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PROPERTIES OF n-BUBBLES IN
n-DIMENSIONAL COMPACTA AND THE
EXISTENCE OF (n — 1)-BUBBLES IN
n-DIMENSIONAL clc* COMPACTA !

J. S. CHOI

ABSTRACT. An n-dimensional compact metric space X
is called an n-bubble if the Alexander-Spanier cohomol-
ogy with compact supports of X with integer coefficients,
denoted by H™(X), is non-zero, but H"(A) = 0 for every
proper closed subset A of X. Under the setting that X is
an n-dimensional compact metric space and f: X — X
is homotopic to the identity, we show that every n-bubble
in X is contained in its image.

We give a positive partial solution to a question of W.
Kuperberg [9] by showing that if X is an n-dimensional
cle™ compact metric space such that H"(V) is finitely
generated for every connected open subset V of X, then
X contains an (n — 1)-bubble.
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1. INTRODUCTION

We first give some preliminary definitions [13]. By a com-
pactum we mean a compact metric space. The various metrics
and distances will be designated by the letter d. The diameter
of a subset A of a metric space will be denoted diam(A). If X
is a space and A C X, then A will denote the closure of the
set A, int(A) its interior. By a map or mapping we mean a
continuous function.

For cohomology we will use the Alexander-Spanier coho-
mology groups with compact supports and the notation of
Massey’s book [10]. The g-dimensional cohomology group with
compact supports of a locally compact Hausdorff space X with
integer coeflicients will be denoted by H?(X'). Following Massey
we denote the homomorphism from H?(U) to H?(X) associ-
ated with an open subset U of X by 7y x or simply 7 when
no confusion could occur (see [10] for the definition). For a
compact Hausdorff space Alexander-Spanier cohomology with
compact supports is naturally isomorphic to Cech cohomol-
ogy [11], and for any locally compact Hausdorff space X and
for any integer ¢ > 0, HY(X) = HI(X™"), where X* is the
one point compactification of X. Thus one can interpret the
results of this paper in terms of Cech cohomology.

By a compact ANR we mean a compact absolute neighbor-
hood retract [2]. If f is a map from X to Y, f ~ 0 means that
f 1s homotopic to a constant map, fa: A — fA is the map de-
fined by fa(z) = f(z), and f*: H(Y) — H?(X) will denote
the induced homomorphism of f. The map f: X — Y is an
e — map if for every y € Y the diameter diam(f~'y) < e. The
group of integers will be denoted by Z. By the dimension of X
we mean the covering dimension of X. The following definition
is essentially stated in Borel [1].

Definition 1. The cohomological dimension dimzX of a space
X with respect to the group Z is defined to be the least integer
n (or 0o) such that HY(U) = 0 for every open subset U of X
and ¢ > n.
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The following two definitions are cohomology versions of two

definitions given by W. Kuperberg [9].

Definition 2. A compactum X is said to be ‘“n-cyclic” if
H"(X) #0.

Definition 3. An n-dimensional compactum X s called an
n-dimensional closed Cantor manifold or an ‘“n-bubble” if it is
n-cyclic and H"(A) = 0 for every proper closed subset A of X.

The next definition is given by Bredon [3].

Definition 4. X is “clc™” (cohomologically locally n-connected)
if for each ¢ < n, ¢ € X and each closed neighborhood N

of z, there is a closed neighborhood M C N of x such that

0=1:*: HY(N) — HY(M).

In 1972 W. Kuperberg [9] raised a question “Does every n-
dimensional compactum contain an (n — 1)-bubble?”

In this paper we give a positive partial solution to the ques-
tion by showing that if X is a cl¢™ compactum such that (V)
is finitely generated for every connected open subset V of X,
then X contains an (n — 1)-bubble.

We show some properties of n-bubbles in an n-dimensional
compactum. In particular we also show that if X is an n-
dimensional compact metric space such that H™(X) is finitely
generated but X contains infinitely many distinct n-bubbles
then X contains an infinite sequence of distinct n-bubbles such
that the limit of the sequence in the Hausdorff metric is the
closure of the union of all the n-bubbles in the sequence.

2. PRELIMINARIES

In this section, we show a new approach to the problem
of the existence of n-bubbles in an n-dimensional compactum
X with finitely generated H™(X). These theorems are just
cohomological versions of known results of W. Kuperberg’s,
but we show alternative proofs.
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Definition 5. Let X be a compactum, a an element of H*(X),
and A a closed subset of X. A is said to be “a carrier of a”
provided 1*(a) # 0, where t*: H"(X) — H™(A) is induced by
the inclusion. A carrier A of a is said to be “irreducible” if no
proper subset of A is a carrier of a.

Clearly, every n-bubble is an irreducible carrier of an element
of H*(X). Also, by the continuity of the Alexander-Spanier
cohomology with compact supports [11], every carrier A of an
element ¢ € H?(X) contains an irreducible carrier of a. But
unlike the homology case [9], even when A; and A, are carriers
of an element a € H™(X), A1 N A; doesn’t have to be a carrier
of a. Instead we have the following lemma. The proof of this
lemma is straightforward so we omit it.

Lemma 1. Let X be a compactum and a be an element of
H"(X). Suppose that a = niay + nqay + -+ + n.a,, where
ar € H"(X) and 0 # nx € Z for k = 1,...,r; then every
carrier of a is a carrier of at least one of ay,...,a,.

The following is the cohomological version of a theorem of
W. Kuperberg [9]. It can be proved by translating Kuperberg’s
proof into cohomology. We will show another proof of this
theorem in Section 3.

Theorem 1. Suppose that X is an n-dimensional compactum
such that H™(X) is finitely generated. Let X1 D X; D ...
be a decreasing sequence of closed subsets of X. Then the in-
tersection Xo = N2, Xk is n-cyclic if and only if every Xy is
n-cyclic.

Definition 6. Let (F,<) be a partially ordered set and let a
be an element of F. Then a is said to be “a minimal element”
in F if for any b€ F, b < a implies a = b.

The following also is the cohomological version of another
theorem of W. Kuperberg [9]. We could use Theorem 1 to
prove the first part of it, but we provide an alternative proof.
We have no similar proof to Kuperberg’s for the second part.
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Theorem 2. Every n-dimensional, n-cyclic compactum X for
which H™(X) s finitely generated contains an n-bubble. More-
over, the number of n-bubbles contained in X is at most count-

able.

Proof of the first part of the theorem: Let {a1,as,...,a,}
be a finite set of generators for H*(X). Let F} be the set of all
irreducible carriers of a; and let F = UF;. Then F is partially
ordered by inclusion. By Lemma 1 combined with the fact
that every carrier contains an irreducible carrier, it is easy to
see that A is an n-bubble in X if and only if A is a minimal
element of F. Since any two different irreducible carriers of an
element a; have no inclusion between them, every chain in F
has at most r elements. Therefore F has a maximal chain and
therefore contains a minimal element.

To prove the second part of the theorem, we will need the
following lemma.

Lemma 2. Let X be an n-dimensional, n-cyclic compactum
with two distinct n-bubbles A and B. Then neither kernel of o%
and vy is contained in the other, where 1% : H*(X) — H"(A)
and vy : H*(X) — H"(A) are the homomorphisms induced by
the inclusions 14: A— X andig: B — X.

Proof: Since A # B, AN B is a proper closed subset of A and
B and therefore H*(AN B) = 0. Hence, by the Mayor-Vietoris

sequence,
H"(AU B) — H*(A)® H"(B)

is onto. Let-j4: A — AUB, jp: B— AUB, and h: AUB —
X. Then there exists an element a € H"(A U B) such that
7%(a) # 0 but j5(a) = 0. Also since h*: H*(X) — H"(AU B)
is an epimorphism, there exists an element b € H™(X) such
that *(b) = a. Hence ¢%(b) = j1h*(b) = ji(a) # 0, but
i5(b) = jph*(b) = j5(a) = 0. Thus b € Kertg but b € Ker}.
Therefore Ker iy ¢ Ker ¢%. The same argument shows that
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there is a non-zero element ¢ € H"(X) such that :%(c) = 0 but
i5(c) # 0. Therefore Ker t% ¢ Ker ij.

Proof of the second part of Theorem 2: It follows from
Lemma 2 that the number of n-bubbles in X is at most the
number of subgroups of H™(X). But H™(X) can have at most
countably many subgroups.

3. PROPERTIES OF n-BUBBLES IN n-DIMENSIONAL
COMPACTA

In this section, we are mainly concerned with the properties
of n-bubbles in an n-dimensional compactum. We start with
one of our major tools.

Lemma 3. Suppose that X is an n-dimensional compactum
such that H"(X) is finitely generated. If A is a closed subset
of X, then there exists a closed neighborhood N of A such that
i*: H"(N) — H™(A) is an isomorphism, where 1: A — N.

Proof: Consider the following long exact sequence:
C— HM(X \ A) = H™(X) 25 HMA) — 0

Since H™(X) is finitely generated, Im 7 = Ker j* is finitely
generated. Let {£r}7_, be the set of generators of Im 7 =
Ker j*. Then for each k there is a corresponding nx € H™(X \
A) such that 7(nx) = €. Also for each n; there is an open
set Wy whose closure is compact and is contained in X \ A;
furthermore there is n;, € H™(Wj) with 7(n,) = nr where
m: H"(Wy) — H™(X \ A). Let W = Uj_,Wi. Then for
each k there is ny € H™(W) such that 7/(fx) = nx, where
" H* (W) - H*(X \ A). Let N = X \ W; then int(N) =
X\W D Asince W C X\A. Hence N is a closed neighborhood

of A. We have the following commutative diagram:
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HY(X \ A—T— Hn(X—L— Hn(A)

'r" z% *
HY(W)—T— H™(X)—h gr(x\W) = H™(N)
Now we show that 7* is an isomorphism. Clearly ¢* is an
epimorphism. To prove :* is a monomorphism, let a € H™(N)
be such that ¢*(a) = 0. Since h* is an epimorphism, there is
b € H"(X) such that h*(b) = a. Since *h* = j*, j*(b) = 0.
Hence there is a b’ € H™"(X \ A) such that 7(b') = b, but ¢’ is in
the subgroup generated by {n}}_, so that thereis c € H*(W)
such that 7'(¢) = . Since 7 = 77/, 7"(¢) = b. Therefore

a = h*(b) = h*1"(c) = 0.

The following corollary of the Lemma is the theorem of W.
Kuperberg that we referred to as Theorem 1 in Section 2. Here
we give another proof.

Corollary 1. Suppose that X is an n-dimensional compactum
such that H™(X) is finitely generated. Let X1 D X; D ... bea
decreasing sequence of closed subsets of X. Then the intersec-
tion Xo = N2, X ts n-cyclic whenever all the Xy are n-cyclic.

Proof: Let N be a closed neighborhood of Xy such that
*: H*(N) — H™(Xo) is an isomorphism, where 7: Xy — N.
Then there exists a number kg such that for all £ > ky X C N.
If we let 151 Xj — N be the inclusion for k > ko, i5: H*(N) —
H™(X}%) is an epimorphism and therefore H*(N) # 0. Thus
H™(Xo) # 0.

Theorem 3. Suppose that X is an n-dimensional compactum
such that H™"(X) is finitely generated, A is an n-bubble in X, B
is an n-dimensional closed subset of X with H"(B) # 0, and C
is a closed subset of X such that C D AU B. If either v} or1jp
is an isomorphism, then B D A, where ¢: H*(C) — H"(A)
and vg5: H*(C) — H™(B) are the homomorphisms induced by
the inclusions.
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Proof: Suppose that B 7 A. Then BN A is a proper closed
subset of A. Thus H*(AN B) = 0.

Thus, in the following Mayor-Vietoris sequence

(54:78)

. > H™(AUB) —5 H™(A)$H™(B) — H"(ANB) — ...

(74%,78) is an epimorphism. Now consider the following dia-
gram:

(U4,JB)

H"(A)® H™(B)

Since either ¢% or ¢} is an isomorphism, j* is a monomor-
phism. But every set is n-dimensional and hence every homo-
morphism induced by inclusion is an epimorphism. Thus 7* is
an epimorphism and therefore an isomorphism. This implies
that either j} or jg is an isomorphism. That is, that ¢% and
J* are isomorphisms implies j} is an isomorphism and that 5
and j* are isomorphisms implies j5 is an isomorphism.

Case 1. j3 is an isomorphism. Since (j%,J5) is an epimor-
phism and H™(A) # 0,H"(B) # 0, there exists an element
b€ H"(AU B) such that j5(b) = 0 but j5(b) # 0. But since
J4 is an isomorphism, we have that b = 0, which is a contra-
diction.

Case II. 7% is an isomorphism. Again there exists an element
b € H*(AUB) such that j%(b) # 0, but j5(b) = 0. But since jg
is an isomorphism we have that b = 0, which is a contradiction.

Therefore in either case, B O A.
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The following is a special case of Theorem 3.

Corollary 2. Suppose that X is an n-dimensional compactum
such that H*(X) is finitely generated, and that A is an n-bubble
in X, and B and C are n-dimensional closed subsets of X such
that C D AU B and i*: H*(C) — H™(A) ts an isomorphism,
where 1: A — C. Then H"(B) # 0 if and only if B D A.

We examine an n-dimensional compactum that has finitely
generated n-th cohomology but has infinitely many distinct
n-bubbles.

Theorem 4. Let X be an n-dimensional compactum such that
H"(X) is finitely generated. Suppose that < X > is a sequence
of distinct n-bubbles in X. Then < Xy > has a convergent
subsequence < X, > such that in the Hausdorff metric lim <
X, >= U X,

Proof: Since < Xj; > has a convergent subsequence, we may
assume without loss of generality that < X} > is convergent.

Let Xo = limXy;. Then Xy, = NZ2;UR,Xx. Then, by
Lemma 3, there exists a closed neighborhood N of X, such that
i*: H*(N) — H™(Xo) is an isomorphism, where i: Xy — N.
Since Xy is the limit of the sequence < X}, >, there exists an
integer ko such that if k¥ > ko then X} C N.

Hence, by Theorem 3, X C Xy for all & > ko. Let sx =

k4 ko—1; then lim < X,, >D U, X,,. Clearly lim < X;, >C
U2, X, . Therefore lim < X, >= U, X,,.
Corollary 3. Suppose that X s an n-dimensional compactum
such that H™(X) is finitely generated and X has infinitely
many distinct n-bubbles. If X has no proper closed subset that
contains infinitely many distinct n-bubbles, then X = lim <
X, > where < Xj > is a convergent sequence of infinitely
many distinct n-bubbles.

Proof: Let < Xj; > be a convergent sequence of infinitely
many distinct n-bubbles. Then by the proof of Theorem 4
there exists an integer kg such that lim < X} >= U ko Xk-
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Hence lim < X, > is a closed subset of X and contains
infinitely many distinct n-bubbles. Therefore lim < X; >= X.

The following lemma is another important tool in this sec-
tion.

Lemma 4. Let A be a g-bubble in a compactum X. Then for
any closed subset B of X, B D A if and only if Ker1p <
Ker %, where ig: HY(AUB) — HY(B) and ¢y: H{(AUB) —
Hi(A) are induced by the inclusions.

Proof: Clearly B D A implies that Ker i < Ker 1.
Suppose that B  A. Then AN B is a proper subset of A,

and so HY(AN B) = 0. Consider the following commutative
diagram:

Hi((BU A)\ (BN A)) u Hi(BU A)

HY(B\ (BN A)) \z; HY(B 7%

HY(A\ (BN A)) (E H1(A)

Since H?(BN A) = 0, we have that 74 is an epimorphism for
k =1, 2 and 3. We also note that HI((BU A) \ (BN A)) =
HY(B\(BNA))®H!(A\(BNA)). Since H1(A) # 0 and 75 is
an epimorphism, we can find an element a € HI(A\ (BN A))
such that 73(a) # 0. Since (¢],24]) is an isomorphism, there
exists an element bin H((BUA)\(BNA)) such that i47(b) = a
and zg7(b) = 0. Then 137 (b) = mip](b) = 0 and ¢47(b) =
m3147(b) # 0. Therefore 7(b) € Ker g, but m1(b) € Ker i%.
Thus Ker 1 < Ker % implies B D A.

In view of Lemma 3 and Corollary 2, for each n-bubble A
in an n-dimensional compactum X such that H™(X) is finitely
generated, there is an positive € such that if f: X — X is e
homotopic to identity on X then A C f(A). But we show this
is true regardless of €. In fact we prove the following.
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Theorem 5. Suppose that X is an n-dimensional compactum
and that f: X — X is a map homotopic to the identity. Then
for every n-bubble A in X, fA D A.

Proof: By Lemma 4, it suffices to show that Ker 13, < Ker ¢},
where i},: H*(fAU A) — H"(fA) and 7: H"(fAU A) —
H™(A) are induced by the inclusions. Let f4: A — fA be a
map induced by f. We now show that fii}, = 1. Let F
be a homotopy from X x I to X such that F'(z,0) = z and
F(z,1) = f(z). Let N = F(AxI). Then (fAUA) C N
and fa ~ ids on N. Therefore if we let jj4: fA — N and
ja: A — N then jsafa ~ 4. We have the following diagram:

H"(N)

-« J" -
Jg A
£, mava)
A *
S e Y

H™(fA) 4 H"(A)

where j: (fAU A) — N.

Let « € H*(fAU A). Since j* is an epimorphism, there
exists an element b in H"(N) such that j*(b) = a. Then
va(a) = 1357(b) = j3(b) = fai7a(b) = fii7457(b) = fiija(a).
Therefore 13 = f}i},4 and hence Ker 1}, < Ker 1.

Under the condition that f: X — K and g: K — X are
maps such that gf ~ i1dx, if A is an n-bubble, then Theorem
5 shows that gfA D A, but if B is an n-bubble in K then
gB doesn’t have to contain an n-bubble. But we proved the
following theorem.

Theorem 6. Let X be an n-dimensional compactum and K
an n-dimenstonal polyhedron with a fized triangulation. As-
sume that f: X — K and g: K — X are maps such that
gf ~idx. Let A be an n-bubble in X and B a closed subset of
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fA such that Ker 1* < Ker f}, where :*: H*(fA) — H"(B) is
induced by inclusion and fa is induced by f as defined earlier.
Then gB D A.

Proof: Since Ker +* < Ker f} and ¢ is an epimorphism, there

is a homomorphism h: H*(B) — H™(A) such that hi* = f}.

We now prove that the following diagram commutes

H™(gB U A)

HMgB) 95 . HvB)— M g4

where gg: B — ¢gB is induced by g.
Consider the following diagram:

H"(A)

id " oy
Ja

* *

H(A) A Hn(fa)Iia Hr(gf AL H™(gB U A)

h “ % %
\ | s G,

H™(B) ~2_ H"(¢B)

All homomorphisms except f}, 974,95 and h are induced by
inclusions.

By Theorem 5, gfA D A, and hence gfA D (AU gB). To
show that the above diagrams commute, it suffices to show that
the top-left triangle diagram commutes. Let F' be a homotopy
from X x I to X such that F(z,0) = z and F(z,1) = gf(z).
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Let N = F(A x I). Then we have the following diagram:

H™(N)
l*
H™(gfA) |
,/f}'ig}A 2
H™(A) r 4 H™(A)

where [: gfA — N.

Clearly lgfafa ~ lj4 and I* is an epimorphism, and hence
fi9%a = 74 Thus the top-left triangle diagram commutes, and
therefore the whole diagram commutes.

Let a € H*(gB U A). Then, since j* is an epimorphism,
there is an element b in H™(gfA) such that 7*(b) = a. So
iy5(a) = i;557(b) = j;p(b). Hence hggizp(a) = hgpjyp(b) =
hirgs4(8) = F3034(6) = Ja(b) = i35°(b) = i3(a). Therefore
hgpi;p = i4 and hence Keri;p < Kerij. By Lemma 4, we
have gB D A.

Corollary 4. Let X be an n-dimensional compactum and K
an n-dimensional polyhedron with a fized triangulation. As-
sume that f: X — K and g: K — X are maps such that
gf ~1dx. Let A be an n-bubble in X and B=U{c € K | o
is an n — stmplex such that o C fA}. Then gB D A.
Proof: Clearly B C fA. Let j: (BUK™ 1) — (fAU K1),
i:B— fA ipg: B— (BUK" ) and iax: fA — (fAU
K™ 1) be inclusion maps, where K™ ! is the (n — 1)-skeleton of
K. Then, by the long exact sequence, 7% -+ H*(fAUK"™') —
H™(fA)and i} - H"(BUK"™') — H"(B) are isomorphisms.
We now show that j*: H"(fAU K™!') - H*(BU K"1)
is an isomorphism and hence that ¢*: H*(fA) — H™(B) is an
isomorphism. Let N = U{o € K | ¢ is an n-simplex such that
ocNfA#0}and N' = {oc € K | o is an n-simplex such that
o C N but ¢ ¢ B}. Then N’ is finite, say N' = {o1,...0,}.
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For each 1 < k < s, we have that or N fA is a non-empty
compact set, but ox ¢ fA. Therefore there is an open n-
ball B} such that B} C (ox \ fA). Hence we have a strong
deformation retraction Fy of (o} \ B}) to a,’c‘_l, where a,’:‘l is
the (n — 1)-skeleton of oy.

Define F: [N\ (BfU---UBM) )UK" ] x I — (N\(ByU
~-UB™M)UK" 1 by

Fo < 1 it z € (BUK™);
* ) Fi(z,t), if z € (o \ Bp)for somel < k < s.

Then F' is a strong deformation retraction of (N \ (BfU---U
B™"))UK™ ! to BUK™!. Therefore the map h*: H™((N\(BJU
--+UB™)UK™1) — H*(BUK™ ') induced by inclusion is an
isomorphism. Since fAUK™ ! C (N\(B}U---UB™))UK™ 1
we have that j*: H"(fAU K™') — H*(BU K™ !) also is an
isomorphism. Hence i*: H"(fA) — H™(B) is an isomorphism.
Therefore, by Theorem 6, gB D A.

Corollary 5. Let X be an n-dimensional compactum and K
an n-dimensional polyhedron with a fized triangulation. As-
sume that f: X — K and g: K — X are maps such that
gf ~ 1dx. Let A be an n-bubble in X and let B be a closed
subset of fA such that there is a map ¢: A — K with pA C B
and flJA~ . Then gB D A.

Proof: Let f4: A — fA be the map induced by f and let
©1: A — B be the map induced by ¢ and let i: B — fA,
tg: B — K and i74: fA — K be inclusion maps. Then
ipp1 =~ tjafa. Hence isafa > ipp1 = ija1p1. Thus fri}, =
¢p7i*i7 4. Since i}, is an epimorphism, f3 = ¢j¢*. Therefore
Ker 1* < Ker f} and hence, by Theorem 6, ¢B D A.

The following lemma is widely known (cf. [6]).

Lemma 5. If X is a compactum and a € HY(X), then there
exists a positive € such that for every e-map f from X onto a
compactum Y there exists b € HI(Y) such that f*(b) = a.
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The following theorem is independent of the number of dis-
tinct n-bubbles the space has.

Theorem 7. If X is an n-dimensional compactum such that
H™(X) is finitely generated, then there exists a positive € such
that for every e-map f from X onto a compactumY, H*(fA) #
0 for every n-bubble A in X.

Proof: Let {aj,...,a;} be the set of generators of H™(X).
Then by Lemma 5 there exist positive €;,...,€, such that
for each k if fi is an €;-map from X onto a compactum Y
then there exists by € H™(Y) such that ff(bx) = ai. Let
e = min(€y,...,€s) and let f be an e-map from X onto a com-
pactum Y and A an n-bubble in X. Then we have the following
commutative diagram:

H™(X) I H™(Y)
i* j*
H"(A) i mra)

Since H"(A) # 0 and :* is an epimorphism, there exist a
non-zero element a € H"(A) and integers ny,...,n, such that
t*(n1a; + - -+ + nsas) = a. Since f is e,-map for each k, there
exists b € H™(Y) such that f*(b) = njaq + -+ 4+ nsa;. Hence
i*f*(b) = a. Therefore f35*(b) = *f*(b) = a. Thus j*(b) €
H™(fA).

4. THE EXISTENCE OF (n — 1)-BUBBLE IN n-DIMENSIONAL
clc™ COMPACTA

In this section we examine the existence of (n — 1)-bubbles
in n-dimensional clc” compacta. We start with the following

Lemma 6. If H and K are two subcontinua of a continuum
X and zg, x1, and zo are three points in X such that for 0 <
1,7 <2 and v # j, each of subcontinua H and K separate z;
from z;, then HN K # (.
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Proof: Suppose that H N K = (). It follows easily from the
definition that there exist disjoint nonempty open subsets Cp,
Ci, and Cy of X \ H such that CoUC;UCy, = X \ H and
C contains zy, for £ = 0, 1, and 2. Since K is a continuum
and K C X \ H, K is in one of the Cy’s, say Cp. Then
CiNK=0=C,NK.

Then C; U Cy U H is connected, and therefore it is in one
of the components of X \ K, but it contains z; and z,. This
contradicts the fact that K separates z; from z,.

Theorem 8. Let {X)}rea be an uncountable collection of mu-
tually disjoint continua in a locally connected continuum X,
each of which has the property that X \ X has more than one
component. Then there exists a A € A such that X \ X\ has
ezactly two components.

Proof: Suppose that X \ X, has more than two components
for every A € A.

For every A € A there exist a positive €y and a point z) in X
such that By, = {z € X | d(z,z)) < €)} lies inside C), one of
the components of X \ X,. Consider {e) | A € A}. Since A is
uncountable, there exists a positive number €; so that ¢; < €y
for uncountably many A. Then there is a point z; in X such
that By = {z € X | d(z1,2) < %} contains uncountably many
z)’s which satisfy €¢; < €). Thus if ) € By then B; C B). Let
A ={A€A| B, C B,}.

For every A € A; there exist a positive €} and a point z
in X such that B{ = {z € X | d(z,2)) < €} lies inside
C4, one of the components of X \ X, but different from C,.
Also, there exist a positive €; and a point z, in X such that
B, = {z € X | d(z2,2) < 2} C B for uncountably many
A E A

Let A, = {A € Ay | B, C B{}. Since for every A € A,,
X \ X has at least three components, there exist a positive €}
and a point z% in X such that BY = {z € X | d(z,2z%) < €}
lies inside CY, one of the components of X \ X, but different
from C and C}. Therefore there exist a positive €3 and z3 € X
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such that Bs = {z € X | d(z3,2) < £} C BY for uncountably
many A € A,.

Let Az = {A € Ay | B C BY}. Then Aj is still uncountable.
Let u,v € Az. Then z; € C,NC,, z; € C,NC), and z3 €
Cy N C). Therefore, by Lemma 6, X, N X, # 0. This is a

contradiction.

The following is a generalization of Sieklucki’s Theorem.
(See [4] or [6])

Theorem 9.  Suppose that X is a clc® compactum with
dimzX = n. Let {X)\}rea be an uncountable collection of
compacta in X with dimzX) = n. Then there are two distinct
indices u, A € A such that dimz(X, N X)) =n.

A proof of the following lemma can be found in Bredon [3].

Lemma 7. Let X be a clc® compactum. Then H1(X) is finitely
generated for 0 < q¢ < n.

The following theorem can be found in Wilder ([13] pp. 100).

Lemma 8. If A is a compact component of a locally compact
Hausdorff space X, and P is an open set containing A, then X
is the union of disjoint open sets U, V such that AC U C P.

Lemma 9. Suppose that X s a compact Hausdorff space and
0 # a € HY(X). Then there is a component Y of X such
that 1*(a) # 0, where +*: HY(X) — HY(Y) is induced by the

inclusion.

Proof: Let {Y, | u € A} be the set of all components of X
and let z,: Y, — X.

Suppose that ¢%(a) = 0 for every 4 € A. By the weak con-
tinuity of Alexander-Spanier cohomology with compact sup-
ports, for every component Y, of X there exists a closed neigh-
borhood M, of Y, such that ji(a) = 0, where j;: H'(X) —
H%(M,) is induced by the inclusion. By Lemma 8, there exists
an open and closed subset N, such that Y, C N, C M,. Then
{N,} is an open covering of X. Since X is compact, there is a

finite subcovering {Ny,..., N, } of {N,}.
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Let Pl = N] and Pk = Nk\(N]U"'UNk_l)fOI' k= 2,...,7‘.
Since Nj is open and closed for each k, P, also is open and
closed and therefore X is the disjoint union of Py, ..., P,. Thus
(hi,...,h¥): HY(X) —» HY(P) & --- ® HYP,) is an isomor-
phism, where h}: H4(X) — H9(Py) is induced by the inclu-
sion. Therefore there exists k such that h}(a) # 0. Let [: P, —
M, be the inclusion map. Then 0 # h}(a) = I*j5(a) = 0. This

1s a contradiction.

Theorem 10. If X is an n-dimenstonal clc™ compactum such
that H™(V') is finitely generated for every connected open subset
V of X, then X has an (n — 1)-bubble.

Proof: Since X is an n-dimensional compactum, by the char-
acterization of dimension by mappings into spheres, there exist
a closed subset C of X and a map g: C — S™! such that g
can not be extended over X. Since S™! is a compact ANR,
there exists an open neighborhood U of C such that g has an
extension over U. Let e = d(C, X \ U).

Foreach 0 < p < elet X, = {z € X | d(z,C) = p}. Then
H™'(X,) # 0 by Hopf’s Extension Theorem. By Theorem 9,
there is an uncountable subset A of the interval (0, €) such that
for each p € A, X, is (n — 1)-dimensional.

For each u € A, by Lemma 9, there is a component Y, of
X, such that H"'(Y,) # 0. By Theorem 8, there exists a
p such that X \ Y, has at most two components. If X \Y,
has one component then, by hypothesis, H™(X \ Y,) is finitely
generated. If X \ Y, has two components, U and V, then
H™(X\Y,)= H*(U) @ H"(V), which is finitely generated by
the hypothesis. We have the following long exact sequence

o HYNX) s H(Y,) o HY(X\Y,)

Since H™'(X) and H™(X \ Y,) are finitely generated,

H™'(Y,) is finitely generated. Therefore, by Theorem 2 of
W. Kuperberg, Y, has an (n — 1)-bubble and so does X.

Definition 7. [3] The space X s called an “n-dimensional
cohomology manifold over Z” (denoted n—cm) if X has locally
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constant cohomology groups, locally equivalent to Z in degree
n, and to zero in degrees other than n, and if dimzX < oo.

Definition 8. Let X be a compactum and Il a class of spaces.
Then X is said to “have a factorization through I1” provided
for every € > 0 there exist a space Y € I, a surjective map
fe: X =Y, and a map g.: Y — X such that d(g.fe,1dx) < €.

Theorem 11. ([5] or [6]) Let X be an n-dimensional con-
nected and locally connected compactum that has a factoriza-
tion through the class of orientable n — cm compacta. If U 1is
a connected open subset of X, then

TUX - Hn(U) — Hn(X)
s an isomorphism.

Corollary 6. Let X be an n-dimensional connected and lo-
cally connected compactum that has a factorization through the
class of orientable n — ecm compacta. Then X is an n-bubble.

If in addition X s clc™ then X has an (n — 1)-bubble.

Proof: By Theorem 11, for every open subset U of
X tux: H*(U) — H"(X) is an epimorphism. Hence H"(A) =
0 for every proper closed subset A of X. To show that X
is an n-bubble, it suffices to show that X is n-cyclic. Since
X is n-dimensional, there exists an open subset U such that
H™(U) # 0. Consider the set of all components V, of U.
Since X 1is locally connected, V, is open for every p. Thus
H™"(U) = ®©H"(V,) and therefore H*(V,) # 0 for some u.
Since V,, is connected, by Theorem 11, H*(X) = H™(V,) # 0.
Thus X is an n-bubble.

If in addition X is clc™ then, by Lemma 7, H™(X) is finitely
generated. Thus, by Theorem 11, H*(U) is finitely generated
for every connected open subset U of X. Therefore, by Theo-
rem 10, X has an (n — 1)-bubble.

Remark. If X is an n-dimensional n — em compactum, then

X has an (n — 1)-bubble.
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