Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE DYNAMICS OF HOMEOMORPHISMS OF HEREDITARILY DECOMPOSABLE θ^* -CONTINUA

TATSUYA ARAI, NAOTSUGU CHINEN, HISAO KATO, JONG-JIN PARK AND KATSUYA YOKOI

ABSTRACT. Let M be a Suslinean θ^* -continuum and Fa homeomorphism of M. We show that for each $x \in R(F)$ (the set of all recurrent points of F) the ω -limit set $\omega(x, F)$ contains only one minimal set of F and Fhas zero topological entropy. Furthermore we also give some results concerning homeomorphisms of hereditarily decomposable θ^* -continua.

1. INTRODUCTION

One of the considerable studies in the theory of dynamical systems is how to recognize chaos. The topological entropy, which was introduced by R. L. Adler, A. G. Konheim and M. H. McAndrew[1] in 1965, is an effective method to measure chaoticity. In this paper we consider the theory on onedimensional continua.

Let M be a hereditarily decomposable chainable continuum and F a homeomorphism of M. In [13, Theorem 3.2] Xiangdong Ye has shown that for each $x \in R(F)$ either $\omega(x, F)$ is

This paper was done while the fourth author was at the Institute of Mathematics, University of Tsukuba.

a periodic orbit of F or $(\omega(x, F), F)$ is semi-conjugate to the adding machine, furthermore when M is a Suslinean chainable continuum $\omega(x, F)$ contains the unique minimal set of F and the topological entropy h(F) = 0. This is a partial answer to the problem of Marcy Barge, namely : Does every homeomorphism of a heredetarily decomposable chainable continuum have zero topological entropy? Moreover it also supports the question of the third author [6] : Does every homeomorphism of a Suslinean continuum have zero topological entropy?

Our aim of this paper is to study the dynamics of homeomorphisms of hereditarily decomposable θ^* -continua and to prove that the results above on a Suslinean chainable continuum are true for a Suslinean θ^* -continuum. The strategy of the proofs essentially comes from combining the technique of [7] with the proof of [13, Theorem 3.2].

2. Definitions and preliminaries

In the first half of this section, we introduce some necessary definitions from the theories of continua and dynamical systems.

A continuum is a nonempty connected compact metric space. A subcontinuum is a continuum which is a subset of a space. A continuum is said to be decomposable if it can be written as the union of two proper subcontinua. A continuum is hereditarily decomposable if each nondegenerate subcontinuum is decomposable. A continuum is Suslinean if each collection of its disjoint nondegenerate subcontinua is at most countable. It is known that each Suslinean continuum is hereditarily decomposable.

Let X and Y be metric spaces and $\epsilon > 0$. Then $f_{\epsilon} : X \longrightarrow Y$ is called an ϵ -map if f_{ϵ} is continuous and the diameter $f_{\epsilon}^{-1}(f_{\epsilon}(x)) < \epsilon$ for all $x \in X$. Let M and P be continua. Then M is said to be P-like if for each $\epsilon > 0$, there is an ϵ -map f_{ϵ} from M onto P.

Let n be a natural number. A θ_n -continuum is a continuum M such that no subcontinuum of M separates it into more than

n components. If no subcontinuum of *M* separates it into an infinite number of components then *M* is called a θ -continuum. Furtheremore *M* is θ^* -continuum if for any subcontinuum *N* of *M*, *N* is a θ -continuum. Note that each chainable (= arc-like) continuum is a θ_2 -continuum and each circle-like continuum is a θ_1 -continuum. In general, if a finite graph *G* is a θ_n -continuum for some natural number *n* and a continuum *X* is *G*-like, then each subcontinuum of *X* is a θ_n -continuum, and hence *X* is a θ^* -continuum.

Let (X, d) be a compact metric space and f a continuous map of X. We define $f^0 = id$ and inductively $f^n = f \circ f^{n-1}$ for a natural number n. A point $x \in X$ is a periodic point of f with period n if $f^n(x) = x$ and $f^i(x) \neq x$ for $1 \leq i \leq i$ n-1. A point $x \in X$ is a recurrent point of f if for each $\epsilon > 0$ there is some natural number n such that $d(x, f^n(x)) < \epsilon$ ϵ . A point $x \in X$ is a nonwandering point of f if for each neighborhood V of x there is some natural number n such that $f^n(V) \cap V \neq \emptyset$. The set of periodic points, recurrent points and nonwandering points of f will be denoted by P(f), R(f)and $\Omega(f)$ respectively. Note that $P(f^n) = P(f)$ and $R(f^n) =$ R(f) for each natural number n. The orbit O(x, f) of an $x \in X$ is the set $\{f^n(x) \mid n = 0, 1, 2, \dots\}$. A nonempty closed subset A of X is called a minimal set of f if the orbit of each point of A is dense in A. For each $x \in X$, the ω -limit set $\omega(x, f)$ of x is the set of all limit points of O(x, f). It is clear that $P(f) \subset R(f) \subset \bigcup_{x \in X} \omega(x, f) \subset \Omega(f).$

Let X_i be a compact metric space and f_i a continuous map of X_i for i = 1, 2. We say that (X_1, f_1) is *semi-conjugate* (or *conjugate*, respectively) to (X_2, f_2) if there is a continuous map (or homeomorphism) ϕ from X_1 onto X_2 such that $\phi \circ f_1 = f_2 \circ \phi$. We call ϕ a *semi-conjugacy* (or *conjugacy*).

Let h(f) be the topological entropy of a continuous map fof a compact metric space X and $h_{\mu}(f)$ the measure theoretic entoropy of a measure-preserving map f of a probability space (X, μ) (see [12, p.87, p.166, p.169]). We use the following result in a proof of our main theorem (see [13]): $h(f) = \sup\{h(f \mid_{\omega(x,f)}) \mid x \in R(f)\}.$

Let $\Sigma_g = \prod_{i=1}^{\infty} Y_{m_i}$, where $Y_{m_i} = \{0, 1, \cdots, m_i - 1\}$ $(m_i$ is some natural number, $i \geq 1$). For $\alpha = (\alpha_1, \alpha_2, \cdots)$, $\beta = (\beta_1, \beta_2, \cdots) \in \Sigma_g$, $\alpha + \beta = (\gamma_1, \gamma_2, \cdots)$ is defined by : if $\alpha_1 + \beta_1 < m_1$ then $\gamma_1 = \alpha_1 + \beta_1$; if $\alpha_1 + \beta_1 \geq m_1$ then $\gamma_1 = \alpha_1 + \beta_1 - m_1$ and we carry 1 to the next position. Inductively continue this procedure. Let $\delta_g : \Sigma_g \longrightarrow \Sigma_g$ be defined by $\delta_g(\gamma) = \gamma + (1, 0, 0, \cdots)$. We shall call (Σ_g, δ_g) a generalized adding machine. In particular when $m_i = 2$ for each $i \geq 1$, i.e. $\Sigma = \prod_{i=1}^{\infty} \{0, 1\}$, we shall call (Σ, δ) an adding machine. It is known that δ_g is a minimal homeomorphism of Σ_g .

The following lemma depends on X. Ye.

Lemma 2.1. The topological entropy of the homeomorphism δ_q of a generalized adding machine is zero.

Proof: Let $x = (x_i)$, $y = (y_i) \in \Sigma_g$, where x_i , $y_i \in Y_{m_i}$. Define a metric function d on Σ_g as follows: $d(x, y) = \sum_{i=1}^{\infty} \frac{d_i(x_i, y_i)}{2^i}$, where $d_i(x_i, y_i) = 0$ if $x_i = y_i$ and $d_i(x_i, y_i) = 1$ if $x_i \neq y_i$. For any $\epsilon > 0$ there is some natural number i_0 such that $d(x, y) < \epsilon$ if $x_i = y_i$ for each $i \leq i_0$. Put $S = \{(z_1, z_2, \cdots, z_{i_0}, 0, 0, \cdots) | z_i \in Y_{m_i}, 1 \leq i \leq i_0\}$. Then for any $x = (x_1, x_2, \cdots) \in \Sigma_g$, $x' = (x_1, x_2, \cdots, x_{i_0}, 0, 0, \cdots)$ is an element of S. By the assumption $d(\delta_g^i(x), \delta_g^i(x')) < \epsilon$ for each $i = 1, 2, \cdots$. This implies $h(\delta_g) = 0$. \Box

The next lemma is a simple generalization of Lemma 3.1 in [13]. For completeness we give the proof.

Lemma 2.2. Let X, Y be compact metric spaces and F, G homeomorphisms of X, Y respectively. Assume that (X, F) is semi-conjugate to (Y, G), ϕ is a semi-conjugacy and $A = \{y \in$ $Y \mid Card(\phi^{-1}(y)) \geq 2\}$ is countable. If Y is an uncountable minimal set of G and h(G) = 0 then :

(1) F has the unique minimal set.

(2) h(F) = 0.

Proof: (1) This proof is a similar one to Lemma 3.1 (1) in [13].

(2) Note that if D is an open set of X then

$$\phi(D) = \{Y \setminus \phi(X \setminus D)\} \cup \{\phi(D) \cap \phi(X \setminus D) \cap A\}.$$
(*)

Let $O(A, G) = \bigcup_{a \in A} O(a, G)$, $X_1 = X \setminus \phi^{-1}(O(A, G))$ and $Y_1 = Y \setminus O(A, G)$. Then $F_1 = F|_{X_1}$ is a map of X_1 and $G_1 = G|_{Y_1}$ is a map of Y_1 . By (*), $\phi_1 = \phi|_{X_1} : X_1 \longrightarrow Y_1$ is a conjugacy.

Let μ be an invariant measure for F. Then for any $a \in Y$, $\mu(\bigcup_{i=1}^{\infty} F^i \circ \phi^{-1}(a)) = \sum_{i=1}^{\infty} \mu(F^i \circ \phi^{-1}(a))$. Thus $\mu(\phi^{-1}(a)) = 0$. As A is countable, $\mu(\phi^{-1}O(A,G)) = 0$. Therefore $h_{\mu}(F) = h_{\mu}(F|_{X_1})$. Define a measure ν_1 on Y_1 by $\nu_1(B) = \mu(\phi_1^{-1}(B))$ for $B \subset Y_1$. Also define a measure ν on Y by $\nu|_{Y_1} = \nu_1$ and $\nu(Y \setminus Y_1) = 0$. By the Variational Principle, $h_{\nu}(G) \leq h(G) = 0$. Therefore $h_{\mu}(F) = h_{\mu}(F|_{X_1}) = h_{\nu_1}(G|_{Y_1}) = h_{\nu}(G) = 0$. Then we get that h(F) = 0. \Box

In the remainder of this section, we mention important properties of continua which we target. We introduce the aposyndetic set functions T and K. Let M be a continuum and H a subset of M. Put

$$T(H) = \{x \in M \mid \text{if } Q \text{ is a subcontinuum of } M \text{ such that} \\ x \in Int(Q) \text{ then } H \cap Q \neq \emptyset \} \text{ and}$$

$$K(H) = \{x \in M \mid \text{if } Q \text{ is a subcontinuum of } M \text{ such that} \\ H \subset Int(Q) \text{ then } \{x\} \cap Q \neq \emptyset\}.$$

When A is a subcontinuum of M, T(A) is a continuum. If M is a θ -continuum and H is a subcontinuum of M then T(H) = K(H) [11, p.106]. The following is very useful to study the dynamics on θ_n -continua.

Theorem 2.3. [5, **Theorem 1**] Let X be a θ_n -continuum. Then X admits a monotone upper semicontinuous decomposition **D** such that the elements of **D** have void interior and the quotient space X/\mathbf{D} is a finite graph if and only if $Int[T(H)] = \emptyset$ for every subcontinuum H with void interior. Furthermore $\mathbf{D} = \{T^{n(n+1)}(x) \mid x \in X\}$. Moreover if $F : X \longrightarrow X$ is a homeomorphism of X, then there is the unique homeomorphism $G : X/\mathbf{D} \longrightarrow X/\mathbf{D}$ such that $g \circ F = G \circ g$, where $g : X \longrightarrow X/\mathbf{D}$ is the decomposition map. In the remainder of this paper decompositions used will be of the kind described in the above theorem.

Theorem 2.4. [10, Theorem 9] If M is a hereditarily decomposable continuum, then $Int[K(H)] = \emptyset$ for every subcontinuum H of M with void interior.

Theorem 2.5. [4, Theorem 3] If X is a θ -continuum such that $Int[T(H)] = Int[K(H)] = \emptyset$ for each subcontinuum H of X with void interior, then X is a θ_n -continuum for some natural number n.

By the above theorems if M is a hereditarily decomposable θ^* -continuum, then each subcontinuum of M is a θ_n -continuum for some natural number n. By Theorem 2.3, M admits the monotone upper semicontinuous decomposition \mathbf{D} which has the properties in Theorem 2.3.

Lemma 2.6. Let F be a homeomorphism of a hereditarily decomposable θ_n -continuum M, g the decomposition map from M onto the quotient space M/\mathbf{D} and G the homeomorphism of M/\mathbf{D} ($\mathbf{D} = \{T^{n(n+1)}(x) \mid x \in M\}$) such that $g \circ F = G \circ g$. Then if $P(G) \neq \emptyset$, there is some natural number m such that $F^m(\mathbf{D}(x)) = \mathbf{D}(x)$ for each $x \in \Omega(F^m)$.

Proof: First we assume that M/\mathbf{D} is the unit circle S^1 and $t \in P(G)$. There is a natural number m such that $G^m(t) = t$ and G^m preserves the orientation of S^1 . Then $\Omega(G^m) = P(G^m) = P_1(G^m)$, where $P_1(G^m)$ is the set of fixed points of G^m . Therefore $F^m(\mathbf{D}(x)) = g^{-1} \circ G^m \circ g(\mathbf{D}(x)) = g^{-1} \circ G^m \circ g(x) = g^{-1} \circ G^m \circ g(x) = \mathbf{D}(x)$ for each $x \in \Omega(F^m)$. When M/\mathbf{D} is not the unit circle, there are finitely many branch points t_1, t_2, \cdots, t_k of M/\mathbf{D} . Then there is a natural number m such that G^m is identity on the set $\{t_1, t_2, \cdots, t_k\}$, G^m maps each component of $S^1 \setminus \{t_1, t_2, \cdots, t_k\}$ onto itself and G^m preserves the orientation of each component. By a similar way we can have that $F^m(\mathbf{D}(x)) = \mathbf{D}(x)$ for each $x \in \Omega(F^m)$. \Box

3. Entropy of homeomorphisms of Suslinean θ^* -continua

To prove the next proposition, we introduce the following notion.

By transfinite induction, we shall define \mathbf{D}_{α} for each ordinal number $\alpha < \omega_1$ as follows. Let \mathbf{D}_0 be $\{M\}$. If $\alpha = \beta + 1$ then \mathbf{D}_{α} will consist of degenerate elements of \mathbf{D}_{β} and the elements of the decompositions as in Theorem 2.3 of nondegenerate elements of \mathbf{D}_{β} . For a limit ordinal number α define \mathbf{D}_{α} to be the set consisting of the intersections $\bigcap_{\beta < \alpha} D_{\beta}$, where $D_{\beta} \in \mathbf{D}_{\beta}$. For every $x \in M$ denote by $\mathbf{D}_{\alpha}(x)$ the element of \mathbf{D}_{α} containing x. For each $x \in M$ there is a countable ordinal number $\tau = \tau_x$ such that $\mathbf{D}_{\tau}(x) = x$.

Proposition 3.1. Let M be a hereditarily decomposable θ^* continuum and F be a homeomorphism of M. Then for each $x \in R(F)$, one of the following cases holds :

- (a) $\omega(x, F)$ is a periodic orbit of F.
- (b) $(\omega(x, F), F)$ is semi-conjugate to a generalized adding machine.
- (c) There is a natural number m, a continuous map g from $\omega(x, F^m)$ onto the unit circle S^1 and a minimal homeomorphism G of S^1 such that $g \circ F^m = G \circ g$.

$$\begin{array}{cccc} \omega(x,F^m) & \xrightarrow{F^m} & \omega(x,F^m) \\ \stackrel{g}{\downarrow} & & \downarrow^g \\ S^1 & \xrightarrow{G} & S^1 \end{array}$$

(d) There is a natural number m, a continuous map h from $\omega(x, F^m)$ onto a Cantor set C and a minimal homeomorphism H of C such that $h \circ F^m = H \circ h$.

$$\begin{array}{cccc} \omega(x,F^m) & \xrightarrow{F^m} & \omega(x,F^m) \\ & & & & \downarrow h \\ & & & & C \\ & & & & C \end{array}$$

Proof: Let $x \in R(F)$. If $\omega(x, F)$ is finite then $\omega(x, F)$ is a periodic orbit of F.

Let $\omega(x, F)$ be infinite. By Theorem 2.3 either $F(\mathbf{D}_1(x)) = \mathbf{D}_1(x)$ or $\mathbf{D}_1(x) \cap \mathbf{D}_1(F(x)) = \emptyset$, where \mathbf{D}_1 is the monotone upper semicontinuous decomposition with the properties in Theorem 2.3 and $\mathbf{D}_1(x)$ is the element of \mathbf{D}_1 containing x. As O(x, F) is infinite and $\mathbf{D}_{\tau}(x) = \{x\}$ for some countable ordinal number τ , there is a countable ordinal number $\alpha_0 = \min\{\alpha \mid \mathbf{D}_{\alpha}(x) \cap \mathbf{D}_{\alpha}(F(x)) = \emptyset\}$. Note that α_0 is not a limit ordinal number.

As $\mathbf{D}_{\alpha_0-1}(x)$ is a hereditarily decomposable θ_n -continuum, $\mathbf{D}_{\alpha_0-1}(x)/\mathbf{D}_{\alpha_0}$ is a finite graph. Let g_0 be the decomposition map from $\mathbf{D}_{\alpha_0-1}(x)$ onto $\mathbf{D}_{\alpha_0-1}(x)/\mathbf{D}_{\alpha_0}$ and G_0 the homeomorphism of $\mathbf{D}_{\alpha_0-1}(x)/\mathbf{D}_{\alpha_0}$ such that $g_0 \circ F|_{\mathbf{D}_{\alpha_0-1}(x)} = G_0 \circ g_0$ (see Theorem 2.3).

If $P(G_0) = \emptyset$ then $\mathbf{D}_{\alpha_0-1}(x)/\mathbf{D}_{\alpha_0}$ is the unit circle S^1 . Then by [2] the nonwandering set $\Omega(G_0)$ is the unique minimal set of G_0 such that $\Omega(G_0) = S^1$ or $\Omega(G_0)$ is homeomorphic to a Cantor set.

By the minimality of $\Omega(G_0)$ and $g_0(\omega(x,F)) \subset \Omega(G_0)$, we get that $g_0(\omega(x,F)) = \Omega(G_0)$. Thus when $\Omega(G_0) = S^1$, G_0 is a minimal homeomorphism of S^1 and g_0 is a continuous map from $\omega(x,F)$ onto S^1 such that $g_0 \circ F|_{\omega(x,F)} = G_0 \circ g_0$. This implies the case of (c).

Assume that $\Omega(G_0)$ is not S^1 . Then there are a Cantor set C which is homeomorphic to $\Omega(G_0)$, a continuous map h_0 from $\omega(x, F)$ onto C and a minimal homeomorphism H_0 of C with $h_0 \circ F|_{\omega(x,F)} = H_0 \circ h_0$. This is the case of (d).

If $P(G_0) \neq \emptyset$ then there is a natural number m_0 such that $F^{m_0}(\mathbf{D}_{\alpha_0}(x)) = \mathbf{D}_{\alpha_0}(x)$ and $\mathbf{D}_{\alpha_0}(F^i(x)) \cap \mathbf{D}_{\alpha_0}(F^j(x)) = \emptyset$ $(0 \leq i \neq j \leq m_0 - 1)$ (see Lemma 2.6). Let $\mathbf{D}_{\alpha_0}(F^i(x))$ be M_i for each $i = 0, 1, \dots, m_0 - 1$. Note that M_i is a hereditarily decomposable θ_{n_0} -continuum for some natural number n_0 and $F^{m_0}|_{M_i}$ is a homeomorphism of M_i . Then there is a countable ordinal number $\alpha_1 = min\{\alpha \mid \mathbf{D}_{\alpha}(x) \cap \mathbf{D}_{\alpha}(F^{m_0}(x)) = \emptyset\}$. Let g_1 be the decomposition map from $\mathbf{D}_{\alpha_1-1}(x)$ onto $\mathbf{D}_{\alpha_1-1}(x)/\mathbf{D}_{\alpha_1}$ and G_1 the homeomorphism of $\mathbf{D}_{\alpha_1-1}(x)/\mathbf{D}_{\alpha_1}$ such that $g_1 \circ F^{m_0}|_{\mathbf{D}_{\alpha_1-1}(x)} = G_1 \circ g_1$.

If $P(G_1) = \emptyset$ then $\mathbf{D}_{\alpha_1-1}(x)/\mathbf{D}_{\alpha_1} = S^1$. This implies the case (c) or (d) holds.

Let $P(G_1) \neq \emptyset$. As $R(F^n) = R(F)$ for each natural number $n, x \in R(F) = R(F^{m_0})$. There is a natural number m_1 such that $F^{m_0m_1}(\mathbf{D}_{\alpha_1}(x)) = \mathbf{D}_{\alpha_1}(x)$ and $\mathbf{D}_{\alpha_1}(F^i(x)) \cap \mathbf{D}_{\alpha_1}(F^j(x)) = \emptyset$ $(0 \le i \ne j \le m_0m_1 - 1)$. Let $\mathbf{D}_{\alpha_1}(F^{i_0+m_0i_1}(x))$ be $M_{i_0i_1}$ $(0 \le i_0 \le m_0 - 1, 0 \le i_1 \le m_1 - 1)$. Note that $M_{i_0i_1}$ is a hereditarily decomposition θ_{n_1} -continuum for some natural number n_1 and $F^{m_0m_1}|_{M_{i_0i_1}}$ is a homeomorphism of $M_{i_0i_1}$. Then there is $\alpha_2 = min\{\alpha \mid \mathbf{D}_{\alpha}(x) \cap \mathbf{D}_{\alpha}(F^{m_0m_1}(x)) = \emptyset\}$.

Let g_2 be the decomposition map from $\mathbf{D}_{\alpha_2-1}(x)$ onto $\mathbf{D}_{\alpha_2-1}(x)/\mathbf{D}_{\alpha_2}$ and G_2 the homeomorphism of $\mathbf{D}_{\alpha_2-1}(x)/\mathbf{D}_{\alpha_2}$ such that $g_2 \circ F^{m_0m_1}|_{\mathbf{D}_{\alpha_2-1}(x)} = G_2 \circ g_2$.

If $P(G_2) = \emptyset$ then by the same procedure as the above g_2 is a continuous map from $\omega(x, F^{m_0m_1})$ onto S^1 and G_2 is a minimal homeomorphism of S^1 such that $g_2 \circ F^{m_0m_1} = G_2 \circ g_2$ or there are a continuous map h_2 from $\omega(x, F^{m_0m_1})$ onto a Cantor set C_2 and a minimal homeomorphism H_2 of C_2 such that $h_2 \circ F^{m_0m_1} = H_2 \circ h_2$, that is to say, (c) or (d) holds.

If $P(G_2) \neq \emptyset$ then there is a natural number m_2 such that $F^{m_0m_1m_2}(\mathbf{D}_{\alpha_2}(x)) = \mathbf{D}_{\alpha_2}(x)$ and $\mathbf{D}_{\alpha_2}(F^i(x)) \cap \mathbf{D}_{\alpha_2}(F^j(x)) = \emptyset$ $(0 \leq i \neq j \leq m_0m_1m_2 - 1).$

We may get hereditarily decomposable θ_{n_2} -continua $M_{i_0i_1i_2}$ for some natural number n_2 and $F^{m_0m_1m_2}|_{M_{i_0i_1i_2}}$ is a homeomorphism of $M_{i_0i_1i_2}$ $(0 \le i_0 \le m_0, 0 \le i_1 \le m_1, 0 \le i_2 \le m_2)$.

Continue this procedure. If $P(G_j) = \emptyset$, where G_j is the homeomorphism of $\mathbf{D}_{\alpha_j-1}(x)/\mathbf{D}_{\alpha_j}$, then (c) or (d) holds.

We may assume that $P(G_j) \neq \emptyset$ for $j = 1, 2, \cdots$. Then we get hereditarily decomposable θ_{n_j} -continua $M_{i_0i_1\cdots i_j}$ such that $M_{i_0i_1\cdots i_j} \subset M_{i_0i_1\cdots i_{j-1}}$ and $F^{m_{i_0i_1\cdots i_j}}|_{M_{i_0i_1\cdots i_j}}$ is a homeomorphism of $M_{i_0i_1\cdots i_j}$ for each j. Let $M_a = \bigcap_{j=0}^{\infty} M_{i_0 i_1 \cdots i_j}$ for each $a = (i_0, i_1, \cdots) \in \Sigma_g = \prod_{i=0}^{\infty} Y_{m_i}$, where $Y_{m_i} = \{0, 1, \cdots, m_i - 1\}$. Note that M_a is a subcontinuum of M for each $a \in \Sigma_g$.

Define $\phi: \bigcup_{a \in \Sigma_g} M_a \longrightarrow \Sigma_g$ by $\phi(M_a) = a$. Since $\omega(x, F) \subset \bigcup_{a \in \Sigma_g} M_a$ and $\omega(x, F) \cap M_a \neq \emptyset$ for each $a \in \Sigma_g$, $(\omega(x, F), F)$ is semi-conjugate to (Σ_g, δ_g) . This is the case of (b). This ends the proof. \Box

The next is our main theorem.

Theorem 3.2. Let F be a homeomorphism of a Suslinean θ^* -continuum M. Then :

(1) $\omega(x, F)$ has the unique minimal set for each $x \in R(F)$. (2) h(F) = 0.

Proof: As $h(F) = \sup\{h(F \mid_{\omega(x,F)}) \mid x \in R(F)\}$ (see Section 2), we need only prove $h(F \mid_{\omega(x,F)}) = 0$ for $x \in R(F)$. We shall use Proposition 3.1 and its proof.

Let $x \in R(F)$. In the case of (a), it is clear that $\omega(x, F)$ is the unique minimal set of F and $h(F|_{\omega(x,F)}) = 0$.

In the case of (b), $(\omega(x, F), F)$ is semi-conjugate to a generalized adding machine (Σ_g, δ_g) . As M is Suslinean, $A = \{a \in \Sigma_g \mid Card(\phi^{-1}(a)) \geq 2\}$ is countable, where ϕ is a continuous map from $\omega(x, F)$ onto Σ_g with $\phi \circ F = \delta_g \circ \phi$. By Lemma $2.2 \ \omega(x, F)$ contains only one minimal set of F and $h(F|_{\omega(x,F)}) = 0$.

In the case of (c), there are a natural number m, a continuous map g_i from $\omega(F^i(x), F^m)$ onto S^1 and a minimal homeomorphism G_i of S^1 such that $g_i \circ F^m = G_i \circ g_i$ for each $i = 0, 1, \dots, m-1$. Note that $h(G_i) = 0$ (see [1]). By Lemma 2.2 $\omega(F^i(x), F^m)$ contains only one minimal set of F^m and $h(F^m \mid_{\omega(F^i(x), F^m)}) = 0$. As $\omega(x, F) = \bigcup_{i=0}^{m-1} \omega(F^i(x), F^m)$, $\omega(x, F)$ contains only one minimal set of F. Moreover $mh(F \mid_{\omega(x,F)}) = h(F^m \mid_{\omega(x,F)}) \leq max\{h(F^m \mid_{\omega(F^i(x), F^m)}) \mid i = 0, 1, \dots, m-1\} = 0$. Hence $h(F \mid_{\omega(x,F)}) = 0$. In the case of (d) we can see $\omega(x, F)$ contains only one minimal set of F and $h(F \mid_{\omega(x,F)}) = 0$ by a similar way to the case of (c).

Therefore $h(F) = sup\{h(F \mid_{\omega(x,F)}) \mid x \in R(F)\} = 0.$

Note. After the authors finished their work on this paper they learned from Xiangdong Ye that Jie Lühskip, Jincheng Xiong and Xiangdong Ye have obtained the same result as Theorem 3.2.

References

- R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
- [2] J. Auslander and Y. Katznelson, Continuous maps of the circle without periodic points, Israel J.Math., 32 (1979), 375-381.
- [3] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., 1513, Springer-Verlag, 1992.
- [4] E. E. Grace, Monotone Decompositions of θ -continua, Trans. Amer. Math. Soc., **275** (1983), 287-295.
- [5] E. E. Grace and E. J. Vought, Monotone decompositions of θ_n -continua, Trans. Amer. Math. Soc., **263** (1981), 261-270.
- [6] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598.
- [7] H. Kato and K. Kawamura, A class of continua which admits no expansive homeomorphisms, Rocky Mountain J. Math., 22 (1992), 645-651.
- [8] L. Mohler, The depth of tranches in λ -dendroids, Proc. Amer. Math. Soc., **96** (1986), 715-720.
- [9] S. B. Nadler Jr, Continuum Theory An Introduction, Pure and Appl. Math., 158 (1992).
- [10] H. E. Schlais, Non-aposyndesis and non-hereditary decomposability, Pacific J. Math., 45 (1973), 643-652.
- [11] E. J. Vought, Monotone decompositions of continua, General Topology and Modern Analysis, L. F. McAuley and M. M. Rao (eds), Academic Press, New York 1981, 105-113.
- [12] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer, 1982.
- [13] X. Ye, The dynamics of homeomorphisms of hereditarily decomposable chainable continua, Topology Appl., 64 (1995), 85-93.

T.A., N.C., H.K. AND K.Y., INSTITUTE OF MATHEMATICS, UNI-VERSITY OF TSUKUBA, IBARAKI 305, JAPAN *E-mail address*: hisakato@sakura.cc.tsukuba.ac.jp

E-mail address: yokoi@math.tsukuba.ac.jp

J.J.P., CHONBUK NATIONAL UNIVERSITY, CHONJU CHONBUK, SOUTH KOREA