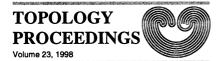
Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.



PROPERTIES OF *n*-BUBBLES IN *n*-DIMENSIONAL COMPACTA AND THE EXISTENCE OF (n-1)-BUBBLES IN *n*-DIMENSIONAL clc^n COMPACTA ¹

J. S. CHOI

ABSTRACT. An *n*-dimensional compact metric space X is called an *n*-bubble if the Alexander-Spanier cohomology with compact supports of X with integer coefficients, denoted by $H^n(X)$, is non-zero, but $H^n(A) = 0$ for every proper closed subset A of X. Under the setting that X is an *n*-dimensional compact metric space and $f: X \to X$ is homotopic to the identity, we show that every *n*-bubble in X is contained in its image.

We give a positive partial solution to a question of W. Kuperberg [9] by showing that if X is an n-dimensional clc^n compact metric space such that $H^n(V)$ is finitely generated for every connected open subset V of X, then X contains an (n-1)-bubble.

¹⁹⁹¹ Mathematics Subject Classification. 55M10, 55M15, 55N05, and 55N99.

Key words and phrases. Compactum, n-bubble, clc^n .

¹This paper consists of parts of author's doctoral dissertation written under the supervision of Professor George A. Kozlowski.

J. S. CHOI

1. INTRODUCTION

We first give some preliminary definitions [13]. By a compactum we mean a compact metric space. The various metrics and distances will be designated by the letter d. The diameter of a subset A of a metric space will be denoted diam(A). If X is a space and $A \subset X$, then \overline{A} will denote the closure of the set A, int(A) its interior. By a map or mapping we mean a continuous function.

For cohomology we will use the Alexander-Spanier cohomology groups with compact supports and the notation of Massey's book [10]. The q-dimensional cohomology group with compact supports of a locally compact Hausdorff space X with integer coefficients will be denoted by $H^q(X)$. Following Massey we denote the homomorphism from $H^q(U)$ to $H^q(X)$ associated with an open subset U of X by $\tau_{U,X}$ or simply τ when no confusion could occur (see [10] for the definition). For a compact Hausdorff space Alexander-Spanier cohomology with compact supports is naturally isomorphic to Čech cohomology [11], and for any locally compact Hausdorff space X and for any integer q > 0, $H^q(X) \cong H^q(X^+)$, where X^+ is the one point compactification of X. Thus one can interpret the results of this paper in terms of Čech cohomology.

By a compact ANR we mean a compact absolute neighborhood retract [2]. If f is a map from X to Y, $f \simeq 0$ means that f is homotopic to a constant map, $f_A: A \to fA$ is the map defined by $f_A(x) = f(x)$, and $f^*: H^q(Y) \to H^q(X)$ will denote the induced homomorphism of f. The map $f: X \to Y$ is an $\epsilon - map$ if for every $y \in Y$ the diameter $diam(f^{-1}y) \leq \epsilon$. The group of integers will be denoted by \mathbb{Z} . By the dimension of Xwe mean the covering dimension of X. The following definition is essentially stated in Borel [1].

Definition 1. The cohomological dimension $\dim_{\mathbf{Z}} X$ of a space X with respect to the group \mathbf{Z} is defined to be the least integer n (or ∞) such that $H^q(U) = 0$ for every open subset U of X and q > n.

The following two definitions are cohomology versions of two definitions given by W. Kuperberg [9].

Definition 2. A compactum X is said to be "n-cyclic" if $H^n(X) \neq 0$.

Definition 3. An n-dimensional compactum X is called an n-dimensional closed Cantor manifold or an "n-bubble" if it is n-cyclic and $H^n(A) = 0$ for every proper closed subset A of X.

The next definition is given by Bredon [3].

Definition 4. X is "clcⁿ" (cohomologically locally n-connected) if for each $q \leq n, x \in X$ and each closed neighborhood N of x, there is a closed neighborhood $M \subset N$ of x such that $0 = i^* \colon H^q(N) \to H^q(M).$

In 1972 W. Kuperberg [9] raised a question "Does every *n*-dimensional compactum contain an (n-1)-bubble?"

In this paper we give a positive partial solution to the question by showing that if X is a clc^n compactum such that $H^n(V)$ is finitely generated for every connected open subset V of X, then X contains an (n-1)-bubble.

We show some properties of *n*-bubbles in an *n*-dimensional compactum. In particular we also show that if X is an *n*dimensional compact metric space such that $H^n(X)$ is finitely generated but X contains infinitely many distinct *n*-bubbles then X contains an infinite sequence of distinct *n*-bubbles such that the limit of the sequence in the Hausdorff metric is the closure of the union of all the *n*-bubbles in the sequence.

2. Preliminaries

In this section, we show a new approach to the problem of the existence of *n*-bubbles in an *n*-dimensional compactum X with finitely generated $H^n(X)$. These theorems are just cohomological versions of known results of W. Kuperberg's, but we show alternative proofs. **Definition 5.** Let X be a compactum, a an element of $H^n(X)$, and A a closed subset of X. A is said to be "a carrier of a" provided $i^*(a) \neq 0$, where $i^* \colon H^n(X) \to H^n(A)$ is induced by the inclusion. A carrier A of a is said to be "irreducible" if no proper subset of A is a carrier of a.

Clearly, every *n*-bubble is an irreducible carrier of an element of $H^n(X)$. Also, by the continuity of the Alexander-Spanier cohomology with compact supports [11], every carrier A of an element $a \in H^q(X)$ contains an irreducible carrier of a. But unlike the homology case [9], even when A_1 and A_2 are carriers of an element $a \in H^n(X)$, $A_1 \cap A_2$ doesn't have to be a carrier of a. Instead we have the following lemma. The proof of this lemma is straightforward so we omit it.

Lemma 1. Let X be a compactum and a be an element of $H^n(X)$. Suppose that $a = n_1a_1 + n_2a_2 + \cdots + n_ra_r$, where $a_k \in H^n(X)$ and $0 \neq n_k \in \mathbb{Z}$ for $k = 1, \ldots, r$; then every carrier of a is a carrier of at least one of a_1, \ldots, a_r .

The following is the cohomological version of a theorem of W. Kuperberg [9]. It can be proved by translating Kuperberg's proof into cohomology. We will show another proof of this theorem in Section 3.

Theorem 1. Suppose that X is an n-dimensional compactum such that $H^n(X)$ is finitely generated. Let $X_1 \supset X_2 \supset \ldots$ be a decreasing sequence of closed subsets of X. Then the intersection $X_0 = \bigcap_{k=1}^{\infty} X_k$ is n-cyclic if and only if every X_k is n-cyclic.

Definition 6. Let (\mathcal{F}, \leq) be a partially ordered set and let a be an element of \mathcal{F} . Then a is said to be "a minimal element" in \mathcal{F} if for any $b \in \mathcal{F}$, $b \leq a$ implies a = b.

The following also is the cohomological version of another theorem of W. Kuperberg [9]. We could use Theorem 1 to prove the first part of it, but we provide an alternative proof. We have no similar proof to Kuperberg's for the second part. **Theorem 2.** Every n-dimensional, n-cyclic compactum X for which $H^n(X)$ is finitely generated contains an n-bubble. Moreover, the number of n-bubbles contained in X is at most countable.

Proof of the first part of the theorem: Let $\{a_1, a_2, \ldots, a_r\}$ be a finite set of generators for $H^n(X)$. Let \mathcal{F}_k be the set of all irreducible carriers of a_k and let $\mathcal{F} = \bigcup \mathcal{F}_k$. Then \mathcal{F} is partially ordered by inclusion. By Lemma 1 combined with the fact that every carrier contains an irreducible carrier, it is easy to see that A is an n-bubble in X if and only if A is a minimal element of \mathcal{F} . Since any two different irreducible carriers of an element a_k have no inclusion between them, every chain in \mathcal{F} has at most r elements. Therefore \mathcal{F} has a maximal chain and therefore contains a minimal element.

To prove the second part of the theorem, we will need the following lemma.

Lemma 2. Let X be an n-dimensional, n-cyclic compactum with two distinct n-bubbles A and B. Then neither kernel of i_A^* and i_B^* is contained in the other, where $i_A^* : H^n(X) \to H^n(A)$ and $i_B^* : H^n(X) \to H^n(A)$ are the homomorphisms induced by the inclusions $i_A : A \hookrightarrow X$ and $i_B : B \hookrightarrow X$.

Proof: Since $A \neq B$, $A \cap B$ is a proper closed subset of A and B and therefore $H^n(A \cap B) = 0$. Hence, by the Mayor-Vietoris sequence,

$$H^n(A \cup B) \to H^n(A) \oplus H^n(B)$$

is onto. Let $j_A: A \hookrightarrow A \cup B$, $j_B: B \hookrightarrow A \cup B$, and $h: A \cup B \hookrightarrow X$. Then there exists an element $a \in H^n(A \cup B)$ such that $j_A^*(a) \neq 0$ but $j_B^*(a) = 0$. Also since $h^*: H^n(X) \to H^n(A \cup B)$ is an epimorphism, there exists an element $b \in H^n(X)$ such that $h^*(b) = a$. Hence $i_A^*(b) = j_A^*h^*(b) = j_A^*(a) \neq 0$, but $i_B^*(b) = j_B^*h^*(b) = j_B^*(a) = 0$. Thus $b \in Keri_B^*$ but $b \notin Keri_A^*$. Therefore $Ker i_B^* \not\subset Ker i_A^*$. The same argument shows that

there is a non-zero element $c \in H^n(X)$ such that $i_A^*(c) = 0$ but $i_B^*(c) \neq 0$. Therefore Ker $i_A^* \not\subset Ker i_B^*$.

Proof of the second part of Theorem 2: It follows from Lemma 2 that the number of *n*-bubbles in X is at most the number of subgroups of $H^n(X)$. But $H^n(X)$ can have at most countably many subgroups.

3. PROPERTIES OF *n*-BUBBLES IN *n*-DIMENSIONAL COMPACTA

In this section, we are mainly concerned with the properties of n-bubbles in an n-dimensional compactum. We start with one of our major tools.

Lemma 3. Suppose that X is an n-dimensional compactum such that $H^n(X)$ is finitely generated. If A is a closed subset of X, then there exists a closed neighborhood N of A such that $i^*: H^n(N) \to H^n(A)$ is an isomorphism, where $i: A \hookrightarrow N$.

Proof: Consider the following long exact sequence:

$$\cdots \longrightarrow H^n(X \setminus A) \xrightarrow{\tau} H^n(X) \xrightarrow{j^*} H^n(A) \longrightarrow 0$$

Since $H^n(X)$ is finitely generated, $Im \tau = Ker j^*$ is finitely generated. Let $\{\xi_k\}_{k=1}^r$ be the set of generators of $Im \tau = Ker j^*$. Then for each k there is a corresponding $\eta_k \in H^n(X \setminus A)$ such that $\tau(\eta_k) = \xi_k$. Also for each η_k there is an open set W_k whose closure is compact and is contained in $X \setminus A$; furthermore there is $\eta'_k \in H^n(W_k)$ with $\tau_k(\eta'_k) = \eta_k$ where $\tau_k \colon H^n(W_k) \to H^n(X \setminus A)$. Let $W = \bigcup_{k=1}^r W_k$. Then for each k there is $\hat{\eta}_k \in H^n(W)$ such that $\tau'(\hat{\eta}_k) = \eta_k$, where $\tau' \colon H^n(W) \to H^n(X \setminus A)$. Let $N = X \setminus W$; then $int(N) = X \setminus \overline{W} \supset A$ since $\overline{W} \subset X \setminus A$. Hence N is a closed neighborhood of A. We have the following commutative diagram:

$$\begin{array}{cccc} H^{n}(X \setminus A) & \xrightarrow{\tau} & H^{n}(X) & \xrightarrow{j^{*}} & H^{n}(A) \\ & & & & i d & & i^{*} \\ & & & & i d & & i^{*} \\ H^{n}(W) & \xrightarrow{\tau''} & H^{n}(X) & \xrightarrow{h^{*}} & H^{n}(X \setminus W) = H^{n}(N) \end{array}$$

Now we show that i^* is an isomorphism. Clearly i^* is an epimorphism. To prove i^* is a monomorphism, let $a \in H^n(N)$ be such that $i^*(a) = 0$. Since h^* is an epimorphism, there is $b \in H^n(X)$ such that $h^*(b) = a$. Since $i^*h^* = j^*$, $j^*(b) = 0$. Hence there is a $b' \in H^n(X \setminus A)$ such that $\tau(b') = b$, but b' is in the subgroup generated by $\{\eta_k\}_{k=1}^r$ so that there is $c \in H^n(W)$ such that $\tau'(c) = b'$. Since $\tau'' = \tau \tau', \tau''(c) = b$. Therefore $a = h^*(b) = h^* \tau''(c) = 0$.

The following corollary of the Lemma is the theorem of W. Kuperberg that we referred to as Theorem 1 in Section 2. Here we give another proof.

Corollary 1. Suppose that X is an n-dimensional compactum such that $H^n(X)$ is finitely generated. Let $X_1 \supset X_2 \supset \ldots$ be a decreasing sequence of closed subsets of X. Then the intersection $X_0 = \bigcap_{k=1}^{\infty} X_k$ is n-cyclic whenever all the X_k are n-cyclic.

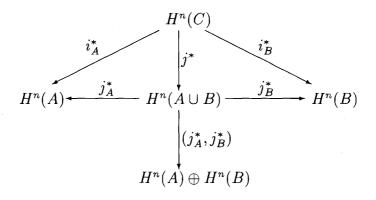
Proof: Let N be a closed neighborhood of X_0 such that $i^* \colon H^n(N) \to H^n(X_0)$ is an isomorphism, where $i \colon X_0 \hookrightarrow N$. Then there exists a number k_0 such that for all $k \ge k_0 X_k \subset N$. If we let $i_k \colon X_k \hookrightarrow N$ be the inclusion for $k \ge k_0, i_k^* \colon H^n(N) \to H^n(X_k)$ is an epimorphism and therefore $H^n(N) \neq 0$. Thus $H^n(X_0) \neq 0$.

Theorem 3. Suppose that X is an n-dimensional compactum such that $H^n(X)$ is finitely generated, A is an n-bubble in X, B is an n-dimensional closed subset of X with $H^n(B) \neq 0$, and C is a closed subset of X such that $C \supset A \cup B$. If either i_A^* or i_B^* is an isomorphism, then $B \supset A$, where $i_A^* \colon H^n(C) \to H^n(A)$ and $i_B^* \colon H^n(C) \to H^n(B)$ are the homomorphisms induced by the inclusions. **Proof:** Suppose that $B \not\supseteq A$. Then $B \cap A$ is a proper closed subset of A. Thus $H^n(A \cap B) = 0$.

Thus, in the following Mayor-Vietoris sequence

 $\cdots \to H^n(A \cup B) \xrightarrow{(j_A^*, j_B^*)} H^n(A) \oplus H^n(B) \longrightarrow H^n(A \cap B) \to \ldots$

 (j_A^*, j_B^*) is an epimorphism. Now consider the following diagram:



Since either i_A^* or i_B^* is an isomorphism, j^* is a monomorphism. But every set is *n*-dimensional and hence every homomorphism induced by inclusion is an epimorphism. Thus j^* is an epimorphism and therefore an isomorphism. This implies that either j_A^* or j_B^* is an isomorphism. That is, that i_A^* and j^* are isomorphisms implies j_A^* is an isomorphism and that i_B^* and j^* are isomorphisms implies j_B^* is an isomorphism.

Case I. j_A^* is an isomorphism. Since (j_A^*, j_B^*) is an epimorphism and $H^n(A) \neq 0, H^n(B) \neq 0$, there exists an element $b \in H^n(A \cup B)$ such that $j_A^*(b) = 0$ but $j_B^*(b) \neq 0$. But since j_A^* is an isomorphism, we have that b = 0, which is a contradiction.

Case II. j_B^* is an isomorphism. Again there exists an element $b \in H^n(A \cup B)$ such that $j_A^*(b) \neq 0$, but $j_B^*(b) = 0$. But since j_B^* is an isomorphism we have that b = 0, which is a contradiction.

Therefore in either case, $B \supset A$.

108

The following is a special case of Theorem 3.

Corollary 2. Suppose that X is an n-dimensional compactum such that $H^n(X)$ is finitely generated, and that A is an n-bubble in X, and B and C are n-dimensional closed subsets of X such that $C \supset A \cup B$ and $i^* \colon H^n(C) \to H^n(A)$ is an isomorphism, where $i \colon A \hookrightarrow C$. Then $H^n(B) \neq 0$ if and only if $B \supset A$.

We examine an n-dimensional compactum that has finitely generated n-th cohomology but has infinitely many distinct n-bubbles.

Theorem 4. Let X be an n-dimensional compactum such that $H^n(X)$ is finitely generated. Suppose that $\langle X_k \rangle$ is a sequence of distinct n-bubbles in X. Then $\langle X_k \rangle$ has a convergent subsequence $\langle X_{s_k} \rangle$ such that in the Hausdorff metric lim $\langle X_{s_k} \rangle = \overline{\bigcup_{k=1}^{\infty} X_{s_k}}$.

Proof: Since $\langle X_k \rangle$ has a convergent subsequence, we may assume without loss of generality that $\langle X_k \rangle$ is convergent.

Let $X_0 = \lim X_k$. Then $X_0 = \bigcap_{i=1}^{\infty} \overline{\bigcup_{k=i}^{\infty} X_k}$. Then, by Lemma 3, there exists a closed neighborhood N of X_0 such that $i^* \colon H^n(N) \to H^n(X_0)$ is an isomorphism, where $i \colon X_0 \hookrightarrow N$. Since X_0 is the limit of the sequence $\langle X_k \rangle$, there exists an integer k_0 such that if $k \ge k_0$ then $X_k \subset N$.

Hence, by Theorem 3, $X_k \subset X_0$ for all $k \ge k_0$. Let $s_k = k + k_0 - 1$; then $\lim_{k \to \infty} X_{s_k} > \supset \bigcup_{k=1}^{\infty} \overline{X_{s_k}}$. Clearly $\lim_{k \to \infty} X_{s_k} > \subset \bigcup_{k=1}^{\infty} \overline{X_{s_k}}$. Therefore $\lim_{k \to \infty} X_{s_k} > = \bigcup_{k=1}^{\infty} \overline{X_{s_k}}$.

Corollary 3. Suppose that X is an n-dimensional compactum such that $H^n(X)$ is finitely generated and X has infinitely many distinct n-bubbles. If X has no proper closed subset that contains infinitely many distinct n-bubbles, then $X = \lim \langle X_k \rangle$ where $\langle X_k \rangle$ is a convergent sequence of infinitely many distinct n-bubbles.

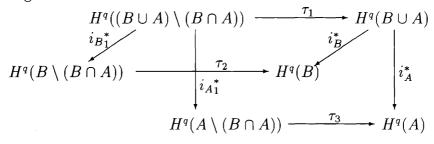
Proof: Let $\langle X_k \rangle$ be a convergent sequence of infinitely many distinct *n*-bubbles. Then by the proof of Theorem 4 there exists an integer k_0 such that $\lim \langle X_k \rangle = \overline{\bigcup_{k=k_0}^{\infty} X_k}$.

Hence $\lim \langle X_k \rangle$ is a closed subset of X and contains infinitely many distinct *n*-bubbles. Therefore $\lim \langle X_k \rangle = X$.

The following lemma is another important tool in this section.

Lemma 4. Let A be a q-bubble in a compactum X. Then for any closed subset B of X, $B \supset A$ if and only if Ker $i_B^* \leq$ Ker i_A^* , where i_B^* : $H^q(A \cup B) \rightarrow H^q(B)$ and i_A^* : $H^q(A \cup B) \rightarrow$ $H^q(A)$ are induced by the inclusions.

Proof: Clearly $B \supset A$ implies that $Ker i_B^* \leq Ker i_A^*$. Suppose that $B \not\supseteq A$. Then $A \cap B$ is a proper subset of A, and so $H^q(A \cap B) = 0$. Consider the following commutative diagram:

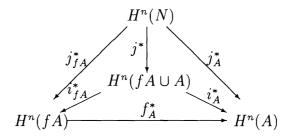


Since $H^q(B \cap A) = 0$, we have that τ_k is an epimorphism for k = 1, 2 and 3. We also note that $H^q((B \cup A) \setminus (B \cap A)) \cong$ $H^q(B \setminus (B \cap A)) \oplus H^q(A \setminus (B \cap A))$. Since $H^q(A) \neq 0$ and τ_3 is an epimorphism, we can find an element $a \in H^q(A \setminus (B \cap A))$ such that $\tau_3(a) \neq 0$. Since $(i_{B_1}^*, i_{A_1}^*)$ is an isomorphism, there exists an element b in $H^q((B \cup A) \setminus (B \cap A))$ such that $i_{A_1}(b) = a$ and $i_{B_1}(b) = 0$. Then $i_B^*\tau_1(b) = \tau_2 i_{B_1}(b) = 0$ and $i_A^*\tau_1(b) = \tau_3 i_{A_1}(b) \neq 0$. Therefore $\tau_1(b) \in Ker i_B^*$, but $\tau_1(b) \notin Ker i_A^*$. Thus $Ker i_B^* \leq Ker i_A^*$ implies $B \supset A$.

In view of Lemma 3 and Corollary 2, for each *n*-bubble A in an *n*-dimensional compactum X such that $H^n(X)$ is finitely generated, there is an positive ϵ such that if $f: X \to X$ is ϵ -homotopic to identity on X then $A \subset f(A)$. But we show this is true regardless of ϵ . In fact we prove the following.

Theorem 5. Suppose that X is an n-dimensional compactum and that $f: X \to X$ is a map homotopic to the identity. Then for every n-bubble A in X, $fA \supset A$.

Proof: By Lemma 4, it suffices to show that $Ker i_{fA}^* \leq Ker i_A^*$, where $i_{fA}^*: H^n(fA \cup A) \to H^n(fA)$ and $i_A^*: H^n(fA \cup A) \to H^n(A)$ are induced by the inclusions. Let $f_A: A \to fA$ be a map induced by f. We now show that $f_A^*i_{fA}^* = i_A^*$. Let Fbe a homotopy from $X \times I$ to X such that F(x,0) = x and F(x,1) = f(x). Let $N = F(A \times I)$. Then $(fA \cup A) \subset N$ and $f_A \simeq id_A$ on N. Therefore if we let $j_{fA}: fA \to N$ and $j_A: A \hookrightarrow N$ then $j_fAf_A \simeq j_A$. We have the following diagram:



where $j: (fA \cup A) \hookrightarrow N$.

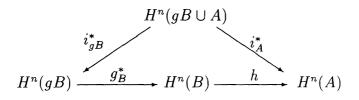
Let $a \in H^n(fA \cup A)$. Since j^* is an epimorphism, there exists an element b in $H^n(N)$ such that $j^*(b) = a$. Then $i_A^*(a) = i_A^* j^*(b) = j_A^*(b) = f_A^* j_{fA}^*(b) = f_A^* i_{fA}^* j^*(b) = f_A^* i_{fA}^*(a)$. Therefore $i_A^* = f_A^* i_{fA}^*$ and hence $Ker i_{fA}^* \leq Ker i_A^*$.

Under the condition that $f: X \to K$ and $g: K \to X$ are maps such that $gf \simeq id_X$, if A is an n-bubble, then Theorem 5 shows that $gfA \supset A$, but if B is an n-bubble in K then gB doesn't have to contain an n-bubble. But we proved the following theorem.

Theorem 6. Let X be an n-dimensional compactum and K an n-dimensional polyhedron with a fixed triangulation. Assume that $f: X \to K$ and $g: K \to X$ are maps such that $gf \simeq id_X$. Let A be an n-bubble in X and B a closed subset of fA such that Ker $i^* \leq \text{Ker } f_A^*$, where $i^* \colon H^n(fA) \to H^n(B)$ is induced by inclusion and f_A is induced by f as defined earlier. Then $gB \supset A$.

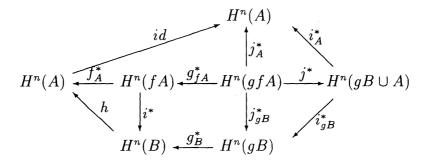
Proof: Since Ker $i^* \leq Ker f_A^*$ and i^* is an epimorphism, there is a homomorphism $h: H^n(B) \to H^n(A)$ such that $hi^* = f_A^*$.

We now prove that the following diagram commutes



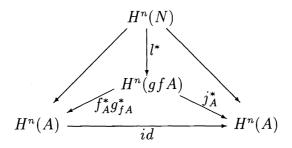
where $g_B \colon B \to gB$ is induced by g.

Consider the following diagram:



All homomorphisms except f_A^*, g_{fA}^*, g_B^* and h are induced by inclusions.

By Theorem 5, $gfA \supset A$, and hence $gfA \supset (A \cup gB)$. To show that the above diagrams commute, it suffices to show that the top-left triangle diagram commutes. Let F be a homotopy from $X \times I$ to X such that F(x,0) = x and F(x,1) = gf(x). Let $N = F(A \times I)$. Then we have the following diagram:



where $l: gfA \hookrightarrow N$.

Clearly $lg_{fA}f_A \simeq lj_A$ and l^* is an epimorphism, and hence $f_A^*g_{fA}^* = j_A^*$. Thus the top-left triangle diagram commutes, and therefore the whole diagram commutes.

Let $a \in H^n(gB \cup A)$. Then, since j^* is an epimorphism, there is an element b in $H^n(gfA)$ such that $j^*(b) = a$. So $i_{gB}^*(a) = i_{gB}^*j^*(b) = j_{gB}^*(b)$. Hence $hg_B^*i_{gB}^*(a) = hg_B^*j_{gB}^*(b) =$ $hi^*g_{fA}^*(b) = f_A^*g_{fA}^*(b) = j_A^*(b) = i_A^*j^*(b) = i_A^*(a)$. Therefore $hg_B^*i_{gB}^* = i_A^*$ and hence $Ker i_{gB}^* \leq Ker i_A^*$. By Lemma 4, we have $gB \supset A$.

Corollary 4. Let X be an n-dimensional compactum and K an n-dimensional polyhedron with a fixed triangulation. Assume that $f: X \to K$ and $g: K \to X$ are maps such that $gf \simeq id_X$. Let A be an n-bubble in X and $B = \bigcup \{ \sigma \in K \mid \sigma$ is an n-simplex such that $\sigma \subset fA \}$. Then $gB \supset A$.

Proof: Clearly $B \subset fA$. Let $j: (B \cup K^{n-1}) \hookrightarrow (fA \cup K^{n-1})$, $i: B \hookrightarrow fA, i_{B,K}: B \hookrightarrow (B \cup K^{n-1})$ and $i_{A,K}: fA \hookrightarrow (fA \cup K^{n-1})$ be inclusion maps, where K^{n-1} is the (n-1)-skeleton of K. Then, by the long exact sequence, $i_{A,K}^*: H^n(fA \cup K^{n-1}) \to H^n(fA)$ and $i_{B,K}^*: H^n(B \cup K^{n-1}) \to H^n(B)$ are isomorphisms.

We now show that $j^* \colon H^n(fA \cup K^{n-1}) \to H^n(B \cup K^{n-1})$ is an isomorphism and hence that $i^* \colon H^n(fA) \to H^n(B)$ is an isomorphism. Let $N = \bigcup \{ \sigma \in K \mid \sigma \text{ is an } n \text{-simplex such that}$ $\sigma \cap fA \neq \emptyset \}$ and $N' = \{ \sigma \in K \mid \sigma \text{ is an } n \text{-simplex such that}$ $\sigma \subset N \text{ but } \sigma \not\subset B \}$. Then N' is finite, say $N' = \{ \sigma_1, \ldots, \sigma_s \}$. For each $1 \leq k \leq s$, we have that $\sigma_k \cap fA$ is a non-empty compact set, but $\sigma_k \not\subset fA$. Therefore there is an open *n*ball B_k^n such that $B_k^n \subset (\sigma_k \setminus fA)$. Hence we have a strong deformation retraction F_k of $(\sigma_k \setminus B_k^n)$ to σ_k^{n-1} , where σ_k^{n-1} is the (n-1)-skeleton of σ_k .

Define $F: [(N \setminus (B_1^n \cup \cdots \cup B_s^n)) \cup K^{n-1}] \times I \to (N \setminus (B_1^n \cup \cdots \cup B_s^n)) \cup K^{n-1}$ by

$$F(x,t) = \begin{cases} x, & \text{if } x \in (B \cup K^{n-1}); \\ F_k(x,t), & \text{if } x \in (\sigma_k \setminus B_k^n) \text{for some} 1 \le k \le s. \end{cases}$$

Then F is a strong deformation retraction of $(N \setminus (B_1^n \cup \cdots \cup B_s^n)) \cup K^{n-1}$ to $B \cup K^{n-1}$. Therefore the map $h^* \colon H^n((N \setminus (B_1^n \cup \cdots \cup B_s^n)) \cup K^{n-1}) \to H^n(B \cup K^{n-1})$ induced by inclusion is an isomorphism. Since $fA \cup K^{n-1} \subset (N \setminus (B_1^n \cup \cdots \cup B_s^n)) \cup K^{n-1}$, we have that $j^* \colon H^n(fA \cup K^{n-1}) \to H^n(B \cup K^{n-1})$ also is an isomorphism. Hence $i^* \colon H^n(fA) \to H^n(B)$ is an isomorphism. Therefore, by Theorem 6, $gB \supset A$.

Corollary 5. Let X be an n-dimensional compactum and K an n-dimensional polyhedron with a fixed triangulation. Assume that $f: X \to K$ and $g: K \to X$ are maps such that $gf \simeq id_X$. Let A be an n-bubble in X and let B be a closed subset of fA such that there is a map $\varphi: A \to K$ with $\varphi A \subset B$ and $f|A \simeq \varphi$. Then $gB \supset A$.

Proof: Let $f_A: A \to fA$ be the map induced by f and let $\varphi_1: A \to B$ be the map induced by φ and let $i: B \hookrightarrow fA$, $i_B: B \hookrightarrow K$ and $i_{fA}: fA \hookrightarrow K$ be inclusion maps. Then $i_B\varphi_1 \simeq i_{fA}f_A$. Hence $i_{fA}f_A \simeq i_B\varphi_1 = i_{fA}i\varphi_1$. Thus $f_A^*i_{fA}^* = \varphi_1^*i^*i_{fA}^*$. Since i_{fA}^* is an epimorphism, $f_A^* = \varphi_1^*i^*$. Therefore Ker $i^* \leq Ker f_A^*$ and hence, by Theorem 6, $gB \supset A$.

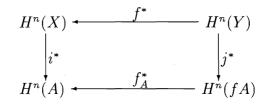
The following lemma is widely known (cf. [6]).

Lemma 5. If X is a compactum and $a \in H^q(X)$, then there exists a positive ϵ such that for every ϵ -map f from X onto a compactum Y there exists $b \in H^q(Y)$ such that $f^*(b) = a$.

The following theorem is independent of the number of distinct n-bubbles the space has.

Theorem 7. If X is an n-dimensional compactum such that $H^n(X)$ is finitely generated, then there exists a positive ϵ such that for every ϵ -map f from X onto a compactum Y, $H^n(fA) \neq 0$ for every n-bubble A in X.

Proof: Let $\{a_1, \ldots, a_s\}$ be the set of generators of $H^n(X)$. Then by Lemma 5 there exist positive $\epsilon_1, \ldots, \epsilon_s$ such that for each k if f_k is an ϵ_k -map from X onto a compactum Y then there exists $b_k \in H^n(Y)$ such that $f_k^*(b_k) = a_k$. Let $\epsilon = min(\epsilon_1, \ldots, \epsilon_s)$ and let f be an ϵ -map from X onto a compactum Y and A an n-bubble in X. Then we have the following commutative diagram:



Since $H^n(A) \neq 0$ and i^* is an epimorphism, there exist a non-zero element $a \in H^n(A)$ and integers n_1, \ldots, n_s such that $i^*(n_1a_1 + \cdots + n_sa_s) = a$. Since f is ϵ_k -map for each k, there exists $b \in H^n(Y)$ such that $f^*(b) = n_1a_1 + \cdots + n_sa_s$. Hence $i^*f^*(b) = a$. Therefore $f_A^*j^*(b) = i^*f^*(b) = a$. Thus $j^*(b) \in$ $H^n(fA)$.

4. The existence of (n-1)-bubble in *n*-dimensional clc^n compacta

In this section we examine the existence of (n-1)-bubbles in *n*-dimensional clc^n compacta. We start with the following

Lemma 6. If H and K are two subcontinua of a continuum X and x_0 , x_1 , and x_2 are three points in X such that for $0 \le i, j \le 2$ and $i \ne j$, each of subcontinua H and K separate x_i from x_j , then $H \cap K \ne \emptyset$.

Proof: Suppose that $H \cap K = \emptyset$. It follows easily from the definition that there exist disjoint nonempty open subsets C_0 , C_1 , and C_2 of $X \setminus H$ such that $C_0 \cup C_1 \cup C_2 = X \setminus H$ and C_k contains x_k for k = 0, 1, and 2. Since K is a continuum and $K \subset X \setminus H$, K is in one of the C_k 's, say C_0 . Then $C_1 \cap K = \emptyset = C_2 \cap K$.

Then $C_1 \cup C_2 \cup H$ is connected, and therefore it is in one of the components of $X \setminus K$, but it contains x_1 and x_2 . This contradicts the fact that K separates x_1 from x_2 .

Theorem 8. Let $\{X_{\lambda}\}_{\lambda \in \Lambda}$ be an uncountable collection of mutually disjoint continua in a locally connected continuum X, each of which has the property that $X \setminus X_{\lambda}$ has more than one component. Then there exists a $\lambda \in \Lambda$ such that $X \setminus X_{\lambda}$ has exactly two components.

Proof: Suppose that $X \setminus X_{\lambda}$ has more than two components for every $\lambda \in \Lambda$.

For every $\lambda \in \Lambda$ there exist a positive ϵ_{λ} and a point x_{λ} in Xsuch that $B_{\lambda} = \{x \in X \mid d(x, x_{\lambda}) \leq \epsilon_{\lambda}\}$ lies inside C_{λ} , one of the components of $X \setminus X_{\lambda}$. Consider $\{\epsilon_{\lambda} \mid \lambda \in \Lambda\}$. Since Λ is uncountable, there exists a positive number ϵ_1 so that $\epsilon_1 < \epsilon_{\lambda}$ for uncountably many λ . Then there is a point x_1 in X such that $B_1 = \{x \in X \mid d(x_1, x) \leq \frac{\epsilon_1}{2}\}$ contains uncountably many x_{λ} 's which satisfy $\epsilon_1 < \epsilon_{\lambda}$. Thus if $x_{\lambda} \in B_1$ then $B_1 \subset B_{\lambda}$. Let $\Lambda_1 = \{\lambda \in \Lambda \mid B_1 \subset B_{\lambda}\}$.

For every $\lambda \in \Lambda_1$ there exist a positive ϵ'_{λ} and a point x'_{λ} in X such that $B'_{\lambda} = \{x \in X \mid d(x, x'_{\lambda}) \leq \epsilon'_{\lambda}\}$ lies inside C'_{λ} , one of the components of $X \setminus X_{\lambda}$ but different from C_{λ} . Also, there exist a positive ϵ_2 and a point x_2 in X such that $B_2 = \{x \in X \mid d(x_2, x) \leq \frac{\epsilon_2}{2}\} \subset B'_{\lambda}$ for uncountably many $\lambda \in \Lambda_1$.

Let $\Lambda_2 = \{\lambda \in \Lambda_1 \mid B_2 \subset B'_\lambda\}$. Since for every $\lambda \in \Lambda_2$, $X \setminus X_\lambda$ has at least three components, there exist a positive ϵ''_λ and a point x''_λ in X such that $B''_\lambda = \{x \in X \mid d(x, x''_\lambda) \leq \epsilon''_\lambda\}$ lies inside C''_λ , one of the components of $X \setminus X_\lambda$ but different from C_λ and C'_λ . Therefore there exist a positive ϵ_3 and $x_3 \in X$ such that $B_3 = \{x \in X \mid d(x_3, x) \leq \frac{\epsilon_3}{2}\} \subset B_{\lambda}''$ for uncountably many $\lambda \in \Lambda_2$.

Let $\Lambda_3 = \{\lambda \in \Lambda_2 \mid B_3 \subset B''_\lambda\}$. Then Λ_3 is still uncountable. Let $\mu, \nu \in \Lambda_3$. Then $x_1 \in C_\mu \cap C_\nu$, $x_2 \in C'_\mu \cap C'_\nu$, and $x_3 \in C''_\mu \cap C''_\nu$. Therefore, by Lemma 6, $X_\mu \cap X_\nu \neq \emptyset$. This is a contradiction.

The following is a generalization of Sieklucki's Theorem. (See [4] or [6])

Theorem 9. Suppose that X is a clc^n compactum with $dim_{\mathbf{Z}}X = n$. Let $\{X_{\lambda}\}_{\lambda \in \Lambda}$ be an uncountable collection of compacta in X with $dim_{\mathbf{Z}}X_{\lambda} = n$. Then there are two distinct indices μ , $\lambda \in \Lambda$ such that $dim_{\mathbf{Z}}(X_{\mu} \cap X_{\lambda}) = n$.

A proof of the following lemma can be found in Bredon [3].

Lemma 7. Let X be a clcⁿ compactum. Then $H^q(X)$ is finitely generated for $0 \le q \le n$.

The following theorem can be found in Wilder ([13] pp. 100).

Lemma 8. If A is a compact component of a locally compact Hausdorff space X, and P is an open set containing A, then X is the union of disjoint open sets U, V such that $A \subset U \subset P$.

Lemma 9. Suppose that X is a compact Hausdorff space and $0 \neq a \in H^q(X)$. Then there is a component Y of X such that $i^*(a) \neq 0$, where $i^* \colon H^q(X) \to H^q(Y)$ is induced by the inclusion.

Proof: Let $\{Y_{\mu} \mid \mu \in \Lambda\}$ be the set of all components of X and let $i_{\mu} \colon Y_{\mu} \hookrightarrow X$.

Suppose that $i_{\mu}^{*}(a) = 0$ for every $\mu \in \Lambda$. By the weak continuity of Alexander-Spanier cohomology with compact supports, for every component Y_{μ} of X there exists a closed neighborhood M_{μ} of Y_{μ} such that $j_{\mu}^{*}(a) = 0$, where $j_{\mu}^{*} \colon H^{q}(X) \to$ $H^{q}(M_{\mu})$ is induced by the inclusion. By Lemma 8, there exists an open and closed subset N_{μ} such that $Y_{\mu} \subset N_{\mu} \subset M_{\mu}$. Then $\{N_{\mu}\}$ is an open covering of X. Since X is compact, there is a finite subcovering $\{N_{1}, \ldots, N_{r}\}$ of $\{N_{\mu}\}$. Let $P_1 = N_1$ and $P_k = N_k \setminus (N_1 \cup \cdots \cup N_{k-1})$ for $k = 2, \ldots, r$. Since N_k is open and closed for each k, P_k also is open and closed and therefore X is the disjoint union of P_1, \ldots, P_r . Thus $(h_1^*, \ldots, h_r^*) \colon H^q(X) \to H^q(P_1) \oplus \cdots \oplus H^q(P_r)$ is an isomorphism, where $h_k^* \colon H^q(X) \to H^q(P_k)$ is induced by the inclusion. Therefore there exists k such that $h_k^*(a) \neq 0$. Let $l \colon P_k \hookrightarrow$ M_k be the inclusion map. Then $0 \neq h_k^*(a) = l^* j_k^*(a) = 0$. This is a contradiction.

Theorem 10. If X is an n-dimensional clc^n compactum such that $H^n(V)$ is finitely generated for every connected open subset V of X, then X has an (n-1)-bubble.

Proof: Since X is an n-dimensional compactum, by the characterization of dimension by mappings into spheres, there exist a closed subset C of X and a map $g: C \to S^{n-1}$ such that g can not be extended over X. Since S^{n-1} is a compact ANR, there exists an open neighborhood U of C such that g has an extension over U. Let $\epsilon = d(C, X \setminus U)$.

For each $0 < \mu < \epsilon$ let $X_{\mu} = \{x \in X \mid d(x, C) = \mu\}$. Then $H^{n-1}(X_{\mu}) \neq 0$ by Hopf's Extension Theorem. By Theorem 9, there is an uncountable subset Λ of the interval $(0, \epsilon)$ such that for each $\mu \in \Lambda$, X_{μ} is (n-1)-dimensional.

For each $\mu \in \Lambda$, by Lemma 9, there is a component Y_{μ} of X_{μ} such that $H^{n-1}(Y_{\mu}) \neq 0$. By Theorem 8, there exists a μ such that $X \setminus Y_{\mu}$ has at most two components. If $X \setminus Y_{\mu}$ has one component then, by hypothesis, $H^n(X \setminus Y_{\mu})$ is finitely generated. If $X \setminus Y_{\mu}$ has two components, U and V, then $H^n(X \setminus Y_{\mu}) \cong H^n(U) \oplus H^n(V)$, which is finitely generated by the hypothesis. We have the following long exact sequence

$$\cdots \longrightarrow H^{n-1}(X) \longrightarrow H^{n-1}(Y_{\mu}) \longrightarrow H^n(X \setminus Y_{\mu}) \longrightarrow \cdots$$

Since $H^{n-1}(X)$ and $H^n(X \setminus Y_{\mu})$ are finitely generated, $H^{n-1}(Y_{\mu})$ is finitely generated. Therefore, by Theorem 2 of W. Kuperberg, Y_{μ} has an (n-1)-bubble and so does X.

Definition 7. [3] The space X is called an "n-dimensional cohomology manifold over \mathbb{Z} " (denoted n-cm) if X has locally

constant cohomology groups, locally equivalent to \mathbf{Z} in degree n, and to zero in degrees other than n, and if $\dim_{\mathbf{Z}} X < \infty$.

Definition 8. Let X be a compactum and Π a class of spaces. Then X is said to "have a factorization through Π " provided for every $\epsilon > 0$ there exist a space $Y \in \Pi$, a surjective map $f_{\epsilon} \colon X \to Y$, and a map $g_{\epsilon} \colon Y \to X$ such that $d(g_{\epsilon}f_{\epsilon}, id_X) < \epsilon$.

Theorem 11. ([5] or [6]) Let X be an n-dimensional connected and locally connected compactum that has a factorization through the class of orientable n - cm compacta. If U is a connected open subset of X, then

$$\tau_{U,X} \colon H^n(U) \to H^n(X)$$

is an isomorphism.

Corollary 6. Let X be an n-dimensional connected and locally connected compactum that has a factorization through the class of orientable n - cm compacta. Then X is an n-bubble. If in addition X is clc^n then X has an (n-1)-bubble.

Proof: By Theorem 11, for every open subset U of $X \tau_{U,X} \colon H^n(U) \to H^n(X)$ is an epimorphism. Hence $H^n(A) = 0$ for every proper closed subset A of X. To show that X is an n-bubble, it suffices to show that X is n-cyclic. Since X is n-dimensional, there exists an open subset U such that $H^n(U) \neq 0$. Consider the set of all components V_{μ} of U. Since X is locally connected, V_{μ} is open for every μ . Thus $H^n(U) \cong \bigoplus H^n(V_{\mu})$ and therefore $H^n(V_{\mu}) \neq 0$ for some μ . Since V_{μ} is connected, by Theorem 11, $H^n(X) \cong H^n(V_{\mu}) \neq 0$. Thus X is an n-bubble.

If in addition X is clc^n then, by Lemma 7, $H^n(X)$ is finitely generated. Thus, by Theorem 11, $H^n(U)$ is finitely generated for every connected open subset U of X. Therefore, by Theorem 10, X has an (n-1)-bubble.

Remark. If X is an n-dimensional n - cm compactum, then X has an (n-1)-bubble.

J. S. CHOI

REFERENCES

- A. Borel, Seminar on Transformation Groups, Annals of Mathematics Studies, 46 (1960). MR 22:7129.
- [2] K. Borsuk, Theory of Retracts, Monografie Matematyczne 44, Polish Scientific Publishers, Warszawa 1967. MR 35:7306.
- [3] G. E. Bredon, Sheaf Theory, Second Edition, Graduate texts in Mathematics 170, Springer, 1997.
- [4] J. S. Choi and G. Kozlowski A generalization of Sieklucki's Theorem, Topology Proceedings, 23 (1998), 135-142.
- [5] J. S. Choi Properties of compacta that are preserved by factorization and Generalizations of Theorems of A. Deleanu, Topology Proceedings, 23, (1998), 121-134.
- [6] J. S. Choi Cohomological Properties of Compacta, Dissertation, Auburn University, 1998.
- [7] W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1941. MR 3:312b.
- [8] G. Kozlowski, A Bubbly Continuum with the Shape of the Sphere, Unpublished Notes.
- [9] W. Kuperberg, On Certain Homological Properties of Finite-Dimensional Compacta. Carriers, Minimal Carriers and Bubbles, Fund. Math., 83 (1973) 7-23. MR 48:7257.
- [10] W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, New York, 1978. MR 58:7594.
- [11] E. H. Spanier, Algebraic Topology, Springer-Verlag Publishers, New York, 1966. MR 35:1007.
- [12] G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications 28, American Mathematical Society, New York, 1942. MR 4:86b.
- [13] R. L. Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications 32, American Mathematical Society, New York, 1949. MR 10:614c.

PUSAN NATIONAL UNIVERSITY, PUSAN KOREA 609-735 E-mail address: choijon@hyowon.cc.pusan.ac.kr