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ABSTRACT. A weaker form of the property of Kelley for 
metric continua is defined and studied. Its mapping prop­
erties and connections with related concepts are investi­
gated. Several results known for continua having the 
property of Kelley are generalized. to continua satisfying 
the weaker condition. 

1. INTRODUCTION 

A metric continuum X is said to have the property of [(elley 
provided that for each point x EX, for each subcontinu.um !{ 
of X containing x and for each sequence of points X n converging 
to x there exists a sequence of subcontinua !{n of X containing 
X n and converging to the continuum !{ (see e.g. [18, Definition 
16.10, p. 538]). 

The property, introduced by J. L. Kelley as property 3.2 in 
[12, p. 26], has been used there to study hyperspaces, in par­
ticular their contractibility (see e.g. Chapter 16 of [18], where 
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references for further results in this area are given). Now the 
property, which has been recognized as an important tool in 
investigation of various properties of continua, is interesting by 
its own right, and has numerous applications to continuum the­
ory. Many of them are not related to hyperspaces. A pointed 
version of this property has been introduced by Wardle in [20, 
p. 291], where it is shown that homogeneous continua have the 
property of Kelley. This result has been extended to openly 
homogeneous continua in [2, Statement, p. 380], and Kato has 
proved in [9] that it cannot be enlarged to continua that are 
homogeneous with respect to confluent mappings (introduced 
in [1]). Very recently the second named author has generalized 
the property of Kelley in [8] to the non-metric case, and con­
structed an example showing that, unlike for metric continua, 
the homogeneity of non-metric ones does not imply the prop­
erty of Kelley. A rather narrow class of continua, namely fans, 
having the property of Kelley has been characterized by the 
authors in [3] and [4]. 

In [10] Kato defined a stronger version of the property of 
Kelley and showed that if a continuum X has this stronger 
property, then the hyperspace C(X) of all nonempty subcon­
tinua of X, as well as all Whitney continua in C(X) have the 
property of Kelley. In the p~esent paper we are going in the 
opposite direction: we introduce a weaker version of the prop­
erty of Kelley and we investigate various consequences of this 
new notion. 

The paper consists of five chapters. After Introduction, ba­
sic concepts used in the paper are collected in Preliminaries. In 
the third chapter notions of maximal and strong maximal limit 
continua are introduced, and their properties are studied. In 
particular, using these concepts, a characterization of continua 
having the property of Kelley is obtained in Theorem 3.11. The 
weaker form of the property of Kelley (called semi-Kelley) also 
is introduced in this chapter. In Chapter 4 properties of prod­
ucts and hyperspaces of semi-Kelley continua are considered. 
In particular in Theorems 4.1 and 4.5 we improve two results 
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of Wardle from [20] by weakening assumptions from continua 
having the property of Kelley to semi-Kelley continua. J\ simi­
lar improvement is shown in Theorem 4.9 for a result of Moon, 
Hur-and Rhee from [16]. Mapping properties of the introduced 
weaker form of the property of Kelley are studied in Chapter 
5. We focused our attention on confluent, semi-coflfluent and 
weakly confluent mappings. Some analogs as well as general­
izations of results known for continua having the property of 
Kelley are obtained for the weaker form of this property. In 
particular it is shown that the uniform limit of confluent map­
pings onto a semi-Kelley continuum is semi-confluent. A num­
ber of examples are presented and open problems are posed. 

2. PRELIMINARIES 

All spaces considered in this paper are assumed to be lnetric. 
A mapping means a continuous function. 

Given a (metric) space X we denote b.y dx the metric on 
X, and by B x (p, c) the (open) ball in X centered at a point 
p E X and having the radius c. Given a subset A C X, we 
put Nx(A,c) == U{Bx(a,c) : a E A}. The symbol N stands 
for the set of all positive integers, and IR denotes the SI)ace of 
real numbers. 

A continuum means a compact connected space. G·iven a 

continuum X with a metric d, we let 2x to denote the hyper­
space of all nonempty closed subsets of X equipped with the 
Hausdorff metric H defined by 

H(A,B) == max{sup{d(a,.B): a E A}, 

sup{d(b,A) : bE B}} for A,B E 2x 

(see e.g. [18, (0.1), p. 1 and (0.12), p. 10]). If H(A, An) tends 
to zero as n tends to infinity, we write A == Lim An. For an 
elen1ent E E 2x and a subset S C 2x the symbol H-(E, S) 
is defined by H(E,S) == inf{H(E,F) : F E S}. Furtller, we 
denote by C(X) the hyperspace of all subcontinua of )(, i.e., 
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of all connected elements of 2x , and by F1 (X) the hyperspace 
of singletons. The symbol C2 (X) denotes C(C(X)), and H 
means the Hausdorff metric in C2(X). The symbol U stands 
for the union mapping that assigns to a subset of C(X) the 
union of all its elements (see [18, Lemmas 1.48 and 1.49, p. 
100 and 102], respectively). 

An order arc in the hyperspace 2x is an arc such that for 
every two its elements A and B one is contained in the other, 
i.e., either A c B or B c A. See subchapter (I.A) of [18, p. 
56] for an information about this concept. 

Given a continuum X, let A(X) denote the hyperspace either 
2x or C(X). A mapping /l : A(X) ---+ [0,(0) is called a Whitney 
map for A(X) provided that /l( {x}) == 0 for each point x EX, 
and that /l(A) < /l(B) for every two elements A, B E A(X) 
such that A ~ B. We say that a Whitney map /l for C(X) is 
normalized provided that /l(X) == 1; then /l : C(X) ---+ [0,1]. It 
is known that each Whitney map for C(X) is monotone, while 
it does not have to be such for 2x . For each t E [0, /l(X)] the 
continua /l-l(t) are called Whitney levels for A(X). Thus for 
A E C(X) the intersection /l-l(t) n C(A) == (/lIC(A))-l(t) is 
a Whitney level, so it is a continuum. The reader is referred 
to Nadler's book [18] for more information about hyperspaces 
and related concepts. 

A continuum X is said to be unicoherent provided that the 
intersection of every two of its subcontinua whose union is X 
is connected; hereditarily unicoherent provided that each of its 
subcontinua is unicoherent. A hereditarily unicoherent and 
arcwise connected continuum is called a dendroid. A point x 
of a dendroid X is called an end point of X provided that 
x is an end point of any arc in X that contains x. A point 
of a dendroid X is called a ramification point of X provided 
that it is a vertex of a simple triod contained in X, i.e., if 
there are three arcs xa, xb and xc in X having x as the only 
point of the intersection of any two of them. By a fan we 
understand a dendroid having exactly one ramification point, 
usually denoted by v and called the top of the fan. Names 
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of the following three fans will frequently be used to illustrate 
various relations between discussed concepts in the par>er. So, 
let us define them. 

Given two points p and q in the plane we let pq denote the 
straight line segment with end points p and q. In the polar 
coordinates (p, c/J) in the plane with pole v == (0,0), consider 
for each n E N 

ao == (1, 0), an == (1, 1/ n ), bn == (1 /2, 1/ n ) ,and c == (2, 0). 

Then the union 

(2.1 ) 

is called the harmonic fan. It is homeomorphic to the cone 
over the closure of the harmonic sequence {O} U {1 / n : n E N}. 

The union 

(2.2) X2 = vcU U{van : n E N} = Xl U aoc 

is called the harmonic prolonged fan. It serves as a typical 
example of a continuum that does not have the pror)erty of 
Kelley. 

Out third example is defined as the union 

(2.3) X 3 = vao U U{(va2n U a2nb2n+d : n EN}, 

and it is called the harmonic hooked fan (see [5, (23) and Fig. 
7, p. 69]). 

3. MAXIMAL LIMIT CONTINUA 

The following form of the property of Kelley (see Introduc­
tion) will be used in the sequel. Its proof is left to the reader. 

Proposition 3.1. A continuum X has the property of J(elley 
if and only if for each point x E X J for each subcontinuum !{ of 
X containing x and for each sequence of points X n con/verging 
to x there exists a subsequence {xnk } of the sequence {x n } and a 
sequence of subcontinua !{k of X containing Xnk and converging 
to the continuum !{. 
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The next two auxiliary concepts play an important role in 
investigation of the weaker form of the property of Kelley in 
the paper. 

Definition 3.2. Let!{ be a subcontinuum of a continuum X. 
A continuum M c !{ is called a maximal limit continuum in 
!{ provided that there is a sequence of subcontinua Mn of X 
converging to M such that for each convergent sequence of 
subcontinua M~ of X with Mn C M~ for each n E Nand 
LimM~ == M' C !{ we have M' == M. 

Definition 3.3. Let !{ be a subcontinuum of a continuum 
X. A continuum M c !{ is called a strong maximal limit 
continuum in !{ provided that there is a sequence of sub­
continua M n of X converging to M such that for each sub­
sequence {Mnk } of the sequence {Mn } and for each convergent 
sequence of subcontinua M£ with Mnk C M£ for each kEN 
and Lim M£ == M' c !{' we have M' == M. 

The next statement is obvious. 

Statement 3.4. For each continuum X and its subcontinuum 
!{ every strong maximal limit continuum in !{ is a maximal 
limit continuum in !{. 

An example is presented below that shows the difference 
between the two concepts: the inverse implication to that of 
Statement 3.4 is not true. 

Example 3.5. There is a continuum X, its subcontinuum !{ 
and a continuum M C !{ which is maximal limit continuu'm 
in !{ while not strong maximal limit continuum in !{. 

Proof: In the Euclidean plane let pq denote the straight line 
segment joining p and q. Put (in the Cartesian coordinates) 
v == (0,0), a == (0,1), b == (-1,0), C == (1,0), and for each 
n E N, let bn == (-1, lin), Cn == (1, lin), Pn == (-lin, lin) and 
qn == (lin, lin). Define 

X = va U vb U vc U U{apn U Pnbn U aqn U qncn : n EN}. 
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Further, let a' == (0,1/2), b' == (-1/2,0) and c' == (1/2,0) 
be the mid points of the segments va, vb and vc, respec­
tively. Then M == va' is a maximal limit continuum in !{ == 
va' U vb' U vc' by Definition 3.2, and it is not any strong maxi­
mal limit continuum in !{, because if P~ and q~ stand for mid 
points of the segments apn and aqn respectively, then defining 
M 2n- 1 == P~Pn and M 2n == q~qn we get a sequence of con­
tinua Mn converging to M such that for each convergent se­
quence of continua M~ with Mn C M~ if Lim M~ C !<, then 
Lim M~ == M, while the implication does not hold if we con­
sider the subsequence {M2n- 1 }, for example. 

Note that each subcontinuum !{ of X is a strong maximal 
limit continuum (thus, by Statement 3.4, a maximal limit con­
tinuum) in itself. Further, the next observation is a conse­
quence of the definitions. 

Observation 3.6. Let M, Land !{ be subcontinua oj~ a con­
tinuum X with MeL c !{. If M is a (strong) maximal limit 
continuum in !{, then M is a (strong) maximal limit contin­
uum in L. 

The following concept will be useful in the sequel. For a 
continuum X, and a sequence of continua Mn converging to a 
continuum M C X define M({Mn }) as the family of all sub­
continua A of X with MeA such that there exists a subse­
quence {Mnk } of the sequence {Mn } and there is a convergent 
sequence of subcontinua A k of X such that M nk . C A k for each 
kEN, and Lim A k == A. In the next statement an equivalent 
form of the definition of the family M( {Mn }) is formulated. 

Statement 3.7. Let a sequence of continua Mn converging to 
a continuum M in a continuum X be fixed. Then a conJinuum 
A belongs to M ({Mn }) if and only if for each c > 0 and for 
each n E N there is an integer m > n and a continuum Em 
containing Mm such that H(A, Em) < c. 
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Proposition 3.8. For each sequence of continua M n converg­
ing to a continuum M C X the family M( {Mn }) is closed in 
the hyperspace C(X). 

Proof: Let us fix a sequence of continua M n converging to a 
continuum M, and, for shortness, write M in place of M( {Mn }). 

Consider a convergent sequence of continua An E M, and let 
A = Lim An. We have to show that the continuum A is a mem­
ber of M. We apply induction. Since Al E M, by Statement 

M
3.7 there is an index nl E N and a continuum Bn1 such that 

n1 C Bn1 and H(AI,Bn1 ) < 1. In general, Statement 3.7 
guarantees, for each kEN, the existence of an index nk which 
is greater than the previous one, nk-I, and a continuum Bnk 

such that M nk C Bnk and H(Ak
, Bnk ) < 11k. Thus we have 

Lim Bnk = Lim A k = A, whence A E M again by Statement 
3.7. Therefore M is closed in C(X). 

Let !{ be a nonempty subcontinuum of a continuum X, 
and let a sequence of continua M n converging to a continuum 
M c!{ be given. Since C(!{) n M({Mn }) is closed in C(!{) 

.according to the above statement, it follows from Kuratowski­
Zorn Lemma that there is a maximal (with respect to inclusion) 
element in C(!{) n M({xn }). 

Proposition 3.9. For each subcontinuum !{ of a continuum 
X and for each sequence of continua M n converging to a con­
tinuum M C !( C X a maximal element S in C(!{)nM( {Mn }) 

is a strong maximal limit continuum in !(. 

Proof: Let 5 be a maximal element in C(!{) nM({Mn }). By 
the definition of M ({Mn }) we see that there exists a subse­
quence {Mnk } of the sequence {Mn } and there i~ a sequence 
of continua Sk such that M nk C Sk and S = Lim Sk. Choose 
an arbitrary subsequence {nki} of the sequence {nk}, and let 
for each i E N a continuum S: be such that Ski c S: and that 
5' = Lim 5: C !(. Then 5' E C(!{) n M({Mn }) and S c S', 
whence 5' = 5 by maximality of S. Therefore 5 is a strong 
maximal limit continuum in !{, so the proof is complete. 
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As a corollary to Proposition 3.9 we have the next statement. 

Statement 3.10. Let !{ be a nonempty subconti'nuum of a 
continuum X. Then for each maximal limit continuum M in 
!{ there exists a strong maximal limit continuum S in !{ such 
that M C S. 

The next result characterizes continua having the property 
of Kelley in terms of the above introduced concepts. 

Theorem 3.11. The following conditions are equivalent for a 
continuum X : 

(3.12)	 X has the property of [<elley; 
(3.13)	 for each subcontinuum !{ of X, the only maximal limit 

continuum in !{ is !{ itself; 
(3.14)	 for each subcontinuum !{ of X, the only strong rnaximal 

limit continuum in!{ is !{ itself. 

Proof: The implication from the property of Kelley to (3.13) 
is obvious. Assume (3.13), and let S be a strong maximal 
limit continuum in !{. By Statement 3.4 S a maximal limit 
continuum in !{, so S == !{ by (3.13), and thus (3.14) follows. 
If (3.14) is assumed, then let a point x E X, a subcontinuum 
!{ of X containing x and a sequence of points X n converging 
to x be given. Let S be a strong maximal limit continuum 
in !{. By assumption we have S == !(, and by the definition 
of M( {{x n }}) it follows that !{ E M({{x n }}), which means 
that there is a subsequence {xnk } of the sequence {xn } and a 
sequence of continua !{k such that X nk E !{k for each kEN 
and that !{ == Lim!{k. Therefore X has the property of Kelley 
according to Proposition 3.1. The proof is finished. 

Proposition 3.15. If a continuum X does not have the prop­
erty of [<elley, then there exists a subcontinuum !{ of X and 
a strong maximal limit continuum M in !{ such that M is a 
nondegenerate proper subset of !{. 

Proof: By equivalence of (3.12) and (3.14) of Theorem 3.11 
we infer that there is a subcontinuum !{o of X and a strong 
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maximal limit continuum Mo in !{o such that Mo :f:. !{o. If 
M o is nondegenerate, we are done. So assume that Mo is a 
singleton {x}. Take a sequence of subcontinua Mn of X as in 
Definition 3.3 of a strong maximal limit continuum. For each 
n E N choose a point X n E M n . Then the sequence of points X n 

is convergent, and it has x as its limit. Let J.L : C(X) ----t [0,1] 
be a normalized Whitney map for C(X). Define a function 
F : X x [0,1] ----t C(X) by 

F(x, t) = U{A E C(X) : x E A and J-l(A):::; t}. 

Since there is an order arc from the singleton {x} to X, and 
since this order arc intersects the Whitney level J.L -1 (t), hence 
there exists A C F(x, t) such that Il(A) == t. Thus Il(F(x, t)) ~ 

t. 
Now take the family M({{x n }}) and observe that since 

Mo == {x} is a strong maximal limit continuum in !{o, it follows 
that !(o is not a member of this family. Then by closednessof 
M( {{x n }}) in C(X) (see Proposition 3.8) there exists a neigh­
borhood of !(o in C(X) disjoint with M({{x n }}), whence it 
follows that there is a number to E (0, J.L(!{o)) C [0,1] such 
that for each A E C(X) with x E A the condition J.L(A) < to 
implies that !(o U A ~ M( {{x n }}). Cl100se a number t E [0,1] 
so that Il( F(y, t)) '5:. to for each point y EX. Consider a subse­
quence of points X nk that the sequence F(xnk , t) is convergent. 
For shortness put -Fk == F (xnk , t) and let F == Lim Fk . Note 
that F E M({{x n }}). Define!{ == !{o U F .. Since the family 
C(!{) n M({{x n }}) is a closed subset of C(X) (see Proposi­
tion 3.8) there exists its maximal (with respe~t to inclusion) 
ele~ent M containing F. Since J.L(Fk ) 2:: t, we have J.L(F) 2:: t, 
whence it follows that M is not degenerate. Further, t < J.L(!{o) 
by the choice of t, which implies that M is a proper subset of 
!{. Finally it follows from Proposition 3.9 that M is a strong 
maximal limit continuum in !{. The proof is then complete. 

Let us introduce the following concept. 
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Definition 3.16. A continuum X is said to be semi-I<elley 
provided that for each subcontinuum !{ of X and for every two 
maximal limit continua M I and M2 in !{ eithe~ M I C M2 or 
M 2 C MI. 

The next statement is obvious. 

Statement 3.17. If a continuum has the property of J<elleYJ 
then it is semi-J<elley_ 

The inverse implication to that in Statement 3.17 does not 
hold, because the harmonic prolonged fan (2.2) and tile har­
monic hooked fan (2.3) are semi-Kelley, while they do not have 
the property of Kelley. 

We conclude this section with showing that in Definition 
3.16 of a semi-Kelle)T continuum the condition can be applied 
to strong maximal limit continua only. 
Theorem 3.18. For each continuum X the followi:ng are 
equivalent. 

(3.19)	 X is a semi-I<elley continuumj 
(3.20)	 for each subcontinuum !{ of X and for every two strong 

maximal limit continua M I and M2 in !{ either M1 C M 2 

or M2 C M I ­

Proof: The implication from (3.19) to (3.20) follow'S from 
Statement 3.4. To see the opposite implication, assume (3.20) 
and suppose, on the contrary, that (3.19) does not hold. It 
means that there is a subcontinuum !{ of X and there are two 
maximal limit continua M and M' in !{ such that M \ M' =J 
o:f M' \ M. By the Kuratowski-Zorn lemma there exists in !{ 
a continuum L which is irreducible with respect to containing 
MUM', i.e., such that MUM' eLand no proper subcontin­
uum of L contains this union. 

Let Sand S' be arbitrary strong maximal limit continua in 
L which contain M and M', respectively. The existence of such 
continua follows from Statement 3.10. Thus by (3.20) either 
S C S' or S' C S. If S c S', then MUM' c S', whence 
S' == L by irreducibility of L. Similarly, S' C S implies S == L. 
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Consequently, we have shown that either each strong maximal 
limit continuum in L containing M is equal to L, or each strong 
maximal limit contInuum in L containing M' is equal to L. 

Assume the former possibility, and let {Mn } be a sequence 
of continua converging to the continuum M as in the defi­
nition of the maximal limit continuum M in !(. Then for 
each subsequence {Mnk } of the sequence {Mn } we have L E 
C(L) n M( {Mnk }). This means that 

(3.21) for each subsequence	 {Mnk } of the sequence {Mn } there 
is a subsequence {Mnk . } of {Mnk } and there are continua 
Si with Mnk,. C Si such that L == Lim Si. 

We will show that for each n E N there is a continuum Ln 

containing M n with L == Lim Ln , contrary to the definition of 
M as a maximal limit continuum in !{. To this aim for each 
n E N define Ln as an element of the family Tn == {P E C(X) : 
Mn C P} such that 

H(Ln , L) == min{ H(P, L) : P E Fn }. 

Then (3.21) implies that Lim Ln == L. The proof is complete. 

4. PRODUCTS AND I-IYPERSPACES 

It is known that if the .Cartesian product of two continua 
has the property of Kelley, then each factor continuum has 
the property of Kelley, too, [20, Corollary 4.6, p. 297]. This 
result can be strengthened by assuming that the product is a 
semi-Kelley continuum. 

Theorem 4.1. If the Cartesian product of two nondegenerate 
continua is semi-J<elley, then each factor continuum has the 
property of J<elley. 

Proof: Let two nondegenerate continua X and Y be given 
such that their product X x Y is semi-Kelley. Suppose that 
X does not have the property of Kelley. Then, by condition 
(3.13) of Theorem 3.11, there exists a subcontinuum !{ of X 
and a maximal limit continuum M in !{ such that M ~ !{. 
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Let a E !{ \ M, and p, q E Y be two distinct points. Define 
a continuum LeX x Y by L == (!{ x {p,q}) U ({a} X Y). 
We will show that M x {p} and M X {q} are disjoint maximal 
limit continua in L. Take a sequence of subcontinua 1'v1n of 
X converging to M as in the definition of a maximal limit 
continuum in !{. Then the sequence M n X {p} tends to M x {,p}. 
For each n E N take M~ C X x Y such that Mn x {p} C M~ 

and M' == Lim M~ c L. We will show that M' is equal to 
M x {p}. Suppose the contrary. Then there is a point x E 
!{ \ M such that (x,p) EM'. Let 7rl denote the projection 
of the product on the first. factor. Hence the sequence 7rl(M~) 

tends to 7rl (M') c !{ and we have M ~ 7rl (M'), contrary to 
the definition of a maximal limit continuum in !{. Since for 
M x {q} the argument is the same, the proof is complete. 

Corollary 4.2. (Wardle) If the Cartesian product of two con­
tinua has the property of J<elleYJ then each factor continuum 
has the property of J<elley. 

An example is constructed in [20, Example 4.7, p. 297] (see 
also [18, Example (16.35), p. 558]) of a continuum Y 11aving 
the property of Kelley whose Cartesian square Y x Y does not 
have this property. Later it was shown in [6, Example, p. 458] 
that for the same Y the hyperspace C(Y) has the property of 
Kelley, while 2Y does not have the property (compare also [7, 
Example, p. 8]). Below Y is used as a part of a continuum X 
to show that similar phenomena hold for semi-Kelley corltinua. 
Thus the inverse implication to that of Theorem 4.1 does not 
hold. 

Example 4.3. There exists a continuum X having the prop­
erty of J<elley such that X X X and 2x are not semi-J<elley. 

Proof: Let S be the unit circle in the (complex) plane }R2. 

Put IHI == [1,(0) C }R, and define mappings f, 9 : IHI ~ }R2 by 

1 . 1 . 
f(t) = (1 + t )ett and g(t) = (1 - t )e-tt for t E !HI. 
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Let L == g(IHI) and M == f(IHI). Then Y == L U SuM is a 
continuum in the plane ~2 (compare [20, Example 4.7, p. 297] 
and [6, Example, p. 458]). Take two copies YO == Lo U So U M o 
and Yi == L 1 U Sl U M 1 of Y, identify the end points of the 
outer spirals Mo and M1 , and let X be the resulting continuum. 
Then X has the property of Kelley. To show that X x X is 
not semi-Kelley recall that the following fact is shown in [20, 
Example 4.7, p. 297] in order to prove Y x Y does not have 
the property of Kelley. 

FACT 1. Let LlY == {(y,y) : y E Y} C Y x Y. If a 
continuum !{ C Y x Y satisfies !{ C NYxy (LlY,1r) and if 
there is a point (xo, Yo) E !{ with Xo E M and Yo E L, then 
every point (x, y) E !{ satisfies x E M and y E L. 

In other words, LlS == {(y, y) : yES} is a maximal limit 
continuum in LlY. This implies that LlSo and LlS1 are disjoint 
maximal limit continua in ~X. Thus X x X is not semi-Kelley. 

The proof that 2x is not semi-Kelley is very similar. The fol­
lowing fact is a consequence of an argument given in the proof 
that 2Y does not have the property of Kelley in [6, Example, 
p. 458J. 

FACT 2. Put F1 (Y) == {{y} : y E Y}. If a continuum 
K C 2Y satisfies K C N2y (F1 (Y), 1r) and if there is a point 
(xo, Yo) E K with Xo E M and Yo E L, then for every !{ E K 
we have !{ n M =I- 0 =I- !{ n L. 

In other words, F1 (S) is a maximal limit continuum in F1 (Y). 
This implies that F1 (So) and F1 (Sl) are disjoint maximal limit 
continua in F1 (X). Thu·s 2x is not semi-Kelley. The proof is 
complete. 

In [11, Problem 3.4, p. 1148] Kato asks if the property of 
Kelley of a continuum X implies that the product X X [0,1] 
also has the property? In connection with Theorem 4.1 and 
Example 4.3 one can extend Kato's question to the following. 

Question 4.4. Is it true that if a continuum X has the prop­
erty of Kelley, then the Cartesian product X X [0, 1] is semi­
Kelley? 
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In [20, Theorem 2.8, p. 294] Wardle has shown that if the 
hyperspace C(X) of a continuum X has the property of Kelley, 
then X also has the property. Our next theorem shovvs that 
the assumption in that implication can be weakened. 

Theorem 4.5. Let a continuum X be given. If the hyperspace 
C(X) is a semi-!<elley continuum, then X has the property of 
!(elley. 

Proof: Suppose that X does not have the property of "Kelley. 
Then by Proposition 3.15 there exists a subcontinuuIIl !{ of 
X and a (strong) maximal limit continuum M in !{ such that 
M is a nondegenerate proper subset of !{. Take a sequence 
of subcontinua Mn of X converging to M as in the definition 
of a maximal limit continuum in !{, and let a E !{ \ M. Let 
It be a Whitney map for C(X). Since M is nondegenerate, 
It(M) > o. Choose a number t E (0, It(M)). Let A be an order 
arc in C(X) such that {a} E A and It(UA) == t. Define 

K == FI ( !{) U A U (C(!{) n It-I ( t )). 

To finish the proof we will show, applying condition (3.20) 
of Theorem 3.18, that K contains two disjoint maximal limit 
continua. 

CLAIM 1. FI (M) is a maximal limit continuum in K:. 
Note that FI(Mn ) are continua in C(X) tending to FI(M). 
For each n E N let M n be a subcontinuum of C(X) such that 
FI(Mn ) C Mk and that the sequence {M n } converges to a 
continuum M in K. Obviously FI(M) c M. We OlIght to 
show that M == FI (M), i.e., that M C FI(M). Indeed, if not, 
then there is, by the definition of K, a point b E !{ \ M such 
that {b} E M \ FI(M). Define M~ == UM n and M' == uM. 
Then b E M' \ M and the sequence of M~ tends to M' which 
contains M properly. This contradicts to the fact that M is a 
maximal limit continuum in !{. 

CLAIM 2. There is a maximal limit continuum in K con­
tained in C(M) n It-I (t). 
For shortness put Bn == C(Mn ) n It- I (t). By compactness 
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(taking a convergent subsequence if necessary) we may as­
sume that the sequence Bn converges to a continuum B C 

Jl-1(t) n C(M). We will show that B is a maximal limit con­
tinuum in IC. Take, for each n E N, continua B~ ~ Bn with 
Lim B~ == B' ;? B. Define M~ == UB~. Then Mn C M~ and 
Lim M~ == uB' c uIC == !{, so Lim M~ == M because M is 
a maximal limit continuum in !{. Since a ~ M, the union 
uA is not in B', while B (which is a subset of B') is contained 
in C(M) n Jl- 1 (t). This implies, by the definition of IC, that 
we have B' c C(I{) n Jl-1(t). Suppose that B ~ B'. Then 
there is c > 0 such that H(B, B') > c, whence it follows that 
H(Bn , B~) > c for almost all n E N. Choose a convergent 
se.quence of continua Pn E B~ with P == Lim Pn E B' \ B. 
Since B' c Jl-1(t), we conclude that the sequence Jl(Pn ) tends 
to Jl(P) == t. Therefore, by the definition of Bn , we have 
H(Pn , C(Mn )) > c for almost all n E N. Then the continua Pn 

are not contained in Nx (Mn , c), and consequently P is not con­
tained in Nx (M, c), contrary to the fact that P CUB' == M. 
The proof is complete. 

Corollary 4.6. (Wardle) Let a continuum X be given. If the 
hyperspace C(X) has the property of J<elley) then X has the 
property of J<elley. 

As it is indicated in [18, Questions (16.37), p. 558] it can 
be deduced from Wardle's proof of Theorem 2.8 in [20, p. 294] 
(i.e., Corollary 4.6 above) that the same implication holds with 
2x in place of C(X). Analogously to Theorem 4.5 the men­
tioned result can be sharpened as follows. 

Theorem 4.7. Let a continuum X be given. If the hyper­
space 2x is a semi-J<elley continuum) then X has the property 
of J(elley. 

Proof: Suppose that X does not have the property of Kelley. 
Then by Proposition 3.15 there exists a subcontinuum !{ of 
X and a (strong) maximal limit continuum M in !{ such that 
M is a nondegenerate proper subset of !{. Take a sequence of 
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subcontinua Mn of X converging to M as in the definition of 
a maximal limit continuum in !{. Fix a point a E !{ \ 1\1 and 
a point b E X \ !{. Let A be an order arc in 2x from {a} to 
X. Define 

JC b == {{x, b} : x E !{} and M b == {{x, b} : x EM}, 

and let B be an order arc in 2x from {a, b} to X. Put 

JC == Au B U F1 (!{) U JC b• 

We will show that F1(M) and M b are maximal limit con­
tinua in JC. Since they obviously are disjoint, this will finish 
the proof. 

CLAIM 1. F1(M) is a maximal limit continuum in JC. 
Th~ argument is very similar to that for Claim 1 in the proof 
of Theorem 4.5. Indeed, as previously note that F1(Mn ) are 
continua in 2x tending to F1(M). For each n E N let ..M n be 
a subcontinuum of 2x such that F1(Mn ) C M n and tllat the 
sequence {M n } converges to a continuum M in JC. Obviously 
F1(M) c M. We ought to show that M == F1(M), i.e., that 
M C F1(M). In fact, if not, then there is, by the definition 
of K, a point p E !{ \ M such that {p} E M \ F1 (M). Define 
M~ == UM n and M' == UM, and note that M~ and M' are 
continua according to [18, Lemma 1.43, p. 97]. Then p E 
M' \ M and the sequence of M~ tends to M' which contains 
M properly. This contradicts to the fact that M is a maximal 
limit continuum in !{. 

CLAIM 2. M b is a maximal limit continuum in K: 
Note that the sets M n == {{x, b} : x E Mn } are continua in 2x 

tending to M b• For each n E N let M~ be a subcontinuum 
of 2x such that M n C M~ and that the sequence {M~} is 
convergent with M' == Lim M~ C K. Obviously M b eM'. 
We ought to show that Mb == M', i.e., that M' C M b. Indeed, 
if not, then there is, by the definition of K, a point p E !{ \ M, 
(equivalently, {p,b} E Kb\ M b), such that {p,b} E M' \ M b. 
Define M~ == (UM~) \ {b} and M' == (UM') \ {b}. Then 
M~ and M' are subcontinua of X. Further, p E M' \ M and 
the sequence of M~ tends to M' which contains M properly. 
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This co~tradicts to the fact that M is a strong maximal limit 
continuum in !(. T·hus the proof is complete. 

Corollary 4.8. (Wardle) Let a continuum X be given. If the 
hyperspace 2x has the property of [<elleYJ then X has the prop­
erty of [<elley. 

A space X is said to be connected im kleinen at a point 
p E X provided that each neighborhood U of p contains a 
neighborhood V of p such that for each point q E V there is 
a connected subset of U containing both p and q. It is shown 
in [16, Theorem 2.9, p. 228] that if a continuum X has the 
property of Kelley, then connectedness im kleinen of the hyper­
space C(X) at A E C(X) implies connectedness im kleinen of 
C(X) at any B E C(X) such that A c B. This result can be 
generalized from continua having the property of Kelley to all 
semi-Kelley continua. 

Theorem 4.9. Let a continuum X be semi-[<elley. If the 
hyperspace C(X) is connected im kleinen at A E C(X)J and if 
A C B E C (X) J then C (X) is connected im kleinen at B. 

Proof: Suppose on the contrary that there exist subcontinua 
A and B of a semi-Kelley continuum X such that A ~ Band 
that 

(4.10)	 C(X) is connected im kleinen at A, 
(4.11)	 C (X) is not connected im kleinen at B. 

By (4.11) there exists an open set U of X such that B C U and 
a sequence of subcontinua B n C U which converges to Band 
has the property that Band B n are in different components 
of U (see [18, Theorem 1.143, p. 156]). Let A' C A be a 
continuum such that 

(4.12)	 there exists a sequence of continua Ak such that Ak C Bnk 

for some subsequence {nk} of indices n, with A' == Lim A k, 
(4.13)	 A' is the nearest to A subcontinuum of A satisfying con­

dition (4.12). 
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The latter condition means that the distance H(A', A) is the 
minimum among the distances H (P, A) for all PEe(A) such 
that P == LimAk , where the sequence {A k } is as in (4.12). 
The existence of such A' is a consequerlce of compactlless of 
the family of all continua satisfying (4.12). By its constrllction, 
A' is a strong maximal limit continuum in A. 

Note that (4.12) implies that C(X) is not connected 1m 
kleinen at A', whence it follows that A \ A' =f. 0. 

Pick up a point 

(4.14)	 aEA\A' , 

and choose a sequence of points an E Bn with a == lim an. Let 
A" be a maximal (with respect to inclusion) element of the 
family M({{an }}) n C(A). Then, by Proposition 3.9, A" is 
a strong maximal limit continuum in A. By (4.14) we have 
a E A" \ A'. Since X is a semi-Kelley continuum, A' c A". 
Then the continuum A" is nearer to A than A', a contradiction 
with (4.13). The argument is complete. 

Corollary 4.15. (Moon, Hur and Rhee) Let a continuum X 
have the property of [<elley. If the hyperspace C(X) is con­
nected im kleinen at A E C(X)) and if A c B E C(X)) then 
C(X) is connected im kleinen at B. 

An example below sh0'Ys that being a semi-Kelley contin­
uum is an essential assumption in this result. 
Example 4.11. There is a continuum X 1vhich is not semi­
J<elley and which contains two subcontinua A and B with A c 
B such that C(X) is connected im kleinen at A 1vhile it: is not 
at B. 

Proof: Keeping notation of points as in the proof of Example 
3.5 put additionally an == (0,1 + lin) and define 

X = va U vb U vc U U{bPn U Pnan U anqn U qncn : n EN}. 

Put A == va' U vb' U ve' and observe that va' U vb' and va' U 
ve' are two maximal limit continua in A neither of which is 
contained in the other, so X is not semi-Kelley. Note further 
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that C(X) is connected im kleinen at A while not at B 
va U vb' U ve'. 

5. SEMI-KELLEY CONTINUA AND MAPPINGS 

A mapping I : X --t Y between continua is said to be: 
- a retraction provided that Y c X and the restriction IIY 
is the identity on Y; (then Y is called a retract of X); 
- open provided that for each oper1 subset of X its image un­
der I is an open subset of Y; 
- monotone provided that the point-inverse I-I (y) is con­
nected for each point y E Y; 
- confluent provided that for each subcontinuum Q of Y each 
component of the the inverse image I-I (Q) is mapped onto Q 
under I; 
- weakly confluent provided that for each subcontinuum Q of 
Y there is a component of the the inverse image I-I (Q) which 
is mapped onto Q under f; 
- semi-confluent provided that for each subcontinuum Q of 
Y and for every two components C1 and C2 of the the inverse 
image 1-1 (Q) either I(C1 ) C I(C2 ) or I(C2 ) c I(C1 ); 

- joining provided that for each subcontinuum Q of Y and 
for every two componentsC1 and C2 of the the inverse image 
1-1 (Q) we have I(C1 ) n I(C2 ).=l0. 

The property of Kelley is preserved under retractions, [20, 
Theorem 2.9, p. 294]. A similar result is true for semi-Kelley 
continua. To show it we prove the following lemma first. 

Lemma 5.1. Let X, Y and !{ be continua such that !{ c 
Y eX, and that Y is a retract of X. If M C !{ is a (strong) 
maximal limit continuum in !{ when !{ is considered as a sub­
continuum ofY, then M is a (strong) maximal limit continuum 
in !{ when !{ is considered as a subcontinuum of X. 

Proof: We will argue for the version with strong maximal 
limit continua. The argument for the other version (with max­
imal limit continua) is the s~me: we need only to take the 
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whole sequence of all positive integers as the subsequence {nk} 
considered in the proof presented. 

Let f : X ~ Y C X be a retraction. Take a sequence 
of subcontinua Mn of Y converging to M as in the defini­
tion of a strong maximal limit continuum in !<. Consider a 
subsequence {Mnk } of the sequence {Mn} and a convergent 
sequence of subcontinua M£ with Mnk C M£ for each kEN 
and such that Lim M£ C !<. Then f(Lim M£) C f(!<) == !<, 
so f(Lim M£) == Lim M£. On the other hand f(Lim M£) == 
Lim f(M£). Since f(M£) ~ f(Mnk ) == Mnk for each kEN, we 
infer from the definition of a strong maximal limit continuum 
in !< ·that Lim M£ == Lim f(M£) == M. The proof is complete. 

As a consequence of Lemma 5.1 we get the mentioned result. 

Theorem 5.2. Let X be a continuum and let f : X ~ Y C X 
be a retraction. If X is a semi-[(elley continuum) then Y is 
semi-[(elley as well. 

To prove the next two theorems we need another lemma. 

Lemma 5.3. Let a continuum X have the property of [(elley) 
and let f : X ~ Y be a weakly confluent surjection. If A is 
a maximal limit continuum in a subcontinuum !< of Y) then 
there exists a component C of f- 1 (!<) such that f(C) == A. 

Proof: Let a sequence of continua An be given as in the def­
inition of the maximal limit continuum A in !<. Since f is 
weakly confluent, for each n E N there is a component Bn of 
j-l (An) such that j(Bn) == An. Taking a subsequence if nec­
essary we may assume that the sequence {Bn } is convergent. 
Put B == Lim Bn. Then f(B) == f(Lim Bn) == Lim An == A. 
Let C be the component of f- 1 (!<) that contains B. Choose 
a convergent sequence of points bn E Bn and put b == lim bn. 
Since X has the property of Kelley, for each n E N there are 
continua Cn in X containing the points bn, with C == Lim Cn' 
Then An U f( Cn) are continua containing An. By the definition 
of a maximal limit continuum we have Lim (An U f(Cn)) == A, 
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so f( C) == Lim f( Cn) C A. On the other hand A == Lim An == 
Lim f(Bn) C Lim f( Cn) == f( C). Thus A == f( C) as required. 

As a consequence we get the following known result, origi­
nally due to R. W. Wardle, see [20, Theorem 4.3, p. 296]. 

Theorem 5.4. (Wardle) If a continuum X has the property 
of [ielley and if f : X ---+ Y is a confluent surjection, then Y 
has the property of [(elley as well. 

Proof: Let 1< be a subcontinuum of X and let A be a maximal 
limit continuum in 1<. By Lemma 5.3 there exists a component 
C of f- 1 (1<) such that f( C) == A. Since f is confluent, we have 
f(C) == 1<, whence 1< == A, and therefore Y has the property 
of Kelley according to the characterization in Theorem 3.11. 

Theorem 5.5. If a continuum X has the property of [(elley, 
and Y is a semi-confluent image of X, then Y is semi-[(elley. 

Proof: Assume a mapping f : X ---+ Y is a semi-confluent 
surjection. Let A and B be maximal limit continua in some 
subcontinuum 1< of Y. By Lemma 5.3 there are components 
CA and CB of f-l(I<) such that f(CA ) == A and f(CB ) == B. 
Since f is semi-confluent we have either A C B or B C A as 
needed. 

Semi-confluence of the mapping is an indispensable assump­
tion in Theorem 5.5 and the result cannot be extended to 
weakly confluent mappings. The next example shows this. 

Example 5.6. There exists a weakly conflue'nt surjective map­
ping between fans X and Y such that X has the property of 
[(elley, while Y is not semi-[(elley. 

Proof: Recall that given two points p and q in the plane, 
we denote by pq the straight line segment with end points p 
and q. In the polar coordinates (p, ¢J) in the plane with pole 
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v == (0,0), consider for each n E N points dn (1, 1r / (2n )), 
put d == (1,0) == limdn, and define 

X = vd u U{vdn : n EN}. 

Thus X is the harmonic fan, so it has the property of Kelley. 
To define Y consider points 

Pn == (~, ~), qn == (~, 2:+1)' rn == (1, 2:+1)' Sn == (~, 2r~2)' 
put r == (1,0) == lim r n , and define 

Y = vr U U{VPn U pnqn U qnrn U rnSn : n EN}. 

Thus Y is a fan. Putting p == (~, 0) == limpn and s == (~, 0) == 
lim Sn we see that the singletons {p} and {s} are strong max­
imal limit continua in the continuum ps C vr, and thereby Y 
is not semi-Kelley, according to (3.20) of Theorem 3.18. 

To define a weakly confluent surjection I : X ~ Y consider 
for each n E N in the straight line segment vdn C X points 
an == (~, ~), bn == (~, ~), Cn == (~, ;n)' and put 

a = (~, 0) = lim an, b = (~, 0) = lim bn, c = (~, 0) = lim en . 
4 2 4 

Thus a, band c lie in vd eX. Let I be a piecewise linear 
mapping determined by putting I( v) == v and, for each n E N, 

I (an) == Pn, I (bn) == qn, I (cn) == rn, I (dn) == Sn, 

and consequently I(a) == P, I(b) == q == (~, 0) == limqn, ~f(c) == 
rand I( d) == s. The partial mappings Ilvan : van -t VPn, 
Ilanbn : anbn -t Pnqn, Ilbncn : bncn -t qnrn and Ilcndn : 
cndn -t rnSn are linear. Therefore the partial mappings flva : 
va -t vp, Ilab : ab -t pq, Ilbc : bc -t qr and Ilcd : cd -t rs 
also are linear. Observe that, for each n E N, the mapping I 
maps the segment vdn homeomorphically onto the broken line 
VPn U Pnqn U qnrn U rnsn, and that the segment vd is mapped 
onto the segment vr. Since each mapping onto an arc is weakly 
confluent, [19, Lemma, p. 236], it can easily be deduced that 
I : X -t Y is weakly confluent. The argument is then com­
plete. 
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Our next example shows that the conclusion of Theorem 5.5 
is not true if a larger class of joining mappings is considered in 
place of semi-confluent ones. 

Example 5.7. There are fans X and Y and a joi'ning sur­
jective mapping f : X ~ Y such that X has the property of 
/<elley and Y is not semi-/<elley. 

Proof: Keeping notation of points v, b, c, bn and Cn as In 
Example 3.5, put 

X = vb U vc U U{vbn U vCn : n EN}. 

Then X is homeomorphic to the one-point union of two har­
monic fans having their tops in common only. Therefore it has 
the property of Kelley. Define an equivalence relation onrv 

X in such a way that for two distinct points p == (x, y) and 
p' == (x', y') we have p p' if and only if y == y' == 0, xx' 2: 0rv 

and Ix + x'i == 1. Let Y == X/ rv be the quotient space, and 
f : X ~. Y be the quotient mapping. Thus f identifies two 
points if and only if either they are both in vb and are symmet­
ric with respect to the mid point b' == (-1/2,0) of vb, or they 
are both in vc and are symmetric with respect to the mid point 
c' == (1/2,0) of vc. Therefore the restriction fl(X \ (vbUvc)) is 
a homeomorphism. Considering various subcontinua of Y one 
can verify by the definition that f is joining. To check that Y 
is not semi-Kelley take points b" == (-1/4,0) and c" == (1/4,0) 
in X and define ]{- c Y as the arc with end points f( b") and 
f(c"). Then its subarcs f(vb") and f(vc") are maximal limit 
continua in /{ having f( v) as the only point in common. The 
argument is complete~ 

Unlike the property of Kelley (see Theorem 5.4 above) the 
property of being semi-Kelley is not preserved under confluent 
mappings. The next example shows this. 

Example 5.8. There are cont.inua X and Y and a confluent 
surjective mapping f : X ~ Y such that X is semi-/<elleYJ 
while Y is not. 
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Proof: In the Euclidean plane let 0 1 be the cone with the 
vertex (1,1) over the set {(I + lin, 0) : n E N} and let O2 be 
the cone with the vertex (-1, -1) over the set {(-I-lin, 0) : 
n EN}. Put 

X == ({ -1, I} x [-1,1]) U ([-1,1] x {-I, I}) U0 1 UO2 • 

Then X is a semi-Kelley continuum. Next identify in X the 
points (x,y) and (x',y') if and only ify == y', Ixl:::; 1 and Ix'l:::; 
1. In other words, the identification shrirlks in X each of the 
two segments [-1,1] x {-I} and [-1,1] x {I} to a point, and 
glue together the points (-1, y) and (1, y) for y E [-1,1]. Let 
f : X ~ Y be the identification mapping. Then the resulting 
continuum Y is homeomorphic to the union of the cone with 
the vertex (0, 1) over the set {(O, O)} U {(lin, 0) : n E N} and 
its image under central symmetry, i.e., the cone with the vertex 
(0, -1) over the set {(O, O)} U {(-lin, 0) : n EN}. The reader 
can verify that Y is not semi-Kelley. 

In the light of Theorem 5.2 and Example 5.8 the following 
questions are very natural. 

Question 5.9. What classes of mappings preserve the prop­
erty of being semi-Kelley? In particular, is the property pre­
served under (a) monotone, (b) open mappings? 

It is known that if a continuum Y is locally connected and X 
is an arbitrary continuum, then the uniform limit of monotone 
mappings from X onto Y is monotone (see [21, Corollary 3.11, 
p. 174] and [22, Theorem, p. 466]; compare also [13, Theo­
rem 1, p. 797], where a generalization to compact Hausdorff 
spaces is presented). Local connectedness of the range space 
is an essential assumption, because of Whyburn's example of 
a near homeomorphism of the harmonic fan onto itself which 
is not monotone, see the example in [22, p. 465]. Recall that a 
near homeomorphism is defined as the uniform limit of homeo­
morphisms. The example shows also that local connectedness 
cannot be relaxed to having the property of Kelley. 
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Nadler has shown in [17, Theorem 3.1, p. 570, and Corollary 
3.3, p. 571] that if a continuum Y has the property of Kelley 
and X is an arbitrary continuum, then (a) the space of all 
confluent mappings I : X ---t Y is a closed subspace of the 
space Y x of all mappings from X to Y, and (b) each near 
homeomorphism from X onto Y is confluent. One can ask if 
the assumption on Y in either (a) or (b) can be relaxed to being 
semi-Kelley. The answer to both these questions is negative, 
because of an example constructed by Nadler in [17, Example 
(1.4), p. 564]. The idea of the example is patterned after 
Whyburn's example mentioned above. We repeat the example 
here for further applications. 

Example 5.10. Let Y be the harmonic prolonged fan (which 
is a semi-l<elley continuum). There exists a near homeomor­
phism I : Y ---t Y which is not confluent. 

Proof: In the Euclidean plane let pq denote the straight line 
segment joining p and q. Put v == (0,1), e == (0,0) and en == 
(l/n,O) for each n E N, and define X == ve UU{ven : n EN}. 
Then X is the harmonic fan. Further, for each n E N, let an 
be the midpoint of the segment ven, and put Y == ve UU{van: 
n E N} be the continuum defined there. Y does not have 
the property of Kelley, but it is semi-Kelley. For each n E 
N take a homeomorphism In : Y ---t Y described as follows. 
In IvaI : val ---t van is a linear mapping with In( v) == v; for 
m E {2, ... ,n} let In Ivam : vam ---t vam-l be linear; for m > n 
the restriction Inlvam : vam ---t vam is the identity, and finally 
In Ive : ve ---t ve is the identity as well. Then the limit mapping 
I == lim In maps val linearly onto va, where a == (0,1/2) is the 
midpoint of the segment ve, for each m > 1 the restrictions 
Ilvam : vam ---t vam-l are linear, and live: ve ---t ve is the 
identity. Since 1-1 (ae ) has a one-point component, hence I is 
not confluent. 

The next two results are related to the above mentioned 
theorems of Nadler, [17, Theorem 3.1, p. 570, and Corollary 
3.3, p. 571]. 
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Proposition 5.11. Let a mapping I : X ~ Y between con­
tinua be the uniform limit of confluent mappin·gs. Then for 
each subcontinuum !{ of Y and for each component C of 
f- 1 (!() the image f( C) is a strong maximal limit continuum 
in !(. 

Proof: For each n E N let In : X ~ Y be a confluent map­
ping, and let I == lim In be the uniform limit. We will show 
that putting Mn == fn( C) the conditions of Definition 3.3 are 
satisfied. Note that I(C) == LimMn . Consider a subsequence 
{Mnk } of the sequence {Mn}, and for each kEN let Mk'be 
a continuum such that Mnk C Mk. Assume that the sequence 
{M k} is convergent, and let M' == Lim M k C !(. We have to 
show that M' == 1,(C). Since Ink (C) C Mk, it follows that 
C C l;;k1 (Mk), hence there is a component Ck of l;;k1 (Mk) that 
contains C. Taking a convergent sequence if necessary, we may 
assume that the sequence {Ck } tends to a continuum Co. Ob­
viously CeCa. By confluence of the mappings fnwe get 
Ink (Ck ) == Mk· Now if k tends to infinity we get (for the limits 
of both mappings and continua) I (Co) == Lim Mk == M' c !{. 
Since CeCa and C is a component of 1-1 (!(), the equality 
C == Co follows, and thereby I( Co) == M' == I(C). The proof 
is complete. 

Corollary 5.12. If a continuum Y is semi-I(elley, X is an ar­
bitrary continuum, and a surjection I : X ~ Y is the uniform 
limit of confluent mappings, then I is semi-conflue'nt. 

Proof: Let !{ be a subcontinuum of Y, and let C1 and C2 

be components of f- 1 (!(). Then f( C1 ) and f( C2 ) are strong 
maximal limit continua in !{ by Proposition 5.11, and since 
the continuum Y is semi-Kelley, one of them is contained in 
the other, by (3.20) of Theorem 3.18. So f is semi-confluent, 
as needed. 

The assumption that the mapping I in Corollary 5.12 is the 
uniform limit of confluent mappings cannot be relaxed to being 
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the uniform limit of semi-confluent ones. In other words, if a 
continuum Y is semi-Kelley and X is an arbitrary continuum, 
then the space of all semi-confluent mappings f : X ~ Y need 
not be a closed subspace of the space Y x of all mappings from 
X to Y. The next example shows this. 

Example 5.13. There exists a semi-l<elley continuum Z and 
a .mapping f : Z ~ Z which is not semi-confluent) being how­
ever the uniform limit of semi-confluent mappings. 

Proof: We keep notation of Example 5.10. For each n E N, 
let bn, Cn and dn be the midpoints of the segments van, anen, 
and CnCn+l, respectively. Note that the second (y) coordinates 
of points dn, Cn, an and bn are 1/4, 1/4, 1/2 and 3/4, respec­
tively. Put C == lim Cn == lim dn, a == lim an, b == lim bn. Then 
a, band C are midpoints of the segments ve, va and ae, cor­
respondingly. Define Z == ve U U{ven U endn : n EN}. Then 
Z is homeomorphic to the harmonic hooked fan (2.3), so it is 
semi-Kelley by construction. 

For each n E N let fn : Z ~ Z be defined as follows. The 
restriction fnl(vel U eldl ) : (vel U eldl ) ~ (ven U endn) is a 
piecewise linear mapping with: 

fn(v) == v, fn(bl ) == an, fn(al) == bn, 

fn(Cl) == Cn, fn(el) == en, fn(dl ) == dn, 

such that the restrictions fnlvbl' fnlblal, fnlalcl' fnlclel and 
fnleldl are linear. For r:n E {2, ... ,n} let fnl(vem U emdm) : 
(vem U emdm) ~ (vem-l U em-ldm- l ) be a linear homeomor­
phism with fn( em) == em-l and fn( dm) == dm- l , such that 
the restrictions fnlvem and fnlemdm are linear. Finally define 
fnl(ve U U{vem U emdm : mEN and m > n}) as the identity. 
It is evident that for each n E N the mapping fn just defined 
is semi-confluent. Put f == limfn and observe that: 
1) f maps vel U el dl onto ve piecewise line~rly with f( v) == v, 
f(b l ) == a, f(al) == b, f(Cl) == c, f(el) == e, f(dl ) == C, so that 
the restrictions flvbl , flblal, flalcl, flclel and fleldl are lin­
ear; 
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2) for each m > 1 the restriction fl( vem U emdm) (vem U 
emdm) ~ (vem-l U em-ldm-I) is a linear homeomorphism with 
f( em) == em-I and f( dm) == dm- 1 such that flvem and flemdm
 
are linear mappings; ,
 
3) five is the identity.
 

Take the segment ac as a subcontinuum of the range sr>ace, 
and note that f- 1 (ac) has four components: ac, {b I }, {d1 }, 

and the fourth one, containing the point Cl and contained in 
al Cl. Since the degenerate components have distinct images, 
namely the singletons {a} and {c}, the mapping f is not semi­
confluent. The proof is finished. 

Remark 5.14. T.Mackowiak has shown in [14, Theorem 2, 
p. 71] that if the continuum Y is locally connected, then the 
uniform limit of semi-confluent mappings from X onto Y is 
semi-confluent. Local connectedness of Y is essential in this 
result, see [15, Example 5.62, p. 47]. Our Example 5.13 shows 
that local connectedness of Y cannot be relaxed to being semi­
Kelley. Therefore, in connection with Corollary 5.12 and Ex­
ample 5.13 the following question is interesting and natural. 

Question 5.15. Is it true that if a continuum Y has the prop­
erty of Kelley and X is an arbitrary continuum, then the uni­
form limit of semi-confluent mappings from X onto Y is semi­
confluent? 

Recall that a continuum Z is said to be contractible provided 
that the identity mapping from Z onto Z is homotopic to a 
constant mapping from Z into Z. It is known (see [12, Theorem 
3.3, p. 26]; compare [18, Theorem 16.15, p. 544]) that if X has 
the property of Kelley, then the hyperspaces 2x and C(X) are 
contractible. It is interesting to know whether the assumption 
concerning the continuum X can be relaxed. 

Question 5.16. Is it true that if a continuum X is semi­
Kelley, then the hyperspace 2x and/or C(X) is contractible? 
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