel mapping l, then Tp is 
a contraction mapping relative to the metric d determined by 
l, and hence that the Banach contraction mapping theorem 
may be applied to obtain a unique supported model for P. 
In fact, the main objective of this section of the paper, §3, 
is to establish a completely general version, Theorem 3.8, of 
Theorem 3.9. This result effectively disposes of the class of 
strictly level-decreasing programs and improves on the results 
of [16], as already noted in the Introduction, in that we show 
uniqueness of supported models and not just of perfect models 
(it emerges that perfect models are supported in fact). To 
obtain these results we make use of the fixed-point theorem of 
Priess-Crampe and Ribenboim [14, 15] in place of the Banach 
contraction mapping theorem (which is not directly applicable 
in this case). This necessitates showing that every domain 
can be turned into a generalized ultrametric space which is 
spherically complete in the sense of [14, 15], and the next few 
results are devoted to establishing the details of these facts. 

Definition 3.1. (See [14, 15]) Let X be a set and let r be a 
partially ordered set with least element O. We call the pair 
(X, d) a generalized ultrametric space if d : X x X ~ r is a 
function satisfying the following conditions for all x, y, z E X 
and "I E f. 
(1) d(x, y) = 0 if and only if x = y. 
(2) d(x, y) = d(y, x). 
(3) If d(x, y) ~ , and d(y, z) ::; " then d(x, z) ::; ,. 

For 0 =1= , E r and x E X, the set B'Y(x) = {y E X; d(x, y) ::; 
,} is called a "I-ball or just a ball in X. A generalized ultra
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metric space is called spherically complete if, for any chain C of 
balls in X (i.e. for any set of balls which is totally ordered by 
inclusion), we have nC =I 0. A function f : X ~ X is called 
strictly contracting if d(f(x), f(y)) < d(x, y) for all x, y E X 
with x =I y. 

The following theorem was given in [14] and in more general 
form in [15]. 

Theorem 3.2. Let (X, d) be a spherically complete generalized 
ultrametric space and let f : X ~ X be strictly contracting. 
Then f has a unique fixed point. 

In order to apply this theorem, we intend to show first that 
every Scott domain can be made into a spherically complete 
generalized ultrametric space. 

Let (D, C) denote a Scott domain with set Dc of compact 
elements, see [23] for terms and notation. For a countable 
ordinal" let r 7 be the set {2-0 

; Q < ,} of symbols 2-0 with 
ordering 2-0 < 2-{3 if and only if (3 < Q. 

Definition 3.3. Let r : Dc ~ , be a function, called a rank 
junction, and denote 2-7 by o. Define dr : D x D ~ r,+1 by 

dr(X, y) = inf{2-a ; c C x if and only if c C y for every 
C E Dc with r(c) < a}. 

Then (D, dr ) is called the generalized ultrametric space in
duced by r. 

Notice that the definition just made is closely related to [22, 
Example 5] which in turn was employed in [20]. 

It is straightforward to verify that (D, dr ) is indeed a gen
eralized ultrametric space, and we proceed to show next that 
(D, dr ) is spherically complete. It will be necessary to im
pose one standing condition on the rank function r namely 
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that, for each xED and for each ordinal Q < 'Y, the set 
{c E approx(x); r(c) < Q} is directed whenever it is non
empty. In what follows it will simplify matters to denote the 
ball B2-Q(x) by Bo:(x). 

Lemma 3.4. Let Bo:(x) ~ Bt3 (y). Then the following state
ments hold. 
(1) {c E approx(x); r(c) < ,B} = {c E approx(y); r(c) < ,B}. 
(2) Bo: = sup{c E approx(x); r(c) < Q} and B t3 == sup{c E 
approx(y); r(c) < j1} both exist. 
(3) Bt3 c Bo:. 

Proof. Since x E Bo:(x) , we have x E Bt3 (y) and hence dr(x, y) ::; 
2-13 • Therefore, the first statement follows immediately from 
the definition of dr. 

Since the set {c E approx(x); r(c) < J3} is bounded by x, for 
any x and (3, the second statement follows from the consistent 
completeness of D. 

For the third statement, suppose first that Bo:(x) C Bt3(Y). 
Then we immediately have {3 < Q by [14, (1.2)] since f-y is 
totally ordered. Therefore, Bt3 = sup{c E approx(y);r(c) < 
j1} = sup{c E approx(x); r(c) < j1} c: sup{c E approx(x); r(c) 
< Q} = Bo:, and so Bt3 c: Bo: as required. Now suppose that 
Bo:(x) == B13 (y) = B, say. If Q = {3, then it is immediate that 
Bo: = Bt3 . So suppose finally that Q =I f3 and suppose in fact 
that Q < (3, so that Bo: C B/3' with a similar argument if it is 
the case that J3 < Q. We intend to show again that Bo: = Bt3 , 
for which it suffices to obtain dr(Bo:, Bt3 ) = o. By definition of 
dr' Bo: and Bt3, we see that Bo: and B{3 are both elements of the 
ball B in question. Suppose that dr(Bo:, Bt3 ) #- O. Then there is 
a compact element Cl such that the statement "Cl C Bo: iff Cl ~ 

B{3" is false. Since Bo: c: Bt3, it must be the case that Cl g Bo: 
and Cl ~ BI3. By [14, (1.1)] any point of a ball is its centre, and 
so we can take y to be B{3 in the equation established in Part 
(1). We therefore obtain B{3 = sup{c E approx(B,8); r(c) < ,B}. 
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If {c E approx(B,e); r(c) < t3} is empty, then Bo: and B,e are 
both equal to the bottom element of D and we are done; so 
suppose {c E approx(B,e); r(c) < t3} =f 0. Since Cl C B,e, 
there is, by the condition imposed on r, a compact element C2 

with r(C2) < (3 such that Cl C C2 ~ B,e. But then C2 ~ Bo: 
otherwise we would have Cl C C2 and C2 C Bo: leading to the 
contradiction Cl C Bo:. But now we have a compact element C2 

with r(c2) < t3 and for which C2 ~ Bo: and C2 C B,e, and this 
contradicts the fact that dr(Bo:, B,e) ~ 2-,e. Hence, Bo: = B,e 
as required. 0 

Theorem 3.5. Under the standing condition on r, (D, dr ) is 
spherically complete. 

Proof By the previous lemma, every chain (Bo:(xo:)) of balls 
in D gives rise to a chain (Bo:) in D in reverse order. Let 
B = sup Bo:. Now let Bo:(xo:) be an arbitrary ball in the chain. 
It suffices to show that B E Bo:(xo:). Since Bo: E Bo:(xo:), we 
have dr(Bo:, xo:) ~ 2-0:. But dr is a generalized ultrametric and 
so it suffices to show that dr(B, Bo:) ~ 2-0:. For every compact 
element C c: Bo:, we have c C B by construction of B. Now 
let C c: B with cEDe and r(c) < a. We have to show that 
c c: Bo:. Since c is compact and c C B, there exists B,e in 
the chain with c c.: B(3. If Bo:(xo:) ~ B,e(x,e) , then B,e C Bo: 
by Lemma 3.4 and therefore c C Bo:. If B,e(x,e) C Bo:(xo:) , 
then Q < (3, and since c ~ B,e, c is an element of the set 
{c E approx(x,e);r(c) < a} = {c E approx(xo:);r(c) < o}. 
Since Eo: is the supremum of the latter set, we have c c: Bo: as 
required. 0 

To apply these results to logic programming, we regard I p as 
a domain, under set inclusion, whose set of compact elements 
is the set Ie of all finite subsets of Bp , see [20] for related 
results. We note also that in the special case of the domain 
I p , results similar to Theorem 3.5 were obtained in [15]. 
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Definition 3.6. Let P be a normal logic program and let 1 : 
Bp ~ 'Y be a level mapping. We define the rank function rz 
induced by 1by setting rl (I) = max{1(A) ;A E I} for every I E 

Ie, with I non-empty, and taking rl(0) = o. The generalized 
ultrametric obtained from a rank function in this way will be 
denoted by dz. 

Notice that the condition imposed on r is trivially satis
fied by rz, and the following proposition will make it easier to 
calculate distances which depend on rz. 

Proposition 3.7. Let P be a normal logic program, let 1 : 
B p ~ 'Y be a level mapping for P and let I, J E Ip. Then 
dz(I, J) = inf{2-0; I n £0 = J n £o}. 

Proof. Immediate by the observation that, for every I E Ip , 

I = sup{{A};A E I}. 0 

Our main result in this section is the following theorem. 

Theorem 3.8. Let P be a normal logic program which is strictly 
level-decreasing with respect to a level mapping 1 : B p ~ 'Y. 
Then Tp is strictly contracting with respect to the generalized 
ultrametric dz induced by l. Therefore, Tp has a unique fixed 
point and hence P has a unique supported model. 

Proof. Let 11 ,12 E Ip and suppose that dl (11 , 12) = 2-0 
• 

Case 1. fr = o. 
Let A E Tp (I1) with l(A) = O. Since P is strictly level
decreasing, A must be the head of a unit clause in ground(P). 
From this it follows that A E Tp (12) also. By the same argu
ment, if A E Tp (I2 ) with l(A) = 0, then A E Tp (11). There
fore, Tp(I1 ) n £1 = Tp(I2 ) n £1, and hence we have 

dl(Tp(I1 ) , Tp(I2 )) :5 2-1 < 2-0 = dl(I1 , 12 ) 
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as required. 
Case 2. a > O. 
In this case, II and 12 differ on some element of Bp with 
level a, but agree on all ground atoms of lower level. Let 
A E Tp (I1) with l(A) :s; Q. Then there is a clause A ~ 

AI, · . · ,Akl , .B1 , · · · ,.BlI in ground(P) , where k1, II ~ 0, such 
that for all k, j we have Ak E II and B j f/: II. Since P is strictly 
level-decreasing and II n£o = 12 n£o:, it follows that for all k, j 
we have Ak E 12 and Bj f/: 12. Therefore, A E Tp (12 ). By the 
same argument, if A E Tp (12 ) with l(A) :s; Q, then A E Tp (11). 

Hence we have Tp (11) n £0+1 = Tp (12) n £0:+1, and it follows 
that 

as required. 
Thus, Tp is strictly contracting. Therefore, by Theorem 3.2, 

Tp has a unique fixed point and therefore P has a unique sup
ported model as claimed. 0 

It is worth noting that the proof of Theorem 3.2, as given in 
[14, 15], is not constructive and does not provide the means of 
actually finding the fixed point. By contrast, the results of §4 
and of Corollary 4.6, in particular, give constructions for the 
fixed point obtained by Theorem 3.8. 

In the case that 1 is an w-Ievel mapping, the argument given 
in the proof of Theorem 3.8 can be given in exactly the same 
form with respect to the ultrametric d introduced by Fitting 
and defined earlier. In this case, the Banach contraction map
ping theorem is sufficient to obtain the fixed point which re
sults, and we have the following theorem. 

Theorem 3.9. Suppose P is strictly level-decreasing with re
spect to an w-level mapping l. Then Tp is a contraction with re
spect to the ultrametric d with contractivity factor ~ ~. There

1 This terminology is that of M. Barnsley, "Fractals Everywhere". Aca
demic Press, Inc., San Diego, 1988. 
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fore, Tp has a unique fixed point and hence P has a unique 
supported model. 

Staying with w-Ievel mappings for a moment, Fitting noted 
in [8] that when the Banach contraction mapping theorem ap
plies, the fixed point it produces is obtained by considering 
iterates Tp(I) for any I E Ip , and that the sequence of iterates 
must close off by the first infinite ordinal (so that one does 
not need to enter the transfinite in this case). In particular, 
with I = 0 we see that lim Tp(0) is a supported model. More
over, Fitting noted that all the standard semantics for P (e.g. 
perfect model, stable model etc.) must coincide when Tp has 
a unique fixed point. Therefore, we have more generally the 
following corollary of Theorem 3.8 and Theorem 4.9. 

Corollary 3.10. Suppose that P is strictly level-decreasing with 
respect to an arbitrary level mapping 1 : B p ~ 'Y. Then all se
mantics for P coincide with the perfect model semantics of [16] 
which is the unique minimal supported model for P. 

Example 3.11. (1) Take P to be the following program: 

q(o) ~ -,p(x) , -,p(s(x)) 

p(o) ~ 

p(s(x)) ~ -'p(x) 

and define l : Bp ---+ W + 1 by l(p(sn(o))) = nand l(q(sn(o))) = 

w for all n EN. Then P is strictly level-decreasing and 
the unique supported model given by Theorem 3.8 is the set 
{p(s2n(0));n E lV}. 
(2) This time take P to be as follows: 

p(o, 0) ~ 

p(s(y), 0) ~ -,p(y, x), -,p(y, s(x)) 

p(y, s(x)) ~ -,p(y, x) 



446 Anthony Karel Seda and Pascal Hitzler 

and define l : B p ~ ww by l(p(sk(o), si(o))) = wk + j, where 
wk denotes the kth limit ordinal. Then P is strictly level
decreasing and its unique supported model is the set 
{p(o, s2n(o)); n E N} U {p(sn+l(o), S2k+l(O)); k, n EN}. 

Example 3.12. Take P to be the "even numbers" program: 

p(o) +

p(s(x)) +- -,p(x) 

with the w-Ievel"mapping l defined by l(p(sn(o))) = n. Then 
Theorem 3.9 applies to this program (with contractivity factor 
!) and produces the set {p(o),p(s2(O)),p(S4(O)), ... } of even 
numbers as the unique fixed point of Tp . 

Example 3.13. Consider the following program P: 

p(s(o)) +- -,q(o) 

p(x) +- r(x) 

r(x) +- p(x) 

q(o) +

The set {q(o),p(sn(o)), r(sn(o))} is a fixed point of Tp for ev
ery n. Therefore, Tp can never satisfy the hypothesis of Theo
rem 3.8. In fact, this program is semi-strictly level-decreasing, 
but is never strictly level-decreasing for any level mapping be
cause of the cycle created by the second and third clauses. 
Such a cycle would be prohibited in a strictly level-decreasing 
program, and' this example shows that a semi-strictly level
decreasing program need not have a contractive immediate 
consequence operator. 

Question 3.14. To what extent is the converse of Theorem 3.8 
true? An answer to this question would set limits to the appli
cability of generalized ultrametrics determined by level map
pings. 
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In fact, the strict converse of Theorem 3.8 is false, as shown 
by the following example. 

Example 3.15. Take P as follows: 

p(x) f

p(x) f- p(s(x)) 

q(o) f-

q(s(x)) f- q(x) 

In this case, Tp is a contraction with contractivity factor ~ 
when we take l to be the w-Ievel mapping: l(p(sn(o))) = 

l(q(sn(o))) = n for all n E N. But because of the second 
clause, P is never strictly level-decreasing with respect to any 
level mapping. However, removing the second clause to obtain 
a program pI changes nothing Le. Tp = Tp' so that P and 
pI are subsumption equivalent as defined by Michael Maher in 
[13]. Thus, the previous question is modulo equivalences of 
this sort. 

The results just discussed suggest connections between com
putational logic and dynamical systems, and we propose to 
briefly consider three of these next. This material is being in
cluded here in §3, but it is not assumed in what follows that P 
is necessarily strictly level-decreasing with respect to any level 
mapping. 

First, let us fix a listing Bp = {Ao, AI, A2 , ... } of Bp and 
use it to determine the w-Ievel mapping l for the present; so 
that l(An ) = n for all n. Setting 2Ai = 2i = 2 = {a, I} for all i, 
allows us to make the further identification of I p with rr:02i in 
which I E I p corresponds to th~ sequence a = (ao, aI, a2, ...), 
where ai = 1 if Ai E I and equals a otherwise. Fitting's 
metric now coincides with one often used in symbolic dynamics: 
d(a, (3) = 0 if a = (3; otherwise d(a, (3) = 2-n , where n ~ 0 
is the smallest integer such that an =1= (3n and where of course 
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a = (ao, aI, a2,· ..) and {3 = ({3o, {3I, (32, ...) are elements of 
I1~02i. Furthermore, under this identification, Tp is conjugate 
to a sort of shift operator Bp on I1~02i. 

Example 3.16. As an example of the foregoing comments, 
the program PI: 

p(x) +- p(s(x)) 

corresponds to the shift (ao, aI, a2, · ..) f---+ (aI, a2, as, ...) and 
therefore models chaotic behaviour to the same extent that 
this shift does this (notice that TpI and equivalently BpI has 
periodic points of every period). The program P2: 

p(s(x)) +- p(x) 

corresponds to the shift (ao, aI, a2, ... ) f---+ (0, ao, aI, ... ). The 
program P3 : 

p(o) +

p(s(x)) +- p(x) 

corresponds to the shift (ao, aI, a2, · ..) ~ (1, ao, aI, a2, ...). 
And the program P4 of Example 3.12: 

p(o) +

p(s(x)) +- -,p(x) 

corresponds to the mapping (ao, aI, a2, ...) ~ (1,1 - ao, 1 
aI,l - a2, · · .). 

For our second observation, we impose the mild condition 
that P contains at least one unit clause. It follows then that 
Tp (0) i= 0, and that we can choose the listing mentioned in 
the previous paragraph to satisfy the additional condition that 
Ao E Tp(I) for every I E Ip. Note that P is otherwise arbi
trary and, in particular, we do not impose the condition on P 
that Tp be continuous in Q for what follows. Errlbed Bp into 
the unit interval [0,1] by defining i(Ao) = 0 and i(An ) = 2-n 
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for n 2: 1. Thus, Bp becomes a compact metric space. Let Vp 

denote the subspace of I p consisting of all those elements of I p 

which contain Ao, and endow Vp with the subspace topology of 
Ip . By virtue of Proposition 2.1, Vp is itself closed and hence 
compact, and moreover each element of Vp is a non-empty 
closed subset of Bp . In fact, the topology of Vp as a subspace 
of I p coincides with that induced by the Hausdorff metric de
termined by the metric on Bp, so that Vp is a closed subspace 
of Vietoris space, see [6]. Finally, because Ao E Tp(I) for all 
I E Ip, we see that Vp is an invariant set under Tp. Thus, 
Tp : Vp ~ Vp is an abstract dynamical system, abstract in the 
sense that Tp need not be (usually is not) induced by a point 
map on Bp. Since 11 = Tp(I) belongs to Vp for any I E Ip, it
erates of I enter and stay within Vp . Thus, any model or fixed 
point which can be found by means of convergent sequences of 
iterates can be so found within Vp . 

Example 3.17. The previous discussion raises the question of 
syntactic conditions under which Tp is a contraction relative 
to the Hausdorff metric. For example, the "natural numbers" 
program P as follows: 

p(o) ~ 

p(s(x)) ~ p(x) 

has the property that Tp is such a contraction with the obvious 
listing of Bp . On the other hand, the "even numbers" program 
of Example 3.12 does not have this property. 

For our third and final observation, suppose that P = P1 U 
... U Pn is a partition of Pinto n sub-programs in which the 
definition of each predicate symbol is contained in one of the Pi 
(the definition of a predicate symbol p is the set of all clauses 
in P in which the predicate symbol p occurs in the head). We 
can then write Tp as the union (U~=1Tpi) in the sense that for 
all I E Ip we have Tp(I) = (U~=1Tpi)(I) = U~=1Tpi(I). In this 
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representation, each of the TPi is to be thought of as a mapping 
of I p into itself rather than as a mapping of I pi into itself. 

By means of Proposition 2.1 we have the following result. 

Proposition 3.18. Suppose that P is partitioned as above. 
Then the following two statements hold. 
(1) Tp is continuous in Q at a point I E Ip iff each of the Tpi 

is continuous in Q at I. 
(2) Suppose that each of the Tpi in the representation above 
is a contraction relative to Fitting's metric d with contractiv
ity factor Ci = 2-ni 

, say. Then Tp is a contraction relative 
to d with contractivity factor c = max{Ci; i = 1, ... , n}. Con
versely, if Tp is a contraction with factor of contractivity c 
relative to d, then each of the Tpi is a contraction relative to d 
with contractivity factor :::; c. 

Thus, whenever Tp is continuous in Q, {Ip ; T p1 , ... ,Tpn } is 
an iterated function system which is in fact hyperbolic under 
the conditions of Proposition 3.18 (2). 

Example 3.19. The program in Example 3.13 gives rise to 
an iterated function system which is never hyperbolic for any 
choice of level mapping l. In the program P: 

q(o) ~ 

q(S3(X)) ~ p(x) 

p(o) ~ 

p(S2(X)) ~ -,p(x) 

the definition of q has contractivity factor ~, and the definition 
of p has contractivity factor i. Therefore, P determines a 
hyperbolic iterated function system with contractivity factor 
1
4· 
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Supposing, finally, that Tp is continuous in Q, let F(Ip) 
denote the set of non-empty compact subsets of I p endowed 
with the Hausdorff metric dh induced by d, where d is the 
metric determined by a finite w-level mapping l. Then, in 
the standard way, T p induces a map Fp : F(Ip ) ~ F(Ip ) 

defined by Fp(A) = {Tp(I); I E A} which is a contraction 
with contractivity factor c if Tp is such on Ip . Thus, F(Ip ) 

is the space of fractals over Ip and Fp is induced from the 
iterated function system {Ip ;Tpl'. · · ,Tpn }. 

These three comments are suggestive of interesting connec
tions between computational logic on the one hand and dynam
ical systems on the other. In fact, it is ongoing work of the au
thors to investigate certain notions of dynamical systems, such 
as attractors, from the point of view of computational logic, 
and vice-versa. In particular, these ideas are being developed 
with a view to relating this work to that of Edalat [6] in the 
context of uncertain (probabilistic) reasoning. 

4. Semi-Strictly Level-Decreasing Logic Programs 

In this section, we take up the study of the class of programs 
defined by (3) of the Definition 2.2 or, in other words, of the 
class of locally stratified programs, P. This study will be con
ducted, of course, from our current point of view of attempting 
to answer Question 1.5, and our main results, as already men
tioned in the Introduction, concern a constructive approach to 
the perfect model semantics of [16]. 

We begin the details with an example showing that Condi
tion (3) of Definition 2.2 is not, by itself, a necessary one for 
convergence in Q of sequences of iterates. 

Example 4.1. Take the program P as follows: 

p(x) +- p(x), -,p(s(x)) 

p(o) +
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It is clear that P is never semi-strictly level-decreasing with 
respect to any level mapping l. However, the sequence of it
erates (Tp(0)) becomes constant, after the first iterate, with 
value {p(0) }. Hence, this sequence trivially converges in Q to 
the value {p(o)}, which is a fixed point of Tp. Note, in fact, 
that Tp is continuous in Q in this case. 

This example shows that (3), and therefore of course (2), 
in Definition 2.2 does not provide an entirely general answer 
to Question 1.5, not even when Tp is continuous in Q and not 
even for the case I = 0. As a matter of fact, Example 3.13 
shows that (3) does not provide a sufficient condition either 
for convergence in Q of sequences of iterates (not even when P 
is stratified, and Example 3.13 is stratified) since the iterates 
of 0 in this case oscillate between the sets {q(0), p(s(0) )} and 
{q(0), r(s(0)) } . Nevertheless, when levels are carefully con
trolled as in Construction 4.4 below, (3) does provide a suf
ficient condition for convergence and this fact is used at an 
important point in the proof of Lemma 4.5 below. 

Our approach is closer in spirit to [1] than it is to [16]. In 
fact, we will make comparisons on several occasions between 
our results and those of [1]. It therefore will be convenient 
for the reader if we recall next the notion of stratification as 
defined in [1] and to record the basic facts and notation used 
in the construction of the model Mp discussed there. 

Let P denote a normal logic program. Then P is said to be 
stratified if there is a partition P = PI U ... U Pm of P such 
that the following two conditions hold for i = 1, ... ,m: 
(1) If a predicate symbol occurs positively in a clause in Pi, 
then its definition is contained within Uj~iPj. 

(2) If a predicate symbol occurs negatively in a clause in Pi, 
then its definition is contained within Uj<iPj. 

We adopt the convention that the definition of a predicate 
symbol p occurring in P is contained in PI whenever its def
inition is empty. Thus, each predicate symbol occurring in P 
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is defined but it may have empty definition; in particular, Pl 

itself may be empty. 
In order to treat non-monotonic operators, the powers of an 

operator T mapping a complete lattice into itself were defined 
as follows: 
TjO(I) = I 
Tj (n + 1)(1) = ·T(Tjn(1)) U Tjn(1) 
Tjw(1) = U~=oTjn(1). 

Of course, T j n(1) is not equal to Tn(1) unless T is mono
tonic. Indeed, the sequence (T j n(I)) is always monotonic 
increasing. However, this concept can be used to construct 
a minimal supported model Mp for any stratified program P 
as follows: put Mo = 0, Ml = TP1 j w(Mo),. · · ,Mm = TPm j 
w(Mm- 1). Finally, let Mp = Mm. 

4.1. The Case of Arbitrary Level Mappings 

We commence with the following simple proposition which in 
fact is [16, Proposition 5]. However, we include a proof since 
we need certain details later. 

Proposition 4.2. Every stratified logic program is semi
strictly level-decreasing. 

Proof. Let P = PI U ... U Pm be a stratification of P. We 
define an w-Ievel mapping 1by l(A) = i if A is a ground atom 
whose predicate symbol p, say, in L is defined in ~+l. It is 
clear that P is semi-strictly level-decreasing with respect to l. 
o 

Notice that the level mapping defined in the proof just given 
is not, in general, finite and we will take up this issue later on. 

Definition 4.3. Let P denote a normal logic program and let 
l : B p ~ I denote a level mapping, where I > 1. For each n 
satisfying 0 < n < I' let p[n] denote the set of all clauses in 
ground(P) in which only atoms A with l(A) < n occur. We de
fine T[n] : P(£n) ~ P(£n) by 1[n](I) = Tp[n] (I). The mapping 
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T[n] is called the immediate consequence operator restricted at 
level n. 

Thus, the idea formalized by this definition is to "cut-off" 
at level n. 

Construction 4.4. Let P be a semi-strictly level-decreasing 
normal logic program and let 1 : Bp --+ 'Y denote a level map
ping, where 'Y > 1. We construct the transfinite sequence 
(In)nE, inductively as follows. For each mEN, we put I[l,m] = 
1[7](0) and set II = U~=oI[l,m]. If n E 'Y, where n > 1, is a suc
cessor ordinal, then for each mEN we put I[n,m] = ~(In-l) 

and set In = U~=oI[n,m]. If n E 'Y is a limit ordinal, we put 
In = Um<nIm. Finally, we put I[p] = Un<,In. 

The main technical lemma we need is as follows. For its 
proof, which is by transfinite induction, it will be convenient 
to put I[n,m] = In for all mEN whenever n is a limit ordinal; 
thus statement (b) in the lemma makes sense for all ordinals 
n. 

Lemma 4.5. Let P be a normal logic program which is semi
strictly level-decreasing with respect to the level mapping 1 
B p --+ 'Y, where 'Y > 1. Then the following statements hold. 
(a) The sequence (In)nE, is monotonic increasing in n. 
(b) For every n E 'Y, where n 2:: 1, the sequence (I[n,m]) is 
monotonic increasing in m. 
(c) For every n E 'Y, where n 2:: 1, In is a fixed point of1[n]. 
(d) If l(B) < nand B tJ. In' where B E Bp, then for every 
m E 'Y with n < m we have B ~ 1m and hence B ~ I[p]e In 
particular, if l(B) < nand B ¢ I[n+l,m] for some mEN, then 
B ¢ In and hence B ¢ I[p]. 

Proof. It is immediate from the construction that the sequence 
(In)nE, is monotonic increasing in n, and this establishes (a). 

The main work is in establishing (b) and (c), which we treat 
simultaneously. To do this, we need to note the technical fact 
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that, for each n E " we can partition P[n+l] as p[n] U P(n), 
where P(n) denotes the subset of ground(P) consisting of those 
clauses whose head has level n. Thus, T[n+l](I) = T[n](I) U 
TP(n)(I) for any I E I p ; note that if A E TP(n)(I), then l(A) = 
n. 

Let P(n) be the proposition, depending on the ordinal n, 
that (I[n,m]) is monotonic increasing in m and that In is a fixed 
point of T[n]. Suppose that P(n) holds for all n < a, where 
0: E , is some ordinal. We must show that P(0:) holds. Indeed,
 
P(I) holds since P[l] is a definite program and the construction
 
of 11 is simply the classical construction of the least fixed point
 
of 111], and therefore we may assume that 0: > 2. It will be
 
convenient to break up the details of the case when Q is a
 
successor ordinal into a sequence of steps.
 
Case 1. a = k + 1 is a successor ordinal. Thus, P(k) holds.
 
Step 1. We establish the recursion equations:
 

I[k+l,m+l] = I k U Tp(k) (I[k+l,m]) 

and the first is immediate. Putting m = 0, we have 
I[k+l,l] = 11k+l] (Ik) = 11k] (Ik) UTp(k) (Ik) = I k UTp(k) (Ik) = I k U 

Tp(k)(I[k+l,O]), using the fact that I k is a fixed point ofT[k]. Now 
suppose that the second of these equations holds for some m > 
O. Then I[k+l,(m+l)+l] = T[k+l] (I[k+l,m+l]) = 11k] (I[k+l,m+l]) U 

T p (k)(I[k+l,m+l]) = T[k](Ik U Tp(k) (I[k+l,m])) U Tp(k) (I[k+l,m+l]) , 

and it suffices to show that T[k](Ik U Tp(k) (I[k+l,m])) = I k. So 
suppose that A E T[k](Ik U Tp(k)(I[k+l,m])). Thus, there is 
a clause in P[k] of the form A +- AI,· .. , Ak1 , ,Bl , · · · , ,BlI 

where AI, .. · ,Ak1 E I k U Tp(k) (I[k+l,m]) and Bl ,. · · ,BlI fj. I k U 
Tp(k) (I[k+l,m]). But then level considerations and the hypothe
sis concerning P imply that AI, ... , Ak1 E I k and Bl , .. . , Bh ~ 

Ik . Therefore, A E T[k] (Ik ) = Ik and we have the inclusion 
T[k](Ik U Tp(k) (I[k+l,m])) ~ I k. The reverse inclusion is demon
strated in like fashion, showing that the second of the recursion 
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equations holds with m replaced by m + 1 and hence, by in

duction on m, that it holds for all m.
 
Step 2. We have the inclusions Tp(k) (Ik )
 

~ Tp(k)(Ik U Tp(k) (Ik )) ~ Tp(k)(Ik U Tp(k)(Ik U Tp(k) (Ik ))) ....
 

These inclusions are established by methods similar to those
 
we have just employed and we omit the details.
 

It is now clear from this fact and the recursion equations in 
Step 1 that (I[k+l,m]), or (l[o,m]), is monotonic increasing in m. 
Since monotonic increasing sequences converge to their union 
in Q, see [19, Proposition 9], and I[k+l,m] is an iterate of I k , 

it now follows from Observation 1.3 that I k+1 is a model for 
P[k+l]. 

Step 3. If B E Bp and l(B) < k, then B E Ik+l iff B Elk. 

Indeed, if B Elk, then it is clear from the recursion equations 
of Step 1 that B E Ik+1• On the other hand, if B fJ. 1k , 

then it is equally clear from the recursion equations and level 
considerations that, for every mEN, B f/. I[k+l,m] and hence 
that B f/. Ik+1 , as required. 
Step 4. I k+1 is a supported model for P[k+l]. 

To see this, suppose that A E 1k+1 = U~=ol[k+l,m]. Then there 
is mo E N such that A E I[k+1,m+11 = 17k.tij (h) for all m ~ mo· 
Thus, A E 1[k+l](7[~l](Ik)) = 1[k+l] (I[k+l,mo])· Hence, there is 
a clause A f- AI, ... ,Ak1 , .BI , ... ,.BlI in P[k+l] such that 
each Ai E I[k+l,mo] and no B j E I[k+l,mo]. But l(Bj ) < k 
for each j since P is semi-strictly level-decreasing. Since B j f/. 
I[k+l,mo] ' we now see from the recursion equations that B j f/. Ik . 

From the result in Step 3 we now deduce that, for each j, 
B j ~ I k+1• Since it is obvious that each Ai belongs to Ik+1 , 

we obtain that A E T[k+l] (Ik+1). Thus, Ik+l ~ 1[k+l] (Ik+1) and 
therefore I k+1 is a supported model for P[k+l], or a fixed point 
of T[k+l] , as required. 

Thus, P(a:) holds when a: is a successor ordinal. 
Case 2. a: is a limit ordinal. 
In this case, it is trivial that (I[o,m]) is monotonic increas
ing in m. Thus, we have only to show that 10. is a fixed 



457 TOPOLOGY AND ITERATES IN ... 

point of 1[0] Le. a supported model for p[o], and we show first 
that 10 is a model for Pro]. Let A E T[a] (10 ). Then there 
is a clause A +- AI, ... , Ak1 , -,BI, ... ,-,Bll in p[a] such that 
AI, · · . ,Akl E Ia and B I, · · . ,Bh tf. Ia . Indeed, by the defini
tion of p[a] and the hypothesis concerning P, there is no < a 
such that the clause A +- AI, · · · , Akl , -,BI , · · · ,-,Blt belongs 
to p[no]. Since the sequence (In)nE r is monotone increasing 
and la = Un<aln' there is nl < a such that AI, .. · ,Ak1 E Inl 
and B I , .. · ,BlI tf. In!. Choosing n2 = max{no,nl}, we have 
A +- AI, . .. , Ak1 , -,BI, . .. , -,BlI E P[n2] and also AI,···, Ak1 E 
In2 and B I , ... , Bh t/. In2 · Therefore, on using the induc
tion hypothesis we have A E T[n2](In2 ) = In2 ~ la. Hence, 
1[a] (la) ~ la' as required. 

To see that la is supported, let A E la. By monotonicity of 
(In)nE r again and the identity la = Un<aIn, there is a successor 
ordinal no ~ 1 such that A E In for all n such that no ~ n < 
a. In particular, we have A E Ino = U:=oI[no,m]. Therefore, 
there is ml E N such that A E l[no,ml+l] = 1[no](T{:;](lno-I)). 
Consequently, there is a clause A +- AI, · · · , Akl , -,BI , . · . , -,Bi} 
in p[no] such that AI, · · · ,Akl E 1[~~] (lno-I) = l[no,ml] ~ Ina ~ 
Ia and BI, ... , Bkl t/. l[no,ml]· But l(Bj ) < no - 1 for each 
j and so no Bj belongs to Ino- I by Step 3 of the previous 
case. Therefore, by this step, no Bj belongs to Ina and by 
iterating this we see that, for every mEN, no Bj belongs 
to Ino+m . Therefore, no Bj belongs to la. Hence, we have 
A E T[no](1oJ ~ T[0](1oJ or in other words that 10 ~ 7[0](10), 
as required. 

It now follows that P(n) holds for all ordinals n, and this 
completes the proof of (b) and (c). In particular, we see that 
the recursion equations obtained in Step 1 hold for all ordinals 
k, and we record this fact in the corollary below. Indeed, all 
that is needed to establish these equations is the fact that each 
I k is a fixed point of 1[k], and to note that the proof just given 
shows also that I[p] is a fixed point of Tp. In turn, (d) of the 
lemma now follows from this observation by iterating Step 3. 
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The proof of the lemma is therefore complete. o 

It can be seen here, and it will be seen again later, that the 
importance of (d) is the control it gives over negation in the 
manner illustrated in the proof just given that I k+1 is a sup
ported model for P[k+l]. It is also worth noting that the con
struction produces a monotonic increasing sequence by means 
of a non-monotonic operator, and that Lemma 4.5 plays a role 
here similar to that played by [1, Lemma 10] in [1]. 

Corollary 4.6. Suppose the hypotheses of Lemma 4.5 all hold. 
Then: 
(1) For all ordinals n and all mEN we have the recursion 
equations 

I[n+l,O] = In 

I[n+l,m+l] = In U TP(n)(I[n+l,m]). 

(2) If P is in fact strictly level-decreasing, then for every ordi
nal n ~ 1 we have I[n+l,m] = In UTP(n)(In) for all mEN, and 
therefore the iterates stabilize after one step. 

Proof That (1) holds has already been noted in the proof 
of Lemma 4.5. For (2), it suffices to prove that TP(n)(In) = 
TP(n) (In UTP(n)(In)). So suppose therefore that A E TP(n) (In U 
TP(n) (In)). Then there is a clause A +- AI, · · · ,Akl' -,BI , .. · , 
-,Bh in P(n) such that AI, · . · ,Ak1 E InUTP(n)(In) and BI , · . · , 
Bk1 ~ In U TP(n)(In ). From these statements and by level 
considerations, we have AI, · · · ,Ak1 E In and B 1,.··, Bkl tt 
In. Therefore, A E TP(n)(In) so that TP(n)(In U TP(n) (In)) ~ 

TP(n) (In). The reverse inclusion is established similarly to com
plete the proof. 0 

Statement (2) of this corollary makes the calculation of iter
ates very easy to perform in the case of strictly level-decreasing 
programs, and an illustration of this is to be found in Exam
ple 4.13. 
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Theorem 4.7. Suppose that P is a normal logic program which 
is semi-strictly level-decreasing with respect to the level map
ping 1 : B p ~ /. Then I[p] is a minimal supported model for P. 

Proof. That I[p] is a supported model for P follows from the 
proof of Lemma 4.5, and so it remains to show that I[p] is 
minimal. To do this, we establish by transfinite induction the 
following proposition: "if J ~ I[p] and Tp(J) ~ J, then In ~ J 
for all n E "I, where n 2:: 1", and this clearly suffices. Indeed, 
T[I](J) ~ Tp(J) ~ J and therefore J is a model for P[I]. But, 
as already noted in proving Lemma 4.5, 11 is the least model 
for P[I] by construction, since P[I] is definite. Therefore, 11 ~ J 
and the proposition holds with n = 1. 

Now assume that the proposition holds for all ordinals n < a 
for some ordinal a E "I, where a > 1; we show that it holds 
with n = a. 
Case 1. Q = k + 1 is a successor ordinal, where k > o. 
We have 1k ~ J. We show by induction on m that l[k+l,m] ~ J 
for all m. Indeed, with m = 0 we have l[k+l,O] = 1k ~ J. 
Suppose, therefore, that l[k+l,mo] ~ J for some mo > o. Let 
A E l[k+l,mo+l] = T[k+l] (1[~I] (Ik )). Then there is a clause A ~ 

AI, · · · ,Ak1 , -,BI , · • · "Bit in P[k+l] such that AI, ... , Ak1 E 

1[~l](lk) = l[k+l,mo] and BI , .. ·, Bh tf. l[k+l,mo]· But l(Bj ) < k 
for each j. Applying Lemma 4.5 (d) we see that no B j belongs 
to I[p] and consequently no B j belongs to J because J ~ l[p]. 

Since I[k+I,mo] ~ J by assumption, we have AI, ... , Ak1 E J. 
Therefore, A E T[k+l](J) ~ Tp(J) ~ J, and from this we 
obtain that I[k+l,mo+ 1] ~ J as required to complete the proof 
in this case. 
Case 2. a is a limit ordinal. 
In this case, 10: = Un<0:1n and In ~ J for all n < Q by hypoth
esis. Therefore, 10: ~ J as required. 

Thus, the result follows by transfinite induction. 0 
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The following definition is due to Przymusinski and is to be 
found in [16]. 

Definition 4.8. Suppose that P is a locally stratified normal 
logic program, and let l denote the associated level mapping. 
Given two distinct models M and N for P, we say that N is 
preferable to M if, for every ground atom A in N \ M, there 
is a ground atom B in M \ N such that l(A) > l(B). Finally, 
we say that a model M for P is perfect if there are no models 
for P preferable to M. 

Notice that the requirement l(A) > l(B) is dual to the re
quirement A < B relative to the priority relation < defined in 
[16]. 

Theorem 4.9. Suppose that P is a normal logic program which 
is semi-strictly level-decreasing with respect to a level mapping 
l : B p ~ I' where I is a countable ordinal. Then I[p] is a 
perfect model for P and indeed is the only perfect model for P. 

Proof. Suppose that there is a model N for P which is prefer
able to I[p] (and therefore distinct from I[p]); we will derive a 
contradiction. 

First note that N \ I[p] must be non-empty, otherwise we 
have N ~ I[p]. But this inclusion forces equality of Nand I[p] 

since I[p] is a minimal model for P, and therefore Nand I[p] 

are not distinct. This means that there is a ground atom A 
in N \ I[p], which can be chosen so that l(A) has minimum 
value; let B be a ground atom in I[p] \ N corresponding to 
A in accordance with the definition above, and which satisfies 
l(A) > l(B). 

Next we note that 1[l](N) ~ Tp(N) ~ N, since N is a 
model for P. Hence, N is a model for P[l], which implies that 
II ~ N since II is the least model for the definite program 
P[I]. Therefore, B can be chosen so that B E Ina \ N, with 
minimal no > 1. Now no cannot be a limit ordinal, otherwise 
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we would have I no = Um<noIm, from which we would conclude 
that B E 1m \ N for some m < no contrary to the choice of no. 
Thus, no must be a successor ordinal and, therefore, B can be 
chosen so that B E I[no,mo] \ N, where mo is such that I[no,ml] \ 

N = 0 whenever ml < mo; indeed, since II ~ N, we must have 
no > 1 and mo ~ 1 also. Consequently, B E T[no] (I[no,mo-l])\N 

showing that there is a clause B +- C1 , · . · , Ckl , aD1 , . · · , -,Dh 
in p[no] with the property that each Ci E I[no,mo- 1] and no 
Dj E I[no,mo-l]. Since l(Dj ) < no - 1 for each j, we see that 
none of the D j belong to I[p] by Lemma 4.5 (d). But all the C i , 

if there are any, must belong to N by the choice of the numbers 
no and mo. Moreover, there must be at least one Dj and indeed 
at least one belonging to N. For if there were no D j or we had 
eachDj ~ N, then we would have B E Tpno(N) ~ Tp(N) ~ N, 
using again the fact that N is a model for P. But this leads to 
the conclusion that BEN, which is contrary to B E I[p] \ N. 
Thus, there is a D = D j E N \ I[p] , for some j, satisfying 
l(D) < l(B) < l(A). Since A was chosen in N \ I[p] to have 
smallest level, we have a contradiction. 

This contradiction shows that I[p] must be a perfect model 
for P as required. The last statement in the theorem concern
ing uniqueness of I[p] now follows from [16, Theorem 4], and 
therefore the proof is complete. 0 

Since it is shown in [16] that perfect models are independent 
of the local stratification, we also have the following result. 

Corollary 4.10. If P is a normal logic program which is semi
strictly level-decreasing with respect to two level mappings II 
and l2' then the corresponding models I[Pl] and I[P2] are equal. 

It also follows from [16, Theorem 4] and Theorem 4.9 above 
that I[p] coincides with the model M p of [1] when P is strati
fied. However, for the sake of completeness we next present a 
proof of this fact using the methods established thus far. To 
do this, it will be convenient to introduce the concept TlIn(I) 
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for a mapping T : Ip ~ Ip and I E Ip. In fact, T 1t n(I) is 
defined inductively as follows: 
T1tO(I) = I 
T1t (n + 1) (I) = T(T1tn(I)) U I 
T1tw(I) = U~oT1tn(I). 

Theorem 4.11. Let P be a stratified normal logic program 
with level mapping defined as in the proof of Proposition 4.2. 
Then I[p] = Mp. 

Proof. As usual, we take the stratification to be P = PI U 
... U Pm and we will show by induction that Ik = Mk for 
k = 1, ... , m and that Ik = Mm for k > m. From this we 
clearly have I[p] = Mm = Mp as required. 

With the definition of the level mapping we are currently us
ing and with the conventions we have made regarding the strat
ification, we note first that the equalities P[k] = ground(P1 U 
P2 U ... U Pk ) and P(k - 1) = ground(Pk ) both hold for k = 
1, ... , m, where P(k) is as defined in the proof of Lemma 4.5. 

Now P[l] = ground(P1) is definite, even if empty, and so 
it is immediate that Tpl 1t i(Mo) = TP1 i i(Mo) for all i 
and that II = MI. So suppose next that Tpk+1 1t i(Mk ) = 
TPk+1 Ti(Mk ) for all i and that Ik +1 = M k +1 for some k > O. 
Then Tpk+2 11 O(Mk+1 ) = Mk+1 = Tpk+2 TO(Mk+l) and also 
I[k+2,o] = Ik+1 = Mk+1 = Tpk+2i O(Mk+l). So now suppose that 
Tpk+211 m (Mk+l) = TPk+2Tm(Mk+1) and that I[k+2,m] = Tpk+2T 
m(Mk+1) for some m > o. Then Tpk+2 1t (m + 1)(Mk+1) = 
Tpk+2(Tpk+211m(Mk+l)) U Mk+l and Tpk+2T(m + 1)(Mk+1 ) = 
Tpk+2(Tpk+2 jm(Mk+1)) U TPk+2 jm(Mk+1), and it is clear that 
Tpk+21t (m + 1)(Mk+1) ~ Tpk+2 T(m + 1)(Mk+1 ). For the re
verse inclusion, we note that under our present hypotheses we 
have Tpk+2i (m+ 1) (Mk+1) = Tpk+2(Tpk+211m(Mk+l)) UTpk+21t 
m(Mk+1) and so it suffices to show that Tpk+2 1t m(Mk+1) ~ 

TPk+2(Tpk+211m(Mk+l) )UMk+1 or in other words that I[k+2,m] ~ 

Tp(k+l) (I[k+2,m])UIk+l. Since this latter set is equal to I[k+2,m+l] 
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by the recursion equations of Corollary 4.6, the inclusion we 
want follows from the monotonicity of the sets I[k+2,m] relative 
to m. We conclude, therefore, that Tpk+2 1f (m + l)(Mk+l ) = 
TPk +2 i (m + l)(Mk+I ). 

Finally, I[k+2,m+l] = I k+l U Tp(k+l)(I[k+2,m]) = Mk+l U 
Tpk+2(Tpk+2 i m(Mk+I )) = M k+l U Tpk+2(Tpk+21tm(Mk+I)) = 
T pk+211 (m + 1) (Mk+l ) = T pk+2 i (m + 1)(Mk+1), by the conclu
sions of the previous paragraph. Therefore, I[k+2,m+l] = T pk+2i 
(m+ 1) (Mk+l ). From this we obtain, by induction, the equality 
I[k+2,m] = Tpk+2 j m(Mk+1) for all m and with it the equality 
Ik+2 = Mk +2 as required. 0 

The details of the induction proof just given also establish 
the following proposition. 

Proposition 4.12. Let P = PIU.. .UPm be a stratified normal 
logic program. Then we have Tpk+l1fi(Mk) = Tpk+l ji(Mk) for 
all i and k = 0, ... , m - 1. 

Example 4.13. (1) Consider again the program in Example 
3.13. We have already noted that the sequence of iterates 
(T'P(0)) does not converge in Q and that this program is strat
ified (with strata PI = {q(o) +-} and P2 = {p(s(o)) +- -'q(o), 
p(x) +- r (x), r (x) +- p(x) } ). A straightforward computation 
using the definitions made earlier in connection with strati
fied programs shows that M I = TP1 i w(0) = {q(o)} and that 
M p = M 2 = TP2 i w(M1 ) = {q(o)}. On the other hand, the 
level mapping l given in the proof of Proposition 4.2 is, in this 
case, defined by l(q(t)) = 0 and l(p(t)) = l(r(t)) = 1 for all 
ground terms t. Thus, it turns out that I[O,m] = {q(o)} for all 
m > 0 so that 10 = {q(o)}. Further straightforward computa
tions show that [[I,m] also equals {q(o)} for all m and hence that 
I[p] = II = {q(o)} = M p in accordance with Theorem 4.11. 
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(2) Consider the following program P: 

q(o) ~ 

q(S2(x)) ~ q(x) 

p(x) ~ -,q(x) 

p(S2(x)) ~ -'p(x) 

p(x) ~ p(x) 

This program is not stratified but it is semi-strictly level
decreasing with respect to the level mapping l in which 
l(q(sn(o))) = 0 and l(p(sn(o))) = n + 1 for all n. In fact, 
10 is the set {q(s2n(o)); n EN}. Part 2 of Corollary 4.6 
applies to the sub-program of P consisting of the. set "defi
nition of p remove the clause p(x)' ~ p(x)". This observa
tion simplifies the computation of 1[p] which in fact is the set 
10 u {p(sn(o)); n E N, n not a multiple of 4}. 

Note 4.14. For an arbitrary normal logic program P (whether 
stratified or not), let MP denote Tp i w(0), as defined earlier. 
By Lemma 4 of [1], MP is a model for P. Thus: 
(1) Apply this to the "even numbers" program, Example 3.12, 
which is not stratified. Then M P is the set Bp , which is a 
model for P but is not a fixed point of Tp. Here of course 
I[p] is the set {p(s2n(o)); n E N} of even numbers, and clearly 
l[p] c M P . 

(2) For the Example 4.13 (2), which again is not stratified, M P 

is the set 10 U {p(sn(o)); n EN}. This is a fixed point of Tp, 
but is not minimal since I[p] C MP. Now partition Pinto 
"strata" P = PI U P2, where PI = {q(o) ~,q(s2(x)) ~ q(x)} 
and P2 = {p(x) ~ -,q(x),p(s2(x)) ~ -,p(x),p(x) ~ p(x)}, 
and let M2 = Tp2 i w(M1), where MI = TP1 i w(0), as defined 
earlier. Then M2 is the set 10 U {p(sn(o)); n E N, n # O} which 
is another fixed point of Tp, and we have I[p] C M2 C MP. 
(3) Taking P as in Example 4.13 (2) but removing the clause 
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p(x) -E- p(x), we obtain that M P is the set 10 U {p(sn(o)); n E 
N} and that M2 is the set 10 u {p(sn(o)); n E N, n # O}. Both 
of these sets are models for P, but neither is a fixed point of 
Tp nor a minimal model. Indeed, the only fixed point of Tp is 
the set IoU{p(sn(o)); n E N, n not a multiple of 4}. Of course, 
the uniqueness of the fixed point just noted is a consequence of 
the fact that P is in fact strictly level-decreasing with respect 
to an obvious level mapping. 

4.2. The Case of Finite Level Mappings 

As can be seen from Example 4.13 (2), the sets In defined in 
Construction 4.4 need not be finite, and this is true whether or 
not P is stratified. The question therefore arises as to whether 
or not it is possible to find a sequence (In ) of finite sets I n , 

possibly iterates of some I, which converges in Q to I[PJ. In 
particular, this question was prompted by the Prolog program 
written by Hitzler in [9] in order to calculate iterates and se
quences of approximations, and which provided partial motiva
tion for this study. To finish, we briefly record the facts which 
show that the answer to these questions is in the affirmative 
when P is semi-strictly level-decreasing with respect to a finite 
level mapping l and is also stratified by P = PI U ... U Pm' say. 
We make the following construction in which, in order to ease 
notation, we write 1i[n1 in place of (TPi)[n] for all i and n. 

Construction 4.15. We construct the sequence (In ) in 1p as 
follows: (i) Pi is definite and £n is finite for every n. Hence, for 
each n, the sequence (Tin] 1t k(0))kEN is monotonic increasing 
with k and is, therefore, eventually constant with value In,l, 
say. (ii) By Lemma 10 of [1], we see that for each n the sequence 
(1i~]l 11 k(Jn,i))kEN is monotonic increasing with k, where i = 
1, ... ,m - 1. Hence, it too is eventually constant with value 
In,i+l, say, on using the finiteness of the £n again. Finally, we 
put In = In,m. 

The proof of the following theorem may be found in [10]. 
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Theorem 4.16. Let P be a normal logic program which is 
stratified and is semi-strictly level-decreasing with respect to 
a finite level mapping l. Then the sequence (In)nEN as defined 
in Construction 4.15 converges in Q to Mp . 

Remark 4.17. We close by comparing the complexities of the 
different approaches discussed in the present paper, at least for 
w-Ievel mappings. 
(i) For strictly level-decreasing programs, it suffices to compute 
the sequence (Tp(0)) to obtain the unique supported model for 
the program, and therefore only a single limit is involved. 
(ii) Construction 4.15 for programs which are stratified and 
semi-strictly level-decreasing with respect to a finite level map
ping requires one to compute the single sequence (In). More
over, each member of this sequence is itself obtained by a finite 
computation. Again, therefore, only a single limit is required 
in this case. 
(iii) The approach of Apt, Blair and Walker [1] or the use of 
Construction 4.4 in the case of stratified programs requires the 
computation of the limits of finitely many sequences (TPk+1 i 
n(Mk )). 

(iv) Using Construction 4.4 for semi-strictly level-decreasing 
programs involves the computation of the limit of the sequence 
(In), where each In is itself obtained by constructing the se
quence (I[n,m])m and its limit. So, in this case, at most count
ably many limits have to be computed. If the program is semi
strictly level-decreasing with respect to a finite level mapping, 
the sequence (I[n,m])m stabilizes after finitely many steps, and 
therefore only a single limit needs to be computed. 
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