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ON A CLASS OF SPECIAL NAMIOKA SPACES 

A. Sostak and A. Szymanski 

Abstract 

We show that any Baire strict p-space is spe­
cial Namioka. For this purpose we introduce and 
study a class of spaces defined by means of a 
topological game. We also give some applica­
tions to semitopological groups 

1. Introduction 

The problem of determining the points of joint continuity of a 
separately continuous functions dates back to the second half 
of the 19th century (see Piotrowski's survey paper [P] for a his­
toric background). A real breakthrough in this area has been 
done by Isaak Namioka who proved the following remarkable 
theorem in 1974 (see [N, Theorem 1.2]): 

If f : X x Y ----+ M is a separately continuous function 
on the product of a compact space Y and a strongly countably 
complete space X into a metric space M, then there exists a 
dense G8 subset A of X such that f is jointly continuous at 
each point of Ax Y. 

This result, beyond its many applications in functional anal­
ysis, the theory of topological groups and others, spurred ex­
tensive further research (see [P] for more details). It has been 
also generalized in many ways. Our paper contains a game­
theoretic description of a class of topologicaJ spaces that is 
substantially wider than, for example, the class of strongly 
countably complete spaces or the class of metric Baire spaces, 
yet the conclusion of the Namioka theorem holds for spaces 
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from this class (see Theorem 6). We apply our results to the 
theory of semitopological groups. 

We thank the referee for his important suggestions. 
All spaces considered here are topological regular spaces. If 

X and Yare spaces, then X x Y denotes their Cartesian prod­
uct, and 1rx, 1ry denote the projections onto X, Y, respectively. 

Let F be a subset of X x Y, let x E X, and let y E Y. Then 
Fx = {y E Y : (x, y) E F}, FY = {x EX: (x, y) E F}. 

Let I : X x'Y ~ Z be a function from the product X x Y 
into a space Z. If x E X and y E Y, then 

Ix : Y ~ Z is given by Ix(Y) = f(x, y), and 
fY : X ~ Z is given by fY(x) = j(x, y). 
We say that j is separately continuous if the functions fx, 

fY are continuous for each x E X and y E Y; we say that f 
is jointly continuous (at a point) if f is continuous (at that 
point). 

Let f : X ~ M be a function into the metric space M 
with a metric d, let p E X, and let A be a subset of M. Then 
diam(A) = sup{d(a,b) : a,b E A}, w(j;p) = inf{diam(j(U)) : 
U is an open neighborhood of pl. It is well known that j is 
continuous at a point p if and only if w(j;p) = o. 

If S is a family of subsets of a set X and p is a point in X, 
then st(p, S) = U{A : A E Sand pEA}, which is called the 
star of S at the point p. 

2. A Class of Spaces Determined by a Topological Game 

Let us consider the following game played by two players, say 
Q and (3, on a topological space X. 

Player (3 starts by choosing only one non-empty open subset 
Uo of X. Suppose that one of the sets chosen by player (3 in his 
n - th move was Un. Then player Q chooses for each point x of 
Un an open neighborhood Vn(x) of x contained in Un. Player 
(3 responds by selecting a non-empty open subset Un+1(x) in 
each of the set Vn(x); note that, in general, the set Un+1(x) 
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need not be a neighborhood of x. The above rule of play is 
repeated in each of the sets player f3 has chosen on its n - th 
move. 

Player a wins if there exists a sequence {xn } such that: 
(i) Xl E Uo and X n+l E Un(xn ) for each n = 1,2, ... , 
(ii) there exists an accumulation point of the sequence {xn }. 

According to the rules of the game, we say that player a has 
a winning strategy if there exists a function K defined on the 
set u{{U} xU: U is a non-empty open subsets of the space 
X} such that: 

(a) for each X E U, K(U, x) is an open neighborhood of x 
contained in U; 

(b) player Q wins the game if his responses are given by the 
function K. 

The game itself and the rules under which the player Q wins 
the game may be compared with and related to a game con­
sidered by J. Christensen [C]. In his game, there are again two 
players a and f3 and f3 starts by choosing a non-empty open set 
UI of X. Then player 0: chooses an open subset Vi of U1 and 
a point Xl belonging to Vi. Next f3 chooses a non-empty open 
subset U2 of Vi, and so on. Player Q wins in the Christensen 
game if any subsequence of the sequence {xn : n = 1, 2, .. } ac­
cumulates to at least one point of the set n{Vn : n = 1,2, ...}. 
Otherwise, player f3 wins. 

This game resembles a singular case of our game however 
it is more restrictive on the winning conditions for the player 
Q. Spaces in which player Q has a winning strategy in the 
Christensen game are called (J - well a - favorable and they 
constitute a generalization of Cech-complete spaces. Spaces in 
which player a has a winning strategy in our game will be called 
fuzzy a - favorable. From the previous discussion it follows 
that (J - well a - favorable spaces are fuzzy a - favorable. 

We will exhibit a class of fuzzy a - favorable spaces (cf. 
Theorem 4, below). 
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Definition 1. A space X is said to be a strict p-space if there 
exists a sequence {Qn : n = 1,2, ...} of open covers of X such 
that Qn+l refines Qn for each n = 1,2, .. , and for x E X, the 
set Px = n{st(x, Qn) : n = 1,2, ...} is compact and {st(x, Qn) : 
n = 1,2, ... } is a base of neighborhoods of Px , i.e., if U is an 
open neighborhood of the set Px , then st(x, Qn) ~ U for some 
n. 

Lemma 1. Let X be a strict p - space. If U is an open subset 
of X, then there exists an open base of U of cardinality not 
greater than that of u. 

Proof Let x be a non-isolated point of U. There exists a com­
pact subset F of X such that x E F and F has a countable 
base of neighborhoods {G1, G2, .•• } .. If B is a family of open 
subsets of X such that {V n F : V E B} is a base of x in 
F, then the family {V n Gi : V E Band i = 1,2, ...} is a 
base of x in X. By compactness of F, X(x, F) ~ lUI. Hence 
X(x, X) = X(x, U) ~ lUI ·w = lUI. 0 

Lemma 2. If X is a fuzzy Q - favorable space, then X is 
Baire. 

Proof. Let E 1 , E2, ... be nowhere dense subsets of X. Suppose 
U is a non-empty open subset of X. Let player (3 start by 
choosing the set U. Player a plays using his winning strategy, 
of course, and suppose that Vn (x) is one of the determined 
choices of player Q on its n - th stage. Then we want player (3 
to select such a non-empty open subset Un+1(x) of Vn(x) that 
clUn+1 (x) ~ Vn(x) and Un+1 (x) n (E1U E2 U .... U En) = 0. If 
p is an accumulation point of any sequence {xn } guaranteeing 
player a wins, then p E U - (E1 U E2 U ....). 0 

Theorem 3. If X a Baire strict p - space, then X is fuzzy 
Q - favorable. 
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Proof Let {On : n == 1, 2, ...} be a sequence witnessing that 
X is strictly p - space. 

Suppose player (3 has chosen a non-empty open set Uo. There 
exists a non-empty open set VO of Uosuch that each non-empty 
open subset of VO has the same cardinality as the entire set VO. 
We require that a chooses, as one of its responses just the 
set VO , say it has been chosen for a point Xo E VO; the other 
choices by the player 0' are unessential. Also, we may assume 
that the set VO is infinite. If (3 chooses again a non-empty 
open subset U1(xo) of VO(xo) , then this set will have the same 
cardinal property as VO does, so, as the matter of fact, our 
game could start assuming that cardinal property for Uo, what 
we shall do for the sequel. 

By Lemma 2, there exists an open base B in Uo such that 
181 ~ IUol· If IUol == K, then let Uo = {xa : 0' < K} and let 
{Wa : a < K} be a transfinite sequence consisting only of the 
members of base B such that each member of B is listed K 

times in that sequence (this is possible because ~ . IBI = K). 
Now we are ready to describe a strategy for player Q. 

Suppose one of the sets chosen by player (3 on its n - th 
stage was Un. Let Un = {xae : ~ < K}. If ~ < K, and Vn (Xa7J ) 
has been defined for each TJ < ~, then Vn(xae ) = WI" where I 
is the least index among the indices of sets W,e satisfying the 
following conditions: 

(1) x ete E W,e ~ Un , 
(2) Wt3 is a subset of some member of Yn, 
(3) Wt3 is not among those sets chosen previously for points 

xet7J ' where'fJ < ~. 
Such a I exists; if W is a member of B that is contained in a 

member of the family gn and xete E W ~ Un' then this set ap­
pears K, times in the sequence {Wet: Q < K,} and therefore, the 
previous choices have not exhausted completely this element 
yet. Consequently, there exists a 'fJ < K such that conditions 
(1),	 (2) and (3) are satisfied simultaneously by WTJ. 

We shall show that this is a winning strategy for player 0'. 
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It follows from conditions (1), (2), (3) that the sets {Vn(Xae ) : 
~ < K}, chosen by player a in response to a move Un by player 
;3, form a base in Un. Indeed, if G is a non-empty open subset 
of Un and x E G, then there exists a member W of B that 
is contained in a member of Yn and such that x E W ~ G. 
Because there are K points in Wand the set W appears K 

times in the sequence {Wa : a < K}, by virtue of the property 
(3), this set must be chosen by a as one of the sets Vn(xae ). 
As a consequence, if player ;3 chose sets Un+1(xae ), ~ < K, in 
response to the choices Vn(xae ), ~ < K, by player a, then those 
sets form a 7r - base in Un. 

Let R 1 be a maximal family consisting of pairwise disjoint 
sets of the form U1(x). Then URI is a dense subset of Uo. 
Let us suppose that a family Rn has been already defined. If 
R E Rn and R = Un(x), then we set Rn+l(R) to be a max­
imal family consisting of pairwise disjoint sets chosen among 
sets of the form Un +1(z) which are responses of player ;3 on 
select,ions Vn(z), z E Un(x), by player a following its strat­
egy. Hence Rn+l (R) is a dense subset of the set R. We set 
Rn+l = U{Rn+1(R) : R E Rn and R = Un(x) for some x}. 

Nate the following properties of families Rn (that are im­
mediate consequences of their inductive definition): 

(a) the family Rn is a refinement of the family Yn, 
(b) Rn is a disjoint family, 
(c) Rn+l is a refinement of R n , 

(d) URn is a dense subset of Uo. 
Since X is Baire, by (d), there exists a point p from Uo 

belonging to each of the sets U~n, n = 1, 2, ... By (b), there 
exists exactly one member Rn in each Rn containing the point 
p. Thus each set Rn is of the form Un(xn). By (c), X n+l E 
Un+1(Xn+l) ~ Un(xn). Since the set Pp = n{st(p, Qn) : n = 
1, 2, ...} is compact and {st(x, Qn) : n = 1,2, ...} is a base of 
neighborhoods of Pp , the sequence {xn } must have an accumu­
lation point in the set Pp • In fact, the same conclusion holds 
for any subsequence {xnk } of the sequence {xn }. This means 
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that the player Q won the game while playing by its strategy. 
o 

Following J.S. Raymond [SR] , we say that a space X is 
(j - well (3 - un!avorable if player (3 cannot have a winning 
strategy in the Christensen game. 

Proposition 4. Any fuzzy Q- favorable space is (j-well (3­
un!avorable. 

Proof Suppose to the contrary that it is possible to have a 
Baire space X that is both strict p - space and (j - well (3 ­
! avorable. Let L be a winning strategy for player (3 in the 
Christensen's game and let K be a winning strategy for player 
Q playing our game. Now the two players a: and (3 are going 
to play our game in such a way that the moves of player a are 
done according to the strategy K, and the moves of player (3 
are done according to the strategy L provided that a set U(x) 
chosen by player Q is treated as the pair (U, x) in Christensen's 
game. A sequence {xn }, witnessing that Q won in our game, 
contradicts the fact that L is a winning strategy for player (3 
in the Christensen game. 0 

Following R. Hansell, J. Jayne, and M. Talagrand [HJT], a 
space X is said to be a Namioka space if for every compact 
space Y, for every metric space M, and for every separately 
continuous function f : X x Y ~ M there exists a dense 
G8 subset A of X such that f is continuous at each point of 
A x Y. X is said to be a special Namioka space if each perfect 
irreducible preimage of the space X is a Namioka space (let us 
recall that a function is perfect if it is continuous, closed and 
the preimage of each singleton is compact; it is irreducible if 
there does not exist a proper closed subset of the domain whose 
image is the entire range). Metric Baire spaces are special 
Namioka (see [SR]). 

Theorem 5. Any Baire strict p - space is special Namioka. 
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Proof A perfect preimage of a strict p - space is a strict p­
space (proof of this fact is straightforward and therefore omit­
ted here). An irreducible preimage of a Baire space is a Baire 
space (proof of this fact is also straightforward and therefore 
omitted here). In consequence, a perfect and irreducible preim­
age of a Baire strict p - space is a Baire strict p - space. Since 
(J - well f3 - unfavorable spaces are Namioka (cf. [SR]) and 
Baire strict p - spaces are (J - well f3 - un!avorable (cf. The­
orem 6), Baire strict p - spaces are special Namioka. 0 

Definition 2. A space X is said to be a Moore space if there 
exists a sequence {Qn : n = 1,2, ...} of open covers of X such 
that Qn+l refines Qn for each n = 1,2, .. , and for x E X, the 
family {st(x, Qn) : n = 1,2, ...} is a base of neighborhoods of 
the singleton x. 

It is obvious that any Moore space is a strict p - space but 
not vice versa. A good account on Moore spaces and strict p­
spaces can be found in [G]. 

It should be pointed out that strict p - spaces are referred 
to as p - spaces in Bouziad's papers (cf. [BI], [B3]). 

Theorem 6. Let X be a Baire strict p - space, let Y be a 
Namioka space, and let Z be a Baire Moore space. If j : X x 
y ~ Z is separately continuous, then for each x E X there 
exists a dense G8 subset Dx of Y such that the junction f is 
jointly continuous at each point (x, y), where y E Dx. 

Proof. Let {Qn} be a sequence witnessing that X is a strict p­
space and let {Qn} be a sequence witnessing that Z is a Moore 
space. We set 

w(f; Qn) = {(x, y) : there exists a W in Qn and there exists 
an open neighborhood N of (x, y) such that f(N) ~ W}. 

Each of the sets w(f; Qn) is open in X x Y. We shall show 
that each of these sets is dense in the subspace {x} x Y, for 
every x E X. For this purpose let us take a non-empty open set 



493 ON A CLASS OF SPECIAL NAMIOKA SPACES 

V in the space Y. We will construct an open neighborhood U 
of x and a non-empty open subset V' of V such that U x V' ~ 

w(f; Qn). 

Let y be an arbitrary point of V and let W be a member 
of the cover Qn containing the point f(x, y). Let W' be an 
open set such that f(x, y) E W' ~ clW' ~ W By continuity 
of the partial function fx , there exists an open subset Vi of V 
containing y and such that f ({x} x Vi) ~ W'. The set Ex = 
n{st(x, gn) : n = 1,2, ...} is compact and contains the point x. 
Since the space Y is Namioka, there exists a dense G8 subset D 
of Y such that the restriction of the function f to the subspace 
Ex x Y, f I Ex x Y, is continuous at each point of Ex x D. Let 
Yl E D nVi. Then f I Ex x Y is continuous at the point (x, Yl). 
Since f(x, Yl) E W', there exist an open neighborhood U1 of 
x and an open neighborhood 112 of Yl such that 112 ~ Vi and 
f((U1 n Ex) x 112) ~ W'. The family {st(x, On) : n = 1,2, ...} 
forms a countable base of neighborhoods of the set Ex in the 
space X. If we take arbitrary closed G8 subset of Ex, it will also 
have a countable base of neighborhoods in the space X. Let 
us select such a set, say H, which, in addition, contains x and 
is contained in U1. Let B be a countable base of neighborhoods 
of the set H in the space X. If B is a member of B, then 
FB = {y E 112 : f(B x {y}) ~ W'}. 

Clearly, the sets FB , B E B, cover the whole set 112. So one 
of them, say Fu, is dense in a non-empty open subset V' of 
112. In consequence, feU x V') ~ clW' ~ ~ which shows that 
U x V' ~ we!; Qn). 

For x ,E X, let D x consist of all those points y from Y such 
that(x, y) belongs to each set w(f; Qn). The sets Dx are dense 
G8 in the space Y Let us show that f is jointly continuous at 
each point (x, y), where y E D x . 

Let W be an arbitrary open set in Z containing a point 
f(x, y), Y E Dx · For each n there exist a W n E Qn and an open 
neighborhood Nn of the point (x, y) such that f(Nn ) ~ Wn . 

Since {Qn} is a development in the space Z, {Wn} is a local 
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base at the point f(x, y). Hence Wm ~ W for some m and 
therefore f(Nm ) ~ W. D 

Theorems of similar type as our Theorem 6 were also ob­
tained by A.Bouziad (cf.[B1; Proposition 3.6]) and by N.Martin 
and Z.Piotrowski (cf. [P]). The following example was suggested 
by the referee to show some limitations of our Theorem 8. The 
example itself is attributed to J .B.Brown. 

Example 1. Let X = EBxE[O,l] [0, 1] x {x} be the disjoint union 
of unit segments, Y = [0,1], and let f be any real functions 
on X x Y such that f is separately continuous on the square 
[0, 1] x {x} x [0, 1] and has a point of discontinuity in [0, 1] x 
{x} x {x}, for each x E [0,1]. Then f is separately continuous 
on the locally compact metric space X x Y but there is no a 
dense G8 subset A of Y such that X x A ~ C(/). D 

Corollary 7. (A.Bouziad [B2j). Let (G;+) be an algebraic 
group endowed with a topology which is Baire and Moore and 
such that the group operation + : G x G ~ G is separately 
continuous. Then the group operation + is jointly continuous. 
That is, any semitopological group that is Baire and Moore is 
a paratopological group. 

Let (G;·) be a multiplicative algebraic group. The group 
G is said to be acting on a set Y if there is a function A : 
G x Y --? Y, called action, so that the following conditions are 
satisfied: 

(a) A(l, y) = y for each y E Y; 
(b) A(g· h, y) = A(g, A(h, y)) for all g, h in G and y in Y; 
(c) If y, z are in Y, then there exists a 9 in G such that 

A(g,y) = z. 

Corollary 8. (A.Bouziad [B3j). Let an abelian group G act 
on the set Y and let A be an action. Suppose G and Yare 
endowed with topologies such that: 
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(i) G is a Baire strict p - space, 
(ii) the group operation· is separately continuous, 
(iii) Y is a Baire Moore space, 
(iv) the action A : G x Y ~ Y is separately continuous. 
Then the action A is jointly continuous. 

3. Namioka Theorem 

In Proposition 5, we showed that fuzzy Q - favorable spaces 
are a-well {3-unfavorable. Thus fuzzy Q- favorable spaces 
are Namioka by Saint Raymond's theorem. Nevertheless, we 
want to offer a direct proof that fuzzy Q - favorable spaces 
are Namioka because our proof is quite elementary. 

Theorem 9. Let f : X x Y ~ M be a separately continuous 
function from the product of a fuzzy Q - favorable space X 
and a compact space Y into a metric space M. Then there 
exists a dense Go subset A of X such that the function f is 
jointly continuous at each point of the set A x Y. 

This is a generalization of the original Namioka theorem to 
the class of fuzzy Q - favorable spaces. The basic idea of 
our proof is similar to Namioka's one (cf. [N]). 

We need some elementary facts first. For the sake of com­
pleteness we include their proofs. 

Lemma 10. Let F be a closed subset of a product X x Y. If 
Y is a compact space and V is an open subset of Y, then the 
set Vp = {x E X :·Fx ~ V} is an open subset of X. 

Proof The set E = F - X x V is closed in X x Y. Since Y 
is compact, 'lrx(E) is closed in X. Hence the set Vp is open in 
X being the complement of the set 1Tx(E). D 

Lemma 11. Let f : X x Y ~ M be a function into the met­
ric space (M, d) such that fY is continuous for each Y E Y. 
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Let 8 be a positive number such that the set D = {x EX: 
diam(f ({x} x Y)) ::; 8} is dense in the space X. Then for 
each e > 0 and for each (x, y) E X x Y there exists a neigh­
borhood W of the point (x, y) such that diamf(W) < 8+ e. 

Proof Suppose to the contrary that there exist (a, b) and 
e > 0 such that diamf(W) ~ 8 + e for each neighborhood 
W of the point (a, b). Since the function fY is continuous, 
there exists an open neighborhood U of the point a such that 
d(f(a, b), f(x, b)). < ~ for each x E U. There exists a point 
(p,q) E U x Y such that d(f(a,b),f(p,q)) > 8 + 2;. There 
exists an open neighborhood V of the point p such that V ~ U 
and d(f(p, q), f(x, q)) < ~ for each x E V. Let z E Dn~ Then 
8 + 2; < d(f(a, b), f(p, q)) ::; d(f(a, b), fez, b)) + d(f(z, b), 
f(p,q))::; ~+d(f(z,b),f(z,q))+d(f(z,q),f(p,q))::;8+ 2;; a 
contradiction. 0 

Lemma 12. Let f : X x Y ~ M be a function into the metric 
space (M, d) such that fY is continuous for each y E Y. Let 
8 > 0, F ~ Y, and a E X be such that diamf({a} x F)) 2:: 8 
. lfe < 8, then the set {x EX: diamf({x} x F)) ::; e} does 
not contain the point a in its closure. 

Proof Suppose to the contrary that it is not the case. There 
exist u, v in F such that d(f(a, u), f(a, v)) > 8 - 6;c. There 
exists a neighborhood U of the point a such that d(f(a, u), 
f(x, u)) < 63c and d(f(a, v), f(x, v)) < 63c for each x E U. By 
our assumption, there exists z E U such that diam(f ({z} x 
F)) ::; e. Hence d(f(a, u), f(a, v)) ::; d(f(a, u), fez, u)) + 
d(f(z, u), fez, v)) + d(f(z, v), fez, v)) < 83c + e + 83c = 28;c. 

On the other hand, d(f(a, u), f(a, v)) 2:: 8 - 8;e = 28te; a 
contradiction. 0 

Proof of the Theorem. Let ne(f) = {p EX: w(f; p) > c}. 
In order to prove our theorem it is enough to show that for 
each positive number c the set 1rx(ne(f)) is nowhere dense in 
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X fOf, then, w(j;p) = afor each 
P E (X - U{1l"x(n~(J)) : n = 1,2, ..}) x Y 

Assume to the contrary that for some T > 0 the set 1rX(Or(!)) 
is not nowhere dense in X. Since Y is compact and Or(f) is 
closed in X x Y, the projection 'Trx : X x Y ~ X is a perfect 
map as is the restriction of 1rx to the set Or(f). Hence Or(f) 
contains a closed subset, say F, such that 1rx IF is irreducible 
and there exists a non-empty open set U ~ 1rx(F). It follows 
that 

(*) if W ~ X x Y is open and U n 'Trx(W n F) =1= 0, then 
the interior of that set is non-empty too. 

We will use (*) in a description of moves of player (3 in our 
game. Let us fix 8 and c so that 0 < c < 8 < T. 

The first set player (3 starts with is the set U. Then player 
Q responds, using its winning -strategy, by choosing open sets 
VO(x) for each x E U. As x E VO(x) ~ U, there exists Yx E 

Y such that (x, Yx) E F. By continuity of the function fx, 
there exists an open neighborhood Wo(x) of the point Yx such 
that diam(f({x} x Wo(x))) < c. By (*), there exists a non­
empty open set Go(x) ~ 1rx (F n (Vo(x) x Wo(x))). For each 
Z E Go(x) there exists Yz E Wo(x) such that w(f; (z, yz)) 2:: T. 

Therefore the set L = {z E Go(x) : diam(f({z} x Wo(x))) ::; 8} 
is nowhere dense, by virtue of Lemma 12. A set U1(x) player 
(3 chooses in the set VO (x) is the one that is non-empty, open, 
contained in Go(x) and disjoint from the set L. 

For the next purposes let us display explicitly a property 
the chosen set U1(x) possesses. Namely, 

(**) there exists an open set Wo(x) in Y such that for each 
Z in U1(x) we can find yz in Wo(x) such that (z,Yz) E F and 
yet for each z E U1(x), diam(f({z} x Wo(x))) > 8. 

Suppose Un is one of open sets player f3 has chosen on the 
n - th stage. Along with this set, there has also been de­
fined an open set Wn - 1 in Y that' satisfies (**). Player a, 
using its winning strategy, chooses Vn(x) for each x E Un. If 
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x E Un' then let Yx E Wn- l be such that (x, Yx) E F. By the 
continuity of the function lx, there exists an open neighbor­
hood Wn(x) of the point Yx such that clWn(x) ~ Wn- l and 
diam(f({x} x Wn(x))) < c. By (*), there exists a non-empty 
open set Gn(x) ~ 1rx (F n (Vn(x) x Wn(x))). Since for each 
z E Gn(x) there exists Yz E Wn(x) such that w(f; (z,Yz)) ~ T, 

the set 
L == {z E Gn(x) : diam(f({z} x Wn(x))) :::; 8} is a nowhere 

dense subset of the space X, by virtue of Lemma 12. The set 
Un(x) player (3 chooses in the set Vn(x) is the one that is non­
empty, open, contained in Gn(x) and disjoint from the set L. 
Note that the set Wn (x) together with Un+l (x) satisfies the 
property (**). 

Because player Q has used its winning strategy in the game, 
there exists a sequence {xn : n = 1, 2, ..} such that Xl E U and 
Xn+l E Un(xn) for each n, and it has an accumulation point, say 
p. Let us consider also the sequence{Wn(xn)} associated with 
the sequence {Un+I(Xn+l)}. If W == n{Wn(xn) : n == 1,2, ..}, 
then, by virtue of Lemma 13, diam(f({p} x W)) :::; c. From 
the other hand side, since p is a point of the set n{Un(xn) : 
n = 1,2, .. }, diam(f({p} x Wn(xn))) ~ 8 for each n. Since Y is 
compact and clWn+l (xn+l) ~ Wn(xn), diam(f({p} x W)) 2: 8, 
which contradicts the preceding inequality. 
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