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MCCUTCHEON 

ABSTRACT. An IP* set in a semigroup is one which rnust 
intersect the set of finite products from any specified se­
quence. (If the semigroup is noncommutative, one must 
specify the order of the products, resulting in "left" and 
"right" IP* sets.) If A is a subset of N with positive 
upper density, then the difference set A - A == {x EN: 
there exists yEA with x.+ YEA} is an IP* set in (N, +). 
Defining analogously the quotient sets AA -1 and A -1 A., 
we analyze notions of largeness sufficient to guarantee 
that one or the other of these quotie~t sets are IP* sets. 
Among these notions are thick, syndetic, and piece'l.vise 
syndetic sets, all of which come in both "left" and "righe' 
versions. For example, we show that if A is any left syn­
detic subset of a semigroup S, then AA -1 is both a left 
IP* set and a right IP* set, while A -1 A need be neither 
a left IP* set nor a right IP* set, even in a group. We 
also investigate the relationships among these notions of 
largeness. 

1These authors acknowledge support received from the National Sci­
ence Foundation via grants DMS 9706057 and DMS 9424421 respectively. 

23 



24 BERGELSON, HINDMAN AND MCCUTCI-IEON 

1. INTRODUCTION 

In a commutative semigroup (S, +),. we write F S( (xn)~=l) == 
{~nEF X n : F E Pf(N)} where Pf(N) == {A : A is a finite 
nonempty subset of N}. Loosely following Furstenberg [5] we 
say that a set A ~ S is an IP set if and only if there is a 
sequence A set C ~ S is then an IP* set'if and only if CnA =1= 0 
for every IP set A (equivalently if and only if CnFS( (xn)~l) =1= 

ofor every sequence (xn)~=l inS). . 
Recall that given a sequence of intervals ((an, bn])~=l in (xn)~=l 

with limn--+ oo (bn - an) == 00, there are associated natural no­
tions of upper density and density of a subset A of N, namely 
d(A) == lim sup l(an,bn]nAI and d(A) == lim --+ l(an,bn]nAI if 

n--+oo (bn-an) n oo (bn-an) 

the latter limit exists. (In N, the expressions d(A) and d(A) are 
typically used to refer to the upper density and density, respec­
tively, of A with respect to the sequence of intervals ((0, n])~l. 

We are using them here somewhat more liberally.) Further, 
these notions are translation invariant. That is, given tEN, 
d(A - t) == d(A). While upper density d is certainly not ad­
ditive, density d is, in the sense that if d(E) and d(F) exist, 
where EnF == 0, then d(EUF) exists and equals d(E)+d(F). 

Ifd(A) > 0, then by passing to a subsequence of the intervals 
used to determine d(A) > 0, one can get the (positive) density 
of A to exist. This observation allows one to prove the following 
simple (and well known) fact. (By the difference set A - A, 
we mean {b EN: there exists c E A such that b + c E A} == 
{x - y : x, yEA and x > y}.) 

Theorem 1.1. Let A ~ N and assume there is a sequence 
((an, bn])~=l of intervals in N (with limn--+oo(bn - an) == (0) 
with respect to which d(A) > 0. Then A - A 'is an IP* set. 

· L t - -d(A) - 1· l(an,bn]nAI Ch bP roo.f e Q' - - 1m SUPn--+<X> (bn-an). oose a su ­
sequence ((cn, dn])~=l of ((an, bn])~=l with respect to which 
d(A) == Q'. 

Let a sequence (xn)~=l in N be given. Then for each mEN, 
d( A - ~~1 Xt) == Q' (density relative to the sequence ((Cn, dn])~=l). 
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Pick kEN such that 1/k < CY. Since d is additive one cannot 
have {A-Xl, A-(XI +X2),'" ,A-(XI+X2+" .+Xk)} pairwise 
disjoint, so pick m < n such that (A-~~l Xt)n(A-~~=l Xt) i­
0. Then ~~=m+l Xt E A-A. 0 

This simple result can be extended to a much wider class of 
semigroups. Let us recall the notion of a F¢lner sequence. 

Definition 1.2. Let (5,,) be a countable semigroup. A se­
quence (An)~=l in Pf(S) is said to be a left (respectively right) 
F¢lner sequence for S if for each s E S, limn-->oo IsAI~~fnl = 0 

1 l' IAns~An I 0)( t · respec zve y Imn~oo IAnl == . 

Existence of F¢lner sequences in semigroups is related to the 
notion of amenability. A discrete semigroup 5 is said to be left 
amenable if there exists a left invariant mean fl (that is, positive 
linear functional satisfying fl( 1) == 1) on loo (5), the sI>ace of 
bounded complex valued functions on 5. By left invariance 
here we mean that for every x E 5 and every ¢J E loo (5) we 
have J1(x¢J) == J1( ¢J), where x¢J(t) == ¢J( xt) for t E 5. (T1hat is, 
x¢ == ¢ 0 Ax where Ax(t) == xt.) Right amenability is similarly 
defined. We shall usually state our results for one side only, 
leaving the obvious left-right switches to the reader. 

It is well known that the set of left invariant means fl is in 
one to one correspondence with the set of left invariant finitely 
additive probability measures m via the mapping m f-+ 11, 
where m(B) == fl(XB), 11 extending coiltinuously and linearly 
to loo(5). See, for example, [10, Section 0.1]. Therefore, we 
shall sometimes refer to such measures as "means", as well. 

We shall be using the following relationships between amena­
bility and existence of F¢lner sequences. If S admits a left 
F¢lner sequence, then S is left amenable. The converse does 
not hold in general, however any left amenable semigrou~p which 
is also left cancellative does admit a left F¢lner sequence. (See 
[10, Section 4.22] and [9, Corollary 3.6].) 

For groups, left and right amenability are equivalerlt. In­
deed, if S is a group and 11 is a left invariant mean we put 
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J(x) = f(x- 1 
), f E loo(8) and let v(f) = /1(J). v is a right in­

variant mean. This equivalence does not hold for semigroups, 
which may be left but not right amenable. Indeed, for any 
set 5 with 15,1 2:: 2, letting xy = y for x, y E 5 (so that 5 is a 
"right zero" semigroup) one may show that S is a left amenable 
semigroup that is not right amenable. 

In this paper we shall be concerned with describing the 
"largeness" of certain subsets B of a semigroup 5. Our phi­
losophy is that the best notions of largeness should be closed 
under supersets, partition regular, and satisfy some sort of shift 
Invarlance. 

A collection I: of subsets of a set 5 is called partition regular 
if whenever A U BEl: one must have either A E I: or BEl:. 

In a non-commutative semigroup, there are four possible 
kinds of shift invariance. A set I: of subsets of a set S is 
left invariant (respectively left inverse invariant) if and only 
if whenever A E I: and s E 5 one has sA E I: (respectively 
s- l A E 1:), where s-lA = {t E S: st E A}. If S is a group, 
so that S-l A = {S-lt : tEA}, these notions coincide. Right 
invariance and right inverse invariance are defined analogously. 

Lemma 1.3. Let 5 be a left amenable semigroup) let m be a 
left invariant mean) let s E 5) and let A ~ 5. Then m(s-l A) = 
m( A). If in addition) 5 is left cancellative) then m( sA) = 
m(A). 

Proof: Let fl be the linear functional corresponding to m. 
Then m(s-l A) = fl(Xs-IA) = /1(XA 0 As) = J1(XA) = m(A). 
If S is left cancellative, then s-l(sA) = A and so m(sA) = 
m(s-l(sA)) = m(A). D 

If 5 is left amenable and m is a left invariant mean then 
m(B) may be thought of as the "size" of the set B, relative 
to m, at least. We will usually be interested in distinguishing 
sets B for which there exists some left invariant mean m with 
m(B) > O. Accordingly, we define mi(B) (respectively m;(B)) 
to be the supremum of m(B) over all left (respectively right) 
invariant means m. We call mi (B) the left upper Banach mean 



NOTIONS OF SIZE AND COMBINATORIAL PROPERTIES 27 

density of B, and remark that one can always find a left invari­
ant mean J-l for which J-l(B) == mi(B) (simply take a sequence 
of left invariant means (J-li)~l such that J-li(B) converges to 
mi(B), and let J-l be any weak* limit point of this sequence). 
Then the condition B E £ if and only if mi(B) > 0 ser"ves as a 
notion of largeness which has the properties we desire, namely 
closure under supersets, partition regularity, and, by ]~emma 

1.3, left inverse invariance. Also by Lemma 1.3, if S is left 
cancellative, then £ is left invariant. 

A closely related notion of size for subsets B of semigroups 
S requires the existence of F¢lner sequences. Suppose that 
S is a countable, left cancellative, left amenable semigroup. 
For every left F¢lner sequence (An)~=l one has naturally as­
sociated notions of upper density and density, namely d(B) == 
1· IAnnBI d d(B) - l' IAnnBI ( 'd d th1m SUPn---+oo ~ an - 1mn ---+ oo ~ prOV1 e e 

latter limit exists). Also d and d are left invariant and left 
inverse invariant: given s E Sand B .~ S, one has d(sB) == 
d(s-l B) == d(B). (It is routine to verify these assertions. One 
only needs to note that, while s(S-l B) need not equal B, it is 
true that s(A n S-l B) == sA n B.) We also let di(B) be the 
supremum of d(B) over all left F¢lner sequences (An)~=l' Then 
di(B) will be called the left upper Banach density of B. Again, 
this supremum is achieved. In fact, for each B ~ S, ttlere ex­
ists a left F¢lner sequence (An)~=l (depending on ~) such that 
d(B) (with respect to this sequence) exists and equals di(B). 
It follows that di(sB) == di(s-l B) == di(B) as well. F'urther­
more, as it is well known that a left F¢lner sequence (An)~=l for 
which d(B) exists may be used to define a left invariant mean 
m for which m(B) == d(B), one easily obtains the inequality 
m i (B) 2:: di (B ). 

We want to consider analogues to Theorem 1.1 for semi­
groups S which are possibly non-commutative. In such semi­
groups there are two reasonab~e interpretations for IInEF x n . 

That is, one may take the products in increasing or <lecreas­
ing order of indices. The "left" and "right" terminology in 
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the following definition comes from the choice of continuity in 
the Stone-tech compactification (JS of S, a topic that we shall 
discuss later in this introduction. 

Definition 1.4. Let S be a semigroup and let (xn)~=l be a 
sequence in S. 

(a) Let	 F == {nl' n2, .. · ,nk} E Pf(N) with nl < n2 < ... < 
nk· Then IiInEF Xn == Xn1 . Xn2 ..... Xnk and IIlnEF Xn == 
Xnk · X nk_1 · ... · X n1 · 

(b)	 F PD((Xn)~l) == {IIInEF X n : F E Pf(N)}. 
(c)	 FP1((xn)C:=1) == {IiInEF Xn : F E Pf(N)}. 
(d) A subset A of S is a right (respectively left) IP set if and 

only if there is a sequence (xn)~l in S with F P1((xn)~=l) ~ 

A (respectively F PD ( (Xn)~=l) ~ A). 
(e) A subset	 A of S is a right (respectively left) IP* set if 

and only if for every right (respectively left) IP set B, 
An B =/;0. 

We shall see now that a natural analogue of Theorem 1.1 . 
holds for any countable, left cancellative, left amenable semi­
group. The "quotient set" AA-1 == {x E S : there exists yEA 
such that xy E A} is a natural analogue of the difference set 
A - A used in Theorem 1.1. (Another natural analogue is 
A-I A == {x E S : there exists yEA such that yx E A}.) Note 
that if S is a group, then AA-1 == {xy-l : x,y E A}. 

Theorem 1.5 will be seen to be a corollary to Theorem 3.1. 
We include its (short) proof now to illustrate how the proof of 
Theorem 1.1 is adapted. 

Theorem 1.5. Let S be a countable, left cancellative, left 
amenable semigroup and let B ~ S with di(B) > o. Then 
BB- 1 is both a left IP* set and a right IP* set. 

Proof: There exists a left F~lner sequence (An)~=l with re­
spect to which d(B) == di(B) > o. Let a sequence (xn)~=l 

be given. For each n E N we have d( (IiI~l xt)B) == d(B) 
so by the additivity of d, {(N~l xt)B : n E N} cannot be a 
disjoint collection. Consequently one may pick m < n such 
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that (l[~1 Xt)B n (ItI~=1 Xt)B =I 0. Pick a, b E B such that 
(11I~1 Xt)a == (ItI~=1 Xt)b. Cancelling 11I~1 Xt, one has that 
a == (ill~=m+1)b so that ill~=m+1 E BB-1. 

Similarly we may p~ck r < s such that (N;=1 Xt)-1 B n 
(1[:=1 Xt)-1 B 1 0. Let a E (1[;=1 Xt)-1 B n (1II:=1 Xt)-1 B. Then 
(TII;=1 Xt)a E B. Let b == (1[;=1 Xt)a. Then (1II:=r+1 Xt)b ::
(:[[:=1 Xt)a E B so N:=r+1 Xt E BB-1. 0 

In Theorem 3.1, this result is expanded, replacing the con­
dition d;(B) > 0 with the condition m;(B) > 0, to include 
the case of left amenable. semigroups S not admitting F¢lner 
sequences. The question naturally arises as to whether ana­
logues of these results are available in non-amenable semi­
groups. Without invariant means or F¢lner sequences, none 
of our previous natural notions of largeness are applicable. We 
desire a different notion of largeness, one which has meaning in 
any semigroup. One class of sets which seem to be reasonable 
candidates to replace sets of positive upper Banach density 
(or positive upper Banach mean density) as our class of "large 
sets" are piecewise syndetic sets. In Section 2 we investigate 
basic information about these sets and the related notions of 
thick and syndetic sets. 

In Section 3 of this paper we investigate the extent to which 
one can generalize Theorem 1.5 to the situation of non-amenable 
semigroups, using left or right piecewise syndetic or syndetic 
sets in place of sets having positive upper density. It turns 
out that the generalization.s are surprisingly weak. We give 
examples showing that stronger versions are not possible. 

In Section 4, we define a property for groups which is stronger 
than the IP* property, namely the ~ * property, and investi­
gate the extent to which the results of Section 2 carryover to 
this stronger property. Finally, we conclude with a few of the 
more natural questions which are suggested by the material we 
treat there. 
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Some of our proofs in Section 2 utilize the algebraic structure 
of the Stone-Cech compactification (3S of a discrete semigroup 
S. We .take (3 S to be the set of all ultrafilters on S, identifying" 
the principal ultrafilters with the points of S. We denote also 
by · the operation on (3 S making ((3S, .) a right topological 
semigroup with S contained in its topological center. That 
is, for all p E (3S, the function PP : (3S ~ (3S defined by 
pp(q) == q · p is continuous and for all xES, the function 
Ax : (3S ~ (3S defined by Ax(q) == x . q is continuous. The 
reader is referred to [6] for an elementary introduction to this 
operation. The basic fact characterizing the right continuous 
operation on (3S is, given p, q E (3S and A ~ S, A E p. q if and 
only if {x E S : X-I A E q} E p where x-I A == {y E S : x . y E 

A}. 

The fact that one may extend the operation to f3 S so that 
((3S, .) is either right topological or left topological (but not 
both) is behind the "left" and "right" terminology introduced 
earlier. Thus if one takes ((3S,·) to be right (respectively left) 
topological, then a subset A of S is a right (respectively left) 
IP set if and only if A is a member of some idempotent in (3S 
and A is a right (respectively left) IP* set if and only if A is a 
member of every idempotent in j3S. (See [6, Theorem 5.12].) 

2.	 THICK, SYNDETIC, AND PIECEWISE SYNDETIC SETS. 

In this section we study the notions of right and left thick, 
syndetic, and piecewise syndetic sets and the relations among 
them. We state the definitions for the right versions, leaving 
the obvious left versions to the reader to formulate. 

Definition 2.1. Let S be a semigroup and let A ~ S. 
(a)	 A is right thick if and only if for every F E P f (S) there 

is some xES such that Fx ~ A. 
(b)	 A is right syndetic if and only if there exists H E P f (S) 

such that S == UtEH i-IA. 
(c)	 A is right piecewise syndetic if and only if there exists 

H E Pf(S) such that UtEH t- I A is right thick. 
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We observe that right thickness is equivalent to a superfi­
cially stronger statement. 

11Lemma 2.2. Let S be a semigroup and let A ~ S. hen A 
is right thick if and only if for every F E P j (S) there is some 
x E A such that F x ~ A. 

Proof: Let yES be arbitrary. By definition there exists z E S 
such that (Fy U {y})z ~ A. Now let x == yz. 0 

Right thickness is a right invariant and left inverse invariant 
property. Indeed, if B is right thick, F E Pj(S), and 9 E S, 
then choosing xES such that Fx ~ B we have F(xg) ~ Bg, 
so that Bg is right thick. Similarly, one may show that if B is 
right thick then g-l B is right thick. Therefore, if S is a group 
then right thickness is a left invariant property as well. 

Right thickness is easily seen not to be left invariant nor 
right inverse invariant in general for semigroups S, however, 
indeed not even for cancellative semigroups. For exan1ple, if 
S is the free semigroup on the letters a and b then clearly S 
is right thick in itself. as, however, is not right thick since 
bx tf. as for all xES. Also, letting H == Sa, one easily sees 
that H is right thick, but Hb- 1 == 0 and hence is not right 
thick. 

Right syndeticity is a left invariant and right inverse in­
variant property. Indeed, if E is right syndetic in Sand 
9 E S, then S == UtEH t-1E for some H E Pf(S). Then 
also S == UtEgH t-1gE == UtEH(gt)-lgE. To see this, sim­
ply note that for every s E S, ts E E for some t E H, so 
that gts E gE and s E (gt)-lgE. Also if E is right synde­
tic, then Eg- 1 is right syndetic for all 9 E S. To see this, 
let H E Pj(S) have the property that UtEH t- 1E == S. We 
claim that UtEH t- 1 Eg- 1 == S. To see this, let s E S. Since 
sg E UtEH t-1E, there exists t E H such that tsg E E, that is 
ts E Eg-1 and s E t-1Eg-1. It follows that right syndeticity 
is right invariant for groups. 
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Right syndeticity is neither right invariant nor left inverse 
invariant in general for cancellative semigroups. Again let S 
be the free semigroup on the letters a and b. S is right syndetic 
in itself, however Sa is not right syndetic, for b tJ. x-1(Sa) for 
all xES. Also, if we let J = as, then a-1 J = S, so that J 
is right syndetic. However, b-1 J = 0, and hence is not right 
syndetic. 

The right piecewise syndeticity property is both left and 
right invariant for semigroups. 

Theorem 2.3. Suppose that S is a semigroup, a E S, and 
E ~ S is right piecewise syndetic. Then aE and Ea are both 
right piecewise syndetic. 

Proof: There exists H E Pf(S) such that UtEH t- I E is right 
thick. Let F E P f (S). There exists xES such that 
Fx ~ UtEHt-1E. One easily checks that F(xa) = (Fx)a ~ 

(UtEH t-1E)a ~ UtEH t-I(Ea). This shows that UtEH t-I(Ea) 
is right thick and hence that Ea is right piecewise synde­
tic. On the other hand, one easily checks that UtEH t-1E ~ 

UtEH( at) -1 (aE) and hence UtEaH t-1(aE) is right thick. This 
shows that aE is right piecewise syndetic. D 

The following theorem indicates some of the interrelation­
ships among the various notions we are dealing with. 

Theoref!l2.4. Let S be a semigroup and suppose that E ~ S. 
(a) E is right' syndetic if and only if E intersects every right 

thick set non-trivially. 
(b) If E is right thick then E contains a right IP set. 
(c) If E is a right IP set then E is right syndetic. 
(d) E is right piecewise syndetic if and only if there exist a 

right syndetic set B and a right thick set C such that 
E = B n C. 

Proof: (a). If E is right syndetic then there exists H E Pf( S) 
such that UtEH t- I E = S. Let B be a right thick set. There 
exists xES such that H x ~ B. Furthermore, there exists 
t E H such that tx E E. Therefore tx E E n B so E intersects 
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B non-trivially. Conversely, if E intersects every right thick 
set non-trivially then S\E fails to be right thick. In other 
words, there exists H E Pf(S) having the property that for 
every xES, H x n E =1= 0. This means that S == UtEH t- l E. 

(b). Suppose E is right thick. Choose Xl E E. Now, by 
Lemma 2.2, choose X2 E E such that XIX2 E E. Choose X,3 E E 
such that {Xl, X2, Xl X2} X3 ~ E. Continuing in this fashion we 
obtain a sequence (xn)~=l such that F P1( (xn)~=l) ~ E. 

(c). Suppose that E is a right IP* set. By (b), E must inter­
sect every right thick set non-trivially. By (a), E is therefore 
right syndetic. (d). Suppose first that E is right piecewise 
syndetic and pick H E Pf(S) such that UtEH t- l E is right 
thick. Let C == E U UtEH t- l E and let B == E U (S\C). Then 
trivially C is right thick ,and E == B n C. Thus it suffices to 
show that B is right syndetic. Suppose not. Then by (a), S\B 
is right thick and 

S\B == C\E ~ UtEH t- l E . 

Pick by Lemma 2.2 some X E S\B such that H X ~ S\B. Then 
for some t E H, tx E E so tx E B, a contradiction. 

Now assume that E == B n C where B is right syndetic and 
C is right thick. Pick H E Pf(S) such that S == UtEH t- l B. 
Let F E Pf(S) be given and pick X such that H Fx ~ C. We 
claim that Fx ~ UtEH t-I(B n C). To see this, let y E .F and 
pick t E H su~h that yx E t- l B. Then tyx E B n C. 0 

The following theorem, together with Theorem 2.3 arId the 
obvious fact that they are closed under supersets, shows that 
the piecewise syndeticity properties give a satisfactory notion 
of largeness. 

Theorem 2.5. In a semigroup S, the right piecewise synde­
ticity property is partition regular. 

Proof: Assume that A U B is right piecewise syndetic and 
pick H E Pf (S) such that UtEH t- l (A U B) is right thick. 
Suppose that neither A nor B is right piecewise syndetic. Then 
UtEH t- l A is not right thick so pick F E Pf(S) such that for 
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all xES there exists y E F such that yx ~ UtEH t- I A. That is 
(*) for all xES there exists y E F such that HyxnA == 0. 
Also UtEHF t- I B is not right thick so pick L E Pf(S) such that 
for all xES, there exists y E L such that H Fyx n B == 0. 
Pick xES such that F Lx ~ UtEH t- I (A U B). Pick y E L 
such that H Fyx n B == 0. Then, replacing x by yx in (*), pick 
z E F such that H zyx n A == 0. Then zyx ~ UtEH t- I (A U B), 
a contradiction. 0 

Alternatively, one may establish partition regularity using 
the fact (see Theorem 2.9 below) that a subset A of S is right 
piecewise syndetic if and only if A is a member of some ultra­
filter in the smallest ideal of ((3S, .) with its right topological 
structure. 

Our next two theorems indicate how the properties of thick­
ness, syndeticity, and piecewise syndeticity relate to our previ­
ous notions of size in amenable semigroups. 

Theorem 2.6. Suppose that S is a left amenable semigroup 
and E ~ S. Statements (a) and (b) are equivalent and state­
ments (c) and (d) are equivalent. If in addition S is left can­
cellative) then all four statements are equivalent. 

(a) E is right thick. 
(b) mi(E) ==1. 
(c) There exists a left F¢lner sequence for S whose members 

are contained in E,. 
(d) dr (E) == 1. 

Proof: (a) f-t (b). See [la, Proposition 1.21]. (c) --+ (d). 
Obvious. (d) --+ (c). Pick a left F¢lner sequence (An)~=1 with 
respect to which d(E) == 1. We claim that (AnnE)~=l is a left 
F¢lner sequence. To see this, let s E S be given. Then for any 
n, 

and 

(An n E)\(s(An n E) U (sAn~An)) ~ s(An\E) 

so that I(s(An n E)~(An n E)) \(sAn~An)I :::; 21An\EI. Thus 
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\s(An n E)~(An n E)I < 
IAn n EI ­

l(s(An n E)~(An n E))\(sAn~An)1 + IsAn~Anl < 
IAnnEI 

21An\E\ + \sAn~Anl IAnl 
IAnl IAn n EI 

so that l~~ Is(An n E)~(An n E)I ~n n EI = 0 as required, 

Now assume that S is left cancellative. 

(a) ---+ (c). Since S is left amenable and left cancellative, 
there exists a left F¢lner sequence (An)~=l' Since E is left 
thick, for every n E N there exists X n E S such that Anxn ~ E. 
Using the fact that for any s E S and any n, sAnxn~Anxn ~ 

(sAn~An)xn, one easily checks that (Anxn)~=l is a left F¢lner 
sequence. 

(c) ---+ (a). Let F == {Xl,'" ,Xk} ~ S be any finite set. 
There exists a left F¢lner sequence (An)~=l such that An ~ E 
for all n. Let n be so large that for each i E {1,2, ... ,k}, 

IAn\Xi-l Ani IXi- l An6An\ ----- <	 == 
IAnl IAnl 

IXi(Xi- l An6An)1 IAn6xAni 1 
IAnl :::; IAnl < k' 

(Left cancellation is used for the second to last inequality.) 
Then n7=1 Xi- l An # 0Let s E n7=1 Xi- l An. Then F s ~ An ~ 
E.	 0 

Theorem 2.7. Suppose that S is a left amenable sernigroup 
and E ~ S. 

(a)	 E is right syndetic if and only if there exists a > 0 such 
that m(E) > a for every left invariant mean Tn. 

(b)	 If E is right piecewise syndetic then mi(E) > o. If S is 
also left cancellative) then di(E) > o. 
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Proof: (a). Suppose E is right syndetic. By Theorem 2.4(a), 
S\E fails to be right thick. By Theorem 2.6, a == I-mi(S\E) > 
O. One easily checks that m(E) ~ a for every'left invariant 
mean m. Conversely, if there exists a > °such that m(E) ~ a 

for every left invariant mean m, then mi(S\E) ~ 1 - a < 1 
and S\E fails to be right thick. That is, E is right syndetic. 

(b). Pick H E Pf(S) such that A == UtEH t-IE is right 
thick. By Theorem 2.6, mi(A) == 1, hence there is some left 
inva.riant mean m for S such that m(A) == 1. Consequently, 
there is some t E H such that /l(Xt-lE) > O. But /l(XA) == 
/l(XAoAt ) == /l(Xt-lA). The second assertion is proved similarly. 

o 

One can easily guess that the converse to Theorem 2. 7(b) is 
false. We see now that this is in fact the case. 

Theorem 2.8. Let E == Z \ (U:=2 UkEZ {kn3 +1, kn3 +2, ... , 
kn3 +n}). Then d*(E) > 0) but E fails to be piecewise syndetic. 

Proof: To see that E is not piecewise syndetic suppose instead 
that we have H E Pj(Z) such that UtEH(-t +E) is thick. Pick 
even n E N such that It I < ~ for all t E H. Let F == {I, 2, ... , 
n 3 +~} and pick x E Z such that F +x ~ UtEH(-t +E). Pick 
k E Z such that (k - l)n3 < x ::; kn3 

. Let y == kn3 + ~ - x 
and note that y E F. Pick t E H such that t + y + x E E. But 
t + y + x E.{ kn3 + 1, kn3 + 2, ... ,kn3 + n}, a contradiction. 

Next note that for fixed n 2: 2, and LEN, 
I{ -L3 + 1, -L3 +2, ... ,O} n UkEZ{kn3 +1, kn3 +2, ... ,kn3 + 

n}1 == 
1{-L3 +1,-L3 +2, ... ,O}nU{{kn3 +.1,kn3 +2, ... ,kn3 +n}: 

_£3 < k < -I} I < £3 . 
n 3 - - - n 2 

Moreover {-L3 + 1, -L3 + 2, ... ,O} n UkEZ{kn3 + 1, kn3 + 
2, ... ,kn3 + n} == 0 for n > L. It follows that 
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" l' thtl{-L3+1,-L3+2, ... ,O}nEI>2 1r 
2 

ThIS Imp les a	 L3 - - 6' 
Since L is arbitrary, d*(E) 2 2 - 11": > 0.	 0 

Any compact right (or left) topological semigroup S has a 
(unique) smallest two sided ideal 1«S), which is the union of 
all minimal left ideals and is also the union of all minimal right 
ideals. (See [3] or [6] for these and other unfamiliar algebraic 
facts.) The smallest ideal of ;3S and its closure may be char­
acterized in terms of piecewise syndetic and syndetic sets. We 
thank the referee for providing the characterizations in (c) and 
(d)	 below. 

Theorem 2.9. Let 5 be a discrete semigroup and assurne that 
the operation has been extended to ;3S making (;3S, .) a right 
topological semigroup with S contained in its topological center. 

(a) Let p E ;3S. Then p E 1< (;3S) if and only if for every 
A E PJ {x E S : X-I A E p} is right syndetic. 

(b)	 Let A ~ S. Then eRA n 1< (;3S) =I- 0 if and only z! A is 
right piecewise syndetic. 

(c) Let A ~ S. Then A is right thick if and only if eRA 
contains a left 1:deal of ;3S. 

(d)	 Let A ~ S. Then A is right syndetic if and only if for 
every left ideal L of j3 S J eRA n L =I- 0. 

Proof: (a) [6, Theorem 4.39]. 
(b)	 [6, Theorem 4.40]. 
(c) Necessity. Since A is right thick, {t- I A : t E 5} has the 

finite intersection property. Pick p E j3S such that {t- I ~4 : t E 
S} ~ p. Then Sp ~ eRA and thus j3Sp ~ eRA. Sufficiency. 
Pick a left ideal L of ;3S such that L ~ eRA and pick pEL. 
Then for each t E S, tp E eRA and so t- I A E p. Given F E 
Pj(S), pick x E ntEF t- I A. 

(d) Necessity. Pick H E Pj(S) such that S == UtEH t- I A 
and let L be a left ideal of (3S. Pick pEL and pick t E H 
such that t- I A E p. Then tp E L n eRA. 
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Sufficiency. Suppose that for each H E Pj(S), S\ UtEH t- I A 
=I 0. Then {S\t- I A : t E S} has the finite intersection prop­
erty so pick p E (3S such that {S\t- I A : t E S} ~ p. Then 
eRA n (3Sp =I- 0 so pick q E (3S such that A E qp. Then 
{t E S : t- I A E p} E q so for some t E S, t- I A E p, a 
contradiction. 0 

It is worth noting that one is guaranteed (as an easy conse­
quence of a result of P. Anthony) a certain minimal connection 
between right piecewise syndetic sets and left piecewise synde­
tic sets. 

Theorem 2.10. Let S be a semigrouPJ let r E NJ and let 
S == U~=I Ai. Then some Ai is both left piecewise syndetic 
and right piecewise syndetic. 

Proof: Let !{f be the smallest ideal of ((3S,·) with its left 
topological structure and let !{r be the smallest ideal of ((3S, .) 
with its right topological structure. By [1, Tlleorel11 4.1] !{g n 
eR!{r =I 0 so pick p E !{g n eR!{r. Pick r E {I, 2, ... ,r} such 
that Ai E p. Then by Theorem 2.9(b) Ai is both left and right 
piecewise syndetic. 0 

We now introduce one more class of sets. One will notice 
that this class is a hybrid of what have been for us left and 
right notions. 

Definition 2.11. Let S be a selnigroup and let A ~ S. Then 
A is strongly right piecewise syndetic if and only if there exists 
H E P j (S) such that UtEH At- ~ is right thick. 

Justification for our choice of terminology in the previous 
definition is given by the following result. 

Theorem 2.12. Let S be a semigroup. Then any strongly 
right piecewise syndetic subset of S is right piecewise syndetic. 

Proof: Let A be a strongly right piecewise syndetic subset 
of S and pick H E P j (S) such that UtEH At- I is right thick. 
Then UtEH At- I is right piecewise syndetic so, by Theorem 2.5 
there is some t E H such that At- I is right piecewise syndetic. 
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Pick ]( E Pf(S) such that for each F E Pj(S), USE[{ 8-
1 At-1 

is right thick. Given F E Pj(S), pick xES such that Fx ~ 

Us !{ 8-
1 At-I. Then Fxt ~ Us !{ 8-

1 A so that Us ]( 8-
1 A

E E E
is right ,thick. 0 

We then have that all of the implications in the following 
diagram hold. 

I.s. r.s. 

A 
l.t. s.I.p.s. s.r.p.s. r.t. 

1 ~ ~ 1 
I.p.s. r.p.s. 

We set out now to show that none of the missing ilnplica­
tions is valid in general. Wherever possible, we shall present 
counterexamples in a group, specifically the free group on two 
generators. The one case in which this is not possible is the 
proof that not every right thick set is strongly right piecewise 
syndetic. 

Theorem 2.13. If S is a semigroup with nonempty center) 
then every right th1:ck subset of S is strongly right pieCe1JJise 
syndetic. In particular) every r1:ght thick subset of a group is 
strongly right pieCe1JJise syndet1:c. 

Proof: Let A be a right thick subset of S. Pick y in the center 
of S and let H == {y}. To see that Ay-l is right thick, let 
F E Pj(S) be given and pick xES such that (Fy)x ~ A. 
Then (Fx)y ~ A so that Fx ~ Ay-l as required. 

Theorem 2.14. There is a subset of the free sernigroup on 
countably 'many generators 1JJhich is right thick but not strongly 
right piece1JJise syndetic. 

Proof: Let S be the free semigroup on the letters {Yn : 'n E N} 
(without identity). For w E /3, let f(w) be the length of 'w, that 
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is the number of occurrences of letters in w. For n E N, let 
Tn == {w E S: f(w) ~ n} and let A == U:=I TnYn. 

Then A is trivially right thick. Now suppose we have some 
H E Pf(S) such that UtEH At-I is right thick. Let m == 
max{n : there is some t E H such that Yn occurs in t}. Let F == 
{YI m} and pick xES such that Fx ~ UtEH At-I. Pick t E H 
such that YI m xt E A and pick n E Nand z E Tn such that 
YI m xt == ZYn. Then Yn occurs in t so n ~ m and consequently 
f(z) ~ m. But then f(zYn) ~ m + 1 while f(YI mxt) 2:: m + 2, a 
contradiction. 0 

Since a free semigroup on two generators contains a copy of 
a free semigroup on countably many generators, we find the 
following contrast to Theorem 2.14 interesting. 

Theorem 2.15. Any right thick subset of a free semigroup on 
two generators is strongly right piecewise syndetic. 

Proof: Let S be the free semigroup on the letters a and band 
let A be a right thick subset of S. Let H == {a, b'}. To see 
that UtEH At-I is right thick, let F E Pf(S) be given. Then 
Fa E Pf(S) so pick xES such that Fax ~ A. Let t be the 
rightmost letter of x. Then x == zt for some z E S U {0}. Thus 
az E Sand t E Hand Faz ~ At-I. 0 

Theorem 2.16. There is a subset of the free group G on the 
letters a and b which is right syndetic and left thick but is not 
right thick and is not strongly right piecewise syndetic. 

Proof: Let A == {w E G\{e} : the leftmost letter of w is a or 
a-I}. Let H == {a,a- I }. Then G == UtEH t-IA so that A is 
right syndetic. Also given F E Pf(G), if m == max{£(w) : w E 
F} (where f(w) is the length of w), then am+1 F ~ A so A is 
left thick. 

To see that A is not right thick, let F == {b, b- I 
}. Then for 

any x E G, either bx fI. A or b- I x fI. A. 
To see that A is not strongly right piecewise syndetic, sup­

pose that one has H E Pf (G) such that UtEH At-1 is right 
thick. Let m == max{f(w): w E H}, let F == {b2m+l,b-2m-l}, 
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and pick x E G such that Fx ~ UtEH At-I. Pick t E H 
such that b2m+1 xt E A. Then the leftmost 2m + 1 letters of xt 
must all be b- I so f(xt) ~ 2m + 1, while f(xt) :::; f(x) + f(t) :::; 
f( x) +m. Consequently, f( x) ~ m + 1 and thus the leftmost 
letter of x is also the leftmost letter of xt, and thus the leftmost 
letter of x must be b- I . Similarly, choosing s E H such that 
b-2m - 1 xs E A, one concludes that the leftmost letter of x is b. 

o 

Theorem 2.17. There is a subset of the free group G on the 
letters a and b which is right and left syndetic but is neither 
right nor left thick. 

Proof: Let A == {w E G : f(w) is even}. Letting H == {e, a} 
one easily sees that G == UtEH t- I A == UtEH At-I, so that A 
is both right and left syndetic. (If f( w) is odd, then f( aw) == 
f(w) ± 1.) 

Similarly, if F == {e, a}, one easily sees that there is no x E G 
with either Fx ~ A or xF ~ A. D 

Theorem 2.18. There is a subset of the free group G on the 
letters a and b which is right thick and strongly right piecewise 
syndetic but is not left piecewise syndetic. 

Proof: Let A == {wan: w E G, n E N, n ~ f(uJ), and 
either w == e or the rightmost letter of ow is not a-I}. To see 
that A is right thick (and consequently, by Theorem 2.13, is 
strongly right piecewise syndetic), let F E 'Pf(G) be given. Let 
m == max{f(w) : w E F}. Then Fa2m ~ A. 

To see that A is not left piecewise syndetic, suppose instead 
that we have H E Pf( G) such that UtEH At-I is left thick. 
Let m == max{f(w): w E H}, let F == {bm+l,b-m- I }, and pick 
x E G such that xF ~ UtEH At-I. Without loss of generality 
assume that either x == e or the rightmost letter of x is not 
b- I , and pick t E H such that xbm+It E A. This is clearly 
impossible. D 
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Theorems 2.16, 2.17, and 2.18 (and their left-right switched 
versions) establish that none of the missing implications in the 
diagram appearing before Theorem 2.13 is valid in the free 
group on 2 gerlerators, except that in any group right thick 
sets are strongly right piecewise syndetic (and left thick sets 
are strongly left piecewise syndetic). 

We saw in .Theorem 2.5 that the property of being right 
piecewise syndetic is partition regular. On the other hand, 
we saw in the proof of Theorem 2.16 that in the free group 
G on the letters a and b, the set A == {w E G\{e} : the 
leftmost letter of w is a or a-I} is not strongly right piecewise 
syndetic and similarly B == {w E G\{e} : the leftmost letter 
of w is b or b-1 

} is not strongly right piecewise syndetic. Since 
A U B == G\{e} is trivially left thick, and hence strongly right 
piecewise syndetic, one sees that the property of being strongly 
right piecewise syndetic is not partition regular. 

We shall see in Theorem 3.6 that in any semigroup, the 
quotient set AA-1 of a strongly right piecewise syndetic A is 
both a left IP* set and a right IP* set. Consequently, if S 
is a semigroup in which the notions of strongly right piece­
wise syndetic and right piecewise syndetic coincide, one has 
the corollary that whenever r E Nand S == U~=1 Ai, one has 
for some i E {1,2, ... ,r} that Ai Ai -

1 is both a left IP* set 
and a right IP* set. 

Other strong combinatorial consequences are also obtainable 
in semigroups for which these notions coincide. They obviously 
coincide in commutative semigroups, so it is of interest to de­
termine how much noncommutativity is needed to separate the 
notions of strongly right piecewise syndetic and right piecewise 
syndetic. In our final result of this section, we shall show that 
the answer is "not much". 

Let G be the Heisenberg group. That is, G == Z3 with the 
operation defined by 

(x,y,z)· (u,v,w) == (x +u,y +v + xw,Z +w). 
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(To see that G is a group note that it is isomorphic to the upper 
triangular 3 x 3 matrices with integer entries and 1's on the 
main diagonal.) It is well known that G is a nilpotent group of 
rank 2. The center of G is rather large, namely {OJ x Z x {OJ. 
Also, the centralizer of any element of G is always strictly larger 
than the center. 

We thank the referee for providing a significant simplification 
of the following proof. 

Theorem 2.19. Let G == Z3 with the operation defined. above. 
There is a right piecewise syndetic subset of G which is not 
strongly right piecewise syndetic. 

Proof: Let 

A == {(d, 22l .d+e, 22l + f) : 1EN, 12 9, d, e, f E {a, 1, ... ,21}, 

and d E 2M}. 

To see that A is right piecewise syndetic, let H == {(a, 0,0), 
(1,0,0)}. Let F E Pf(G) be given and pick n E N\{l} such 
that F ~ {m E Z : Iml :::; n}3. Let 1 == n2 + 3n and let 
x == (1,2 2l 

. 1+ 1, 22l + n). To see that Fx ~ UtEH t- l A, let 
y == (u, v, w) E F. Pick c E {O, I} such that 1+ u + e is even 
and let t == (c,O,O). Then 

tyx == (1 +u+ e, 22l (1 +u+ e) +1+v +nu+ew +en, 22l +11) +n) . 

Let d == u+l+e, e == l+v+nu+ew+en, and f == w+n. Then 
tyx == (d,2 2l .d+e,22l + f). Now d == l+u+c:::; l+n+1 < 2l, 
d == 1+ u + e 2 l - n > 0, and c was chosen to make d even. 
Also 0 == n - n ::; n + w ::; n + n < 21 so f E {O, 1, ... ,21}. 
Finally, e == 1+ v + nu + (w + n)c 2 l - n - n2 + °> °and 
e == l+v+nu+(w+n)e:::; 1+n+n2 +2n == 21. Thus tyx E A. 

To see that A is not strongly right piecewise syndetic, sup­
pose instead that one has H E Pf (G) such that UtEH At- l 

is right thick. Let m == max( {max{lul, lvi, Iwl} : (u, v, w) E 
H} U {9}). 

Pick by Theorem 2.9(c) a left ideal L of /3G such that L ~ 

ef(UtEH At- l 
. By [6, Corollary 4.33], G* == /3G\G is a right 
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ideal of (3G and so G* n L # 0. Pick q E L n G*. Then Gq ~ 

d(UtEH At-1 
). Choose t and s in H such that At-1 E q and 

As-1 E (1,0, O)q. Let t-1 == (u, v, w) and let S-1 == (u', v', w'). 
Let 

B == {(d, 22l ·d+e, 22l+I) : lEN, l ~ m, d, e, I E {a, 1, ... ,2l}, 

and d E 2N} 

and notice that A\B is finite. Consequently Bs-1 E (l,O,O)q 
and, because (1,0, 0)At-1 E (1,0, O)q, (1,0, 0)Bt-1 E (1,0, O)q. 
Choose x E Bs-1 n (1,0,0)Bt- 1 and pick l,d,e,I,l',d',e',I' 
such that l,l' E N,l,l' ~ m,d,e,I E {O,l, ... ,2l},d',e',I' E 
{a, 1, ... ,2l'} ,d, d' E 2N, and 

x == (1 + d + u, 22l (1 + d) + e + v + dw + I + w, 22l + I + w) 

== (d' + u', 22l'd' + e' + v' + d'w', 22l
' + I' + w'). 

Now the largest power of 2 less than or equal to 22l + I +w is 
either 22l or 22l - 1 and the largest power of 2 less than or equal 
to 22l' + I' +w' is either 22l

' or 22l
'-1 and consequently, l == l'. 

< 22lAlso Ie + v + dw + I + w - e' - v' - d'w'l < 1312 

and thus, since 22l divides e + v + dw + I +w - e' - v' - d'w', 
e+v+dw+I+w == e'+v'+d'w'. Consequently 22l (1+d) == 22l d', 
which is a contradiction because 1 +d is odd, while d' is even. 
D 

3. QUOTIENT SETS AND THE IP* PROPERTY 

We show that we can get a generalization of Theorem 1.5 
in any left amenable semigroup. Making a left-right switch in 
the semigroup multiplication, it is clearly equivalent to a ver­
sion for right amenable semigroups which may be formulated 
as easily. As before, we shall leave left-right switches to the 
reader. Recall that we have defined AA-1 == {x E S : there 
exists yEA such that xy E A} and A-IA ::= {x E S : there 
exists yEA such that yx E A}. 
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Theorem 3.1. Let S be a left amenable semigroup and let 
A~S. Ifmi(A) >0, thenAA-1 is a left IP*set. Ifal80Sis 
left cancellative, then AA-1 is a right IP* set. 

Proof: Pick a left invariant mean m such that m(A) > O. Let 
a sequence (Xn)~=l be given. Then for each n E N we have 
by Lemma 1.3, m((III~=l Xt)-l A) = m(A) so by the additivity 
of m, {(nI~=l Xt)-l A : n E N} cannot be a disjoint collection. 
Consequently we may pick r < s such that (nI;=l Xt)-l A n 
(nI:=l Xt)-l A =I- 0. Let a E (III~=l Xt)-l An (III:=l Xt)-l A. Then 
(nI;=l Xt)a E A. Let b == (III;=l Xt)a. Then (III:=r+1 Xt)b == 
(III:=l Xt)a E A so III:=r+1 Xt E AA-1

. 

Now assume that S is left cancellative. Then one has by 
Lemma 1.3 for each n E N that m((l[~l Xt)A) == m(A). 
Consequently one may pick m < n such that (11I~1 Xt)A n 
(l[~=1 Xt)A =I- 0. So pick a, b E A such that (N~l Xt)a == 
(l[~=1 Xt)b. Then cancelling IfI~l Xt on the left, one has that 
a == (l[~=m+1)b so that ill~=m+1 E AA-1

. 0 

In light of the inequality di(A) ~ mi(A) for left cancellative 
left amenable semigroups, one sees that we have in fact gener­
alized Theorem 1.5. Another corollary is the following, which 
follows from Theorem 2.7. 

Corollary 3.2. Let S be a left amenable semigroup and let A 
be a right piecewise syndetic subset of S. Then AA -1 is a left 
IP* set. If S is left cancellative, then AA-1 is a right IP* set. 

A natural question is whether one can use A -1 A instead of 
AA-1 without changing the other conditions. The answer, as 
we now see, is "no". 

Theorem 3.3. There exist a left cancellative, left amenable 
semigroup S and a subset A of S which is both right pZ:ecewise 
syndetic (in fact right thick) and left piecewise syndetic such 
that A -1 A is neither a left IP* set nor a right IP* set. 

Proof: Let S be a finite right zero (i.e. X'y == Y for all x, yES) 
semigroup with at least two members. As is well known, and 
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. ~SES f(8) 
easy to see, the functIOn fJ, defined by fJ,(f) = lSI IS a 

left invariant mean for S. (See for example [3, p. 80].) 
Now pick xES and let A == {x}. Then S == Ax-1 and 

Sx == A so A is both left and right piecewise syndetic. Also 
A-1 A == A. Pick z E S\A and for each n E N let Yn == z. Then 

FPD((Yn)~=1) == FPI((Yn)~=1) == {z}. 0 

The reader may wish to verify that if one replaces the condi­
tion of Theorem 3.3 that S be left amenable and left cancella­
tive by the condition that S be an amenable group, then as a 
consequence of the left-right switched version of Corollary 3.2, 
A-I A must be both left IP* and right IP*. 

We have seen that in one sense, given a left amenable semi­
group, AA-1 is a better analog than A -1 A to the difference set 
A - A obtained when S is commutative. 

In the left-right switched version of Corollary 3.2, A is left 
piecewise syndetic. This prompts the question of whether we 
may replace right piecewise syndeticity of A with left piecewise 
syndeticity in Corollary 3.2. Again, the answer is "no", as we 
now show via an example which is almost exactly that given 
in [1, Theorem 3.3]. 

Theorem 3.4. There exist an amenable group (T, .) and a left 
piece1vise syndetic (in fact left thick) subset A of T such that 
AA -1 is neither a left IP* set nor a right IP* set. 

Proof: Let T be the group of all permutations of N that 
move only finitely many points. It is well known that (T, 0) is 
amenable. Indeed, if for each n E N we let Sn == {g E T : {x E 

N: g(x) :/:- x} ~ {1,2, ... ,n}}, then (Sn)~=1 is a. two-sided 
F¢lner sequence. Let fn == (1, n +1)(2, n +2) ... (n, 2n). That 
IS, 

k + n if k::; n 

fn(k)== k-nif n<k~2n 

k if k > 2n 
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Let A == U:=2 fnSn. One easily checks that A is left thick and 
hence left piecewise syndetic. 

We now claim that AA-1 ~ {g E T : g(1) =1= 1 or g(2) == 
2}. To see this let 9 E AA-1 and pick n,m E N\{1} and 
h E Sn and k E Sm such that 9 0 1m 0 k == In 0 h. Then 
9 == In 0 h 0 k- 1 

0 1m, since 1m == 1m -1. If n == m, then 
g(2) == 2. If n > m, then g(1) == n + h(m + 1) =f 1. If n < m, 
then g(1) == In(m + 1) =1= 1. 

Now for each n E N, let gn == (2, n + 2). Given F E Pf(N), 
let k == min F and let f == max F. Then (IIInEF gn) (1) == 

(illnEF gn)(1) == (1) and (IIInEF gn)(2) == k+2 and (llInEF gn)(2) == 
R+ 2 so F PD ( (gn)~=l) n AA -1 == F P1( (gn)~=l) n AA -1 == 0. 0 

Notice that d;(A) == 1 and (due to the fact that AA- 1 is 
not IP*) di(A) == 0 for the set A constructed in the previous 
theorem. 

If a semigroup S is partitioned into finitely many cells, then 
by Theorem 2.10, some cell is b9th left and right piecewise 
syndetic. Consequently, if a left and right amenable semigroup 
S is partitioned'into finitely many cells then some cell A of the 
partition will have the property that AA -1 is a left IP* set and 
A -1 A is a right IP* set. We see now that this can fail badly if 
the amenability assumption is deleted. 

Theorem 3.5. Let G be the free group with identity e on the 
letters a and b. There is a partition F of G into four sets such 
that 

(1)	 each A E F is both left and right piecewise syndetic, 
(2)	 for each A E F, neither A -1 A nor AA -1 is either- a left 

IP* set nor a right IP* set. 
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Proof: Let 

Al ={ e} U {w E G\ {e}: the leftmost letter of w is a or a-I 

and the rightmost letter of w is a or a-I} 

A 2 ={w E G\ {e}: the leftmost letter of w is b or b- 1 

and the rightmost letter of w is b or b-1 
} 

A3 ={w E G\ {e}: the leftmost letter of w is a or a-I 

and the rightmost letter of w is b or b-1 
} 

A4 ={w E G\ {e}: the leftmost letter of w is b or b-1 

and the rightmost letter of w is a or a-I} 

and let F = {AI, A 2 , A3 , A4 }. 

To see that A2 is left piecewise syndetic, let H = {b, b-1 
} and 

let F E Pf(G) be given. Let m be the maximum length of a 
word in F. Then given any w E F one has either bwbm +2 E A 2 

or b-1 wbm +2 E A 2 so Fbm +2 ~UtEH i-I A 2 . Similarly, A 2 is 
right piecewise syndetic. Proofs for left and right piecewise 
syndeticity of the other cells in the partition are nearly identi­
cal. 

It is easy to see that 

A2-1 A2 = A2A2-1 = {e}u{w E G\ {e}: the leftmost letter of 
w is b or b-10r the rightmost letter of w is b or b-1 }. 

Similarly one sees that 

Al -1 Al = A1A1-
1 = {e }U{w E G\ {e}: the leftmost letter of 

w is a or a-lor the rightmost letter of w is a or a-I} 

and that A3 -1 A3 = A4 A4 -1 = A2 A2 -1 and A4 -1 A4 = A3 A3 -1 = 
A

1
A1 -1. 

Consequently, given any A E F one has that AA-1 and 
A -1 A each miss either F P( (an)~l) or F P( (bn)c;=l) (where we 
omit the subscripts I and D because the products in any order 
are the same). 0 

Theorem 3.5 demonstrates the following circumstance for 
sufficiently badly non-commutative semigroups S: any family 
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L of subsets of S having the property that AA-1 is left or 
right IP* for any A E L, must fail partition regularity. In 
other words, it must be possible to partition some set from L 
into two sets, neither of which is an element of £. As a result, 
membership in £ will not constitute a good notion of largeness 
according to our established criteria. For instance in Theorem
3.5, if B == {w E G\ {e} : the rightmost letter of w is b or b- 1 

}, 

then BB-1 == G and B == A2 U A4 . 

In spite of this considerable drawback, we nevertheless pro­
ceed now to show that the strongly right piecewise syndetic 
sets form a class of sets sufficient to guarantee that AA-1 is 
left (and right) IP* for all members A of that class. 

Theorem 3.6. Let S be a semigroup and let A be a strongly 
right piecewise syndetic subset of S. Then AA-1 is both a left 
IP set and a right IP* set. 

Proof: Pick H E Pf(S) such that UtEH At- I is right thick 
and let 1 == IHI. Let a sequence (xn)~=1 in S be given. 

Choose a E S such that {IIIk=1 Xk : 1 ~ n ~ 1+ l}a ~ 

UtEH At~l. Pick t E Hand m, n with 1 ~ m < n ~ 1+ 1 
such that (TIIk=1 xk)a and (TII~1 xk)a both lie in At-I. Then 
(TIIk=1 xk)at E A and (TIIk=1 xk)at E A so (TIIk=m+1 Xk) E AA-1. 

This shows that AA --1 is a left IP* set. 
To see that AA-1 is right IP*, choose a E S such that 

{I[~~ln Xk : 1 ~ n ~ 1+ l}a ~ UtEH At-I. Pick t E H 
and m, n with 1 ~ m < n ~ 1+ 1 such that (I[~~ln xk)a and 
(lfIi~~ xk)a both lie in At-I. Then (lfIi~lm xk)at E A and 
(1lI~~}n xk)at E A so (N~:~ Xk) E AA-1

. 0 

We saw in Section 2 that not every right syndetic set is 
strongly right piecewise syndetic but that every left syndetic 
set is. Thus we come to the following, which, paradoxically, 
we have arrived at via a very "rightward" train of thought. 

Corollary 3.7. Let S be a semigroup and let A be a left syn­
detic subset of S. Then AA-1 is both a left IP* set and a right 
IP* set. 



50 BERGELSON, HINDMAN AND MCCUTCHEON 

Notice that the left-right switch of the previous corollary 
yields the result that if A is right syndetic then A -1 A is both 
a left IP* set and a right IP* set. This prompts the question 
of whether a hybrid of these two versions is true. The answer, 
as we now see most strongly, is "no". 

Theorem 3.8. Let G be the free group with identity e on the 
letters a and b. There is a partition of G into two sets A and 
B such that 

(1) A and B are each right syndetic and 
(2)AA-1 and BB-1 are each neither left nor right IP*. 

Proof: Let
 
A == {e} U {w E G\{e}: the leftmost letter of w is a or a-I}
 

and 
B == {w E G\ {e} : the leftmost letter of w is b or b-1 

}. 

Let H == {a, a-I} and let ]{ == {b, b-1
}. Then S == UtEH i-I A == 

UtE!{ i-I B so that A and B are right syndetic. 

It is easy to check that AA-1 then consist of e and all words 
either beginning or ending with a or a-I and that BB-1 con­
sists of e and all words either beginning or ending with b or b-1

. 

Hence AA-1 nFP( (bn)~I) == 0, and BB-1 nFP( (an)::=I) == 0. 
Consequently neither AA-1 nor BB-1 is either left or right IP*. 

D 

It is a routine fact that in (N, +), if A is a piecewise syndetic 
set then there is a syndetic set C with C-C ~ A-A, so that, as 
far as difference sets are concerned, it does not matter whether 
one is talking about syndetic or piecewise syndetic sets. (We 
remark that there exist sets A of positive density in N such 
that for no syndetic set C do we have C - C ~ A-A. This 
observation was made by Forrest in [4], and is a corollary of a 
result of Kriz,([7], see also [8]).) With the choice of AA-1 to 
replace the notion of difference sets one has the corresponding 
result in any semigroup. We are grateful to Imre Leader for 
providing a simple proof of this result, showing in fact that the 
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same set H which establishes that A is right piecewise syndetic 
also establishes that C is right syndetic. 

Theorem 3.9. Let 5 be a semigroup, let A be a right piecewise 
syndetic subset of 5, and pick H E Pf(S) such that UtEH t-IA 
is right thick. Then there exists a right syndetic subset C of 5 
(in fact S == UtEH t-lC) such that whenever F E Pf(S) and 
F ~ C, there exists xES such that Fx ~ A. In particular, 
CC- l ~ AA- l . 

Proof: For each F E Pf(S), let B F = {T E SH : (:3x E 

S)(Vs E F)(T(S)' s· x E An, where SH is the set of functions 
from S to H. Given F E Pf(S), pick xES such that Fx ~ 

UtEH t- lA and for each S E F, pick 7(s) E H such that 
7(S) . S . x E A. Defining 7 at will on the rest of 5, one has 
7 E B F . Given F, G E Pf(S) one has BFUG ~ BF n BG . Thus 
{BF : F E Pf(S)} has the finite intersection property. 

Also, given F E Pf(S) and T E SH\BF one has that {O" E 

SH : O"IF = TIF} is a neighborhood of T missing BF. Thus 
{BF : F E Pf(S)} is a collection of closed subsets of the 

compact space 5H with the fin,ite intersection property. Pick 
7 E nFEPj(S) B F and. let C == {7(S)·S: S E S}. Then trivially 

5 == UtEH t-IC. 
Let F E Pf(S) such that F ~ c. Pi~k G E Pf(5) such that 

F == {7(S)' S : S E G}. Since 7 E BG , pick xES suth that for 
all s E G, 7(S)' s· x E A. 

To see the "in particular" conclusion, let a E CC- l and pick 
b E C such that ab E C. Let F == {b, ab} and pick x E 5 such 
that Fx ~ A. Then a E AA- l . 0 

Our origina.l proof of (a slightly weaker version of) Theorem 
3.9 used the algebraic structure of (3S. It is so short (given 
that one knows the characterizations of the smallest ideal of 
/35 and its closure) that we present it now for comparison. 
(The slightly weaker version does not guarantee that the same 
H establishes the right piecewise syndeticity of A and the right 
syndeticity of C.) 
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Alternate Proof: Let ((3S,·) have the right continuous op­
eration. By Theorem 2.9(b), eRA n ](((3S) =I 0 so pick p E 
cfAn]{((3S). Let C == {x E S: x- I A E p}. Then by Theorem 
2.9(a), C is right syndetic. Let F E Pf(S) such that F ~ C. 
Pick x E ntEF t- l A. Then Fx ~ A. 0 

On the other hand one does not get the corresponding result 
for A -1 A, even in an amenable group, or even if one assumes 
A to be both left and right piecewise syndetic. 

Theorem 3.10. (a) There exists a group G and a set A ~ G 
such that A is both left and right piecewise syndetic but there 
does not exist a right syndetic set C with C- l C ~ A -1 A. 

(b) There exists an amenable group T and a right piece/wise 
syndetic (in fact right thick) set B such that there does not 
exist a right syndetic set C such that C- I C ~ B-1 B. 

Proof: (a). Let G be the free group with identity e on the 
letters a and b and let A == {w E G\{e} : the leftmost letter 
of w is b or b- l and the rightmost letter of w is b or b- l }. We 
saw in the proof of Theorem 3.5 that A is both left and right 
piecewise syndetic and that A -1 A == {e} U {w E G\{e} : the 
leftmost letter of w is b or b- l or the rightmost letter of w is b 
or b- l }. 

Now suppose that we have a right syndetic set C with C- I C ~ 

A-I A. Pick H E Pf(G) such that G == UtEH t-Ie. By the 
pigeon hole principle pick m < n in Nand t E H such that 
tan E C and tam E C. Then an-in E C-I C\A- l A. 

(b). Let T be the group of Theorem 3.4, and B == A-I, 
where A is the set appearing there. Then B is right thick, but 
B- 1 B is neither left nor right IP*. Since the left-right switched 
version of Theorem 3.7 guarantees that C- l C is left and right 
IP* for every right syndetic C, we cannot have C-1C ~ B-1 B. 
o 

We now establish a dynamical equivalence pertaining to the 
kinds of questions we have been considering. 
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Definition 3.11. A dynamical system is a pair (X, (Ts)SES) 
where X is a compact Hausdorff space, 5 is a semigroup, for 
each s E 5, T s is a continuous function from X to X (with 
Te as the identity on X if e is an identity for S), and for each 
s, t E 5, Ts 0 Tt == Tst . The dynamical system (X, (TS)SES) is 
minimal if and only if no proper closed subset of X is invariant 
under Ts for each S E 5 .. 

We state the following theorem for general classes that are 
closed under supersets. In our previous results in this section 
we have been taking Q == {A ~ 5 : A is an IP* set}. 

Theorem 3.12. Let 5 be a semigroup and let Q ~ P(S') such 
that Q is closed under supersets. The following statements are 
equivalent. 

(a)	 For every right piecewise syndetic subset B of 5, BB- I E 

Q. 
(b)	 For every right syndetic subset B of 5, BB- I E Q. 
(c)	 For every minimal dynamic system (X, (Ts)SES) and every 

nonempty open subset U of X, {s E 5: UnTs-IU:f= 0} E 
Q. 

Proof: That (a) implies (b) is trivial. To see that (b) implies 
(c) let (X, (TS)SES) be a minimal dynamic system and let U 
be a nonempty open subset of X. Pick any x E 5 and let 
B == {s E 5 : Ts ( x) E U}. 

We claim that B is right syndetic. By the minimality of 
(X, (Ts)sES), pick H E Pf(5) such that X == UtEH Tt-1U. 
(See for example [5, Lemma 1.14].) Then, as can be routinely 
verified, 5 == UtEH t- I B. 

It is then easy to see that BB- I ~ {s E S : Un Ts -IV # 0} 
so t hat {s E 5 : U n Ts-1 U :f= 0} E Q. 

To see that (c) implies (a), let B be right piecewise syndetic. 
Then by Theorem 2.9(b), eRB n !{(f35) 1= 0. Since !{(f35) is 
the union of all of the minimal left ideals of f3 5, pick a minimal 
left ideal L of f3 S such that eRB n L 1= 0. 
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We claim that (L, (As)SES) is a minimal dynamical system. 
Each As is continuous since s E S, and since L is a left ideal, 
As : L ----+ L. Trivially As 0 At == Ast. To see that (L, (As)SES) 
is minimal let Y be a closed nonempty subset of L which is 
invariant under each As and pick p E Y. Then (JS . p is a left 
ideal which is contained in the minimal left ideal L so f3 S· p == L 
and since Y is invariant, S·p ~ Y. Thus L == (JS·p == eR(S·p) ~ 

Y. 
Let U == eRB n L. Then U is a nonempty open subset of L. 

We claim that {s E S: un As -
I U =1= 0} ~ BB- l

. Let s E S 
such that UnA s -

I U =1= 0 and pickp E UnA s -
I U. Then B E P 

and B E s . p and hence S-l B E p. Pick t E B n S-l B. Then 
st E B so s EBB-I. 0 

To summarize, right syndeticity and right piecewise synde­
ticity of A each guarantee by Corollary 3.2 tllat AA-1 will be 
both left and right IP* in left amenable, left cancellative semi­
groups, but not for free groups (Theorem 3.8). Left syndeticity 
of A, on the other harld, guarantees that AA -1 will be left and 
right IP* in general semigroups (Corollary 3.7), but left piece­
wise syndeticity does not, even for amenable groups (Theorem 
3.4). 

4. QUOTIENT SETS AND THE ~ * PROPERTY 

According to Theorem 1.1, if A ~ N with d*(A) > 0, then 
A - A is an IP* set. Upon examination of the proof, one sees 
in fact that A - A intersects non-trivially the set of differences 
of any infinite set. Namely, if B is an infinite subset of N, then 
(A - A) n (B - B) =1= 0. This is a stronger property, for every 
IP-set in N, say FS((Xn )C:==l)' contains the difference set of 
some infinite set (for example, the set B == {I;~=1 Xt : n E N}). 
We call a set of the form B - B, where B is an infinite subset 
of N, a ~ set, and accordingly a subset E ~ N which intersects 
every ~ set non-trivially a ~ * set. 
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Hence in N, the ~ * property is stronger than the IP* prop­
erty. We wish to fashion a definition of ~ sets in more gen­
eral semigroups or groups in such a way that the resulting ~* 
property remains stronger than the corresponding IP* prop­
erty. One immediate concern is that we may need separate 
notions of "left" and "right" ~ * sets in the non-commutative 
situation to correspond to the separate notions of left IP* and 
right IP*. There is another consideration, however, even more 
basic. 

Consider the group Z. Clearly the set E of negative inte­
gers will intersect B - B non-trivially for any set B of infinite 
cardinality, but E is obviously not IP*. This motivates the 
following definition. 

Definition 4.1. Let S be a semigroup and let E ~ S. 

(a) Given a sequence (bn)C:==1 in S, let ~I( (bn)C:==I) == {~C E S : 
there exist m < n in N such that bmx == bn} and let 
~D( (bn)~=l) == {x E S : there exist m < n in N such that 
xbm == bn}. 

(b)	 E is a right (respectively left) ~ set if and only if there ex­
ists a one-to-one sequence (bn)C:==1 in S such that 
~I((bn)~=l) ~ E (respectively ~D((bn)~=l) ~ E). 

(c)	 E is a right (respectively right) ~ * set if and only if E 
intersects every right (respectively left) ~ set in G non­
trivially. 

Notice that, if B == {bn : n EN}, then ~I((bn)C:==l) ~ B-IB 
and ~D( (bn)~=l) ~ BB-I . 

In some semigroups, even cancellative semigroups~ there may 
be no ~* sets. For example, in the free semigroup on the letters 
a and b, if Cn == abna, then ~I( (Cn)~=l) == ~D( (cn)~l) == 0. 
On the other hand, in a group any ~ set must be infinite and 
so all cofinite sets are ~ * sets. 

Theorem 4.2. Let S be a left cancellative semigroup. Every 
right ~ * set in S is a right IP* set. 
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Proof: Let E be a right ~ * set, and let a sequence (xn)~=1 in 
S be given. For each n E N let bn == l[~=1 Xt. Pick y E E and 
m < n in N such that bmy == bn . Since also bmN~=m+1 Xt == bn 

we have by left cancellation that y == l[~=m+1 Xt. D 

We continue our practice of leaving the obvious left-right 
switches to the reader. 

The converse to the previous result is false, even for ~ sets, 
as ~e shall see in Theorem 4.4. For this we need the following 
lemma. 

Lemma 4.3. Let (G, +) be a countable abelian group and let 
T be a thick subset of G. There is a sequence (an)~=1 in G 
such that T == ~I((an)~=I). 

Proof: Enumerate T as {tn : n EN}. Pick any al E G 
and let a2 == al + t l . Inductively let kEN and assume 
that aI, a2, ... , a2k have been chosen so that a2k - a2k-1 == tk 
and whenever i < j in {1,2, ... ,2k}, aj - ai E T. Let F == 
{-aI, -a2,··· , -a2k}U{tk+l- al, tk+l- a2, ... , tk+l- a2k} and 
pick a2k+1 such that F + a2k+1 ~ T. Let a2k+2 == a2k+1 + tk+l. 

D 

Theorem 4.4. There is a sequence (an)~=1 in Z such that 
~I( (an)~=I) is an IP* set but not a ~ * set. 

Proof: It is easy to see that Z\~I( (2n)~=1) is thick and an 
IP* set, and it is trivially not a ~ * set. Pick by Lemma 4.3 a' 
sequence (an)~l such that Z\~I( (2n)~=I) == ~I( (an)~=I). D 

As is well known to aficionados, the right IP* property in 
any semigroup S is preserved by finite intersections. That is, 
if A and B are both right IP* sets in S, then An B is right IP* 
as well [6, Remark 16.7]. We show now that the same result 
holds for right ~ * sets in any left cancellative semigroup. (But 
recall that there may be no right ~ * sets.) 

Theorem 4.5. Let S be a left cancellative semigroup. If E 
and F are right ~ * sets in S) then En F is a right ~ * set. 
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Proof: Let (bn )C:=1 be a sequence in S. For a set X, let 
[X]2 denote the set of two element subsets of X. Let Ao == 
{{m, n} E [N]2 : m < n and there exists x E E such that 
bmx == bn} and let Al == [N]2\Ao. Pick by Ramsey's Theo­
rem [11] an infinite subset C of Nand i E {O, I} such that 
[C]2 ~ Ai. Enumerate C in increasing order as (k(n))~=I. 

Since E n ~I( (bk(n))~I) =I 0 and thus i == O. Since F is a 
right ~* set, pick y E Fn ~I((bk(n))~=I) and pick rn < n in N 
such that bk(m)Y == bk(n). Since {k(m), k(n)} E [C]2 ~ Ao, pick 
x E E such that bk(m)x == bk(n). By left cancellation, x == Y and 
so E n F n ~I( (bk(n))~=I) =I 0 as required. D 

One may easily check that in a group, AA -1 is left ~ * if and 
only if it is right ~ * . This is a consequence of the fact that 
AA-1 is closed under inverses, so that XiX;1 EAA-1 if and 

only if XjX;1 E AA-1. Trivially, if a semigroup is commutative 
then the left ~ * and right ~ * properties are equivalent. This is 
not true in general. Indeed, if G is the free group on the letters 
(xn)~=I' one may readily check that the set B == G \ {;:r i xj l : 
i < j} is a left ~* set (it is obviously not right ~* ). However, 
we do have the general fact that in any group B is left ~ * if 
and only if B-1 is right ~ * . 

The following theorem is a strengthening (for groups) of The­
orem 3.1 and Corollary 3.2. 

Theorem 4.6. Let G be a countable) left amenable group. 

(a)	 If B ~ G with mi(B) > 0) then BB-1 is both a left ~ * 
set and a right ~ * set. 

(b)	 If B ~ G is left piecewise syndetic) then B B-1 is both a 
left ~ * set and a right ~ * set. 

Proof: (a). Let m be a left invariant mean with m(B) == 
mi(B). Let a sequence A == (xn)~=1 be given. For each n E N 
we have m(x;:1 B) == m(B), so {x;:1 B : n E N} cannot be a 
disjoint collection. Consequently one may pick n < rn such 
that x;;/ B n x;:1 B =/: 0. Let bl and b2 be elements of B such 
that x~lbl == x;:lb2. Then xnx~1 == b2b11 E BE-I. Hence 
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BB- l n ~IA =I- 0 and BB- l is a right ~* set. Since the left 
and right ~ * properties are equivalent for quotient sets, BB- l 

is a right ~ * set as well. Statement (b) follows from (a) by 
Theorem 2.7. 0 

Notice that the proof of Theorem 4.6 is essentially the same 
as the proof of Theorem 3.1. Both proofs rely on the fact that if 
m(B) > 0 for some left invariant mean m then one cannot have 
pairwise disjointness of infinitely many shifts of B. Things are 
not so nice in the non-amenable situation, wrlere one may have 
pairwise disjointness of infinitely many shifts of a right syndetic 
set. (Let G be the free group on letters a and b and let B be the 
set of words beginning with b or b- l

. Then G == bB U b-1 B, so 
B is right syndetic, but the shifts {an B : n E N} are pairwise 
disjoint. ) 

As was the case for the IP* property, strong right piecewise 
syndeticity, in particular left syndeticity, of A is enough to 
guarantee that AA -1 is both left and right ~ * . 

Theorem 4.7. Let G be a group. If B is a strongly right 
piecewise syndetic subset of G then BB- l is both a left ~ * set 
and a right ~ * set. 

Proof: Pick H == {hI,··· ,hz} E Pf(S) such that UtEH Bt- l is 
left thick. Let a sequence A ==(xn)~=1 in G .be given. Choose 
a E G such that {xn : 1 ::; n ::; I + l}a ~ UtEH Bt- l 

. Pick 
t E Hand m, n with 1 :::; m < n :::; l + 1 such that xna E Bt-1 

and xma E Bt- l . Then xmx~1 E .BB- l . Since xmx~1 E ~I A, 
this shows that B B-1 is a right ~ * set, hence also a left ~ * 
set. 0 

The following interesting finite intersection property is now 
readily obtained. 

Corollary4.8. Suppose that G is a group and B l , ... ,Bk are 
subsets of G such that either: 

(a) B i is strongly right piecewise syndetic for i E {I, 2, ... , 
k}) or 
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(b) G is amenable and mi(Bi ) > 0 for i E {1,2, ... ,k}. 
1Then n7=1 B i B i- is both left and right ~ * . 

Proof: This follows from Theorem 4.6 and 4.7, using the fact 
that the ~ * property is preserved by finite intersections. 0 

Although Theorem 3.5 shows that AA-1 need not be IP* 
(much less ~*) for right piecewise syndetic sets A in non­
amenable, groups, one still might wonder from Corollary 4.8 
whether such difference sets AA-1 might nevertheless have 
some non-trivial finite intersection property. We now show 
by example that this is not the case for intersections of three 
such difference sets. (We do not know about intersections of 
two such sets. See Question 1 at the end.) 

Theorem 4.9. There exists a group G of infinite cardinality 
and a partition of G into right syndetic sets A, B, and C such 
that AA-1 n BB-1 n CC- 1 == {e}. 

Proof: Let G be the free group on the letters a, b, and c. Let 
A consist of e and all words starting with a or a-I. Let B 
consist of all words starting with b or b- 1 

, and let C consist 
of all words starting with c or c- 1

. It is easily seen' that A, B, 
and C are each right syndetic. Moreover, AA -1 consists of e 
and those words either starting or ending in a or a-I, BB-1 

consists of e and those words either starting or ending in b or 
b-1 

, and CC- 1 consists of e and those words either starting or 
ending in c or c-1 . Clearly AA-1 n BB-1 n CC- 1 == {e}. 0 

Questions. 
1. In a group, if A and B are both right syndetic, does it 

follow that AA -1 n B B-1 necessarily contains more than the 
identity? 

2. If mz(B) > 0 for B in a left amenable semigroup, and 
A is infinite, does BB-1 n AA -1 necessarily contain elements 
different from the identity? 
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