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PROPERTIES OF COMPACTA THAT ARE
PRESERVED BY FACTORIZATION AND
GENERALIZATIONS OF THEOREMS OF A.
DELEANU!

J. S. CHOI

ABSTRACT. Under the condition that II is a class of com-
pacta and a compactum X has the property that for
every € > 0 there exist a space Y € II, a surjective
map f: X — Y, and a map g.: Y — X such that
d(gefe,idx) < €, we show that (1) if for every Y € 1I,
HY(Y) is finitely generated and the number of genera-
tors of H4(Y') is less than a fixed number n, then H?(X)
is finitely generated and the number of generators of
HI(X) is less than n. (2) if II is the class of orientable
n — c¢m compacta and X is in addition n-dimensional
connected and locally connected then X has the prop-
erty that if U is a connected open subset of X then
v x: H"(U) — H™(X) is an isomorphism. The latter
generalizes a theorem of A.Deleanu.
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1. INTRODUCTION

By a compactum we mean a compact metric space. The
various metrics and distances will be designated by the letter d.
If X is a space and A C X, then int(A) will denote the interior
of the set A. By a map or mapping we mean a continuous
function. If f is a map then Ker f will denote the kernel of
f and Im f the image of f. A compactum X is said to have
a factorization through a class II of spaces if for every € > 0
there exist a space Y € II, a surjective map f.: X — Y, and a
map ¢.: Y — X such that d(g.f.,edx) < e

For cohomology we will use the Alexander-Spanier coho-
mology groups with compact supports and the notation of
Massey’s book [8]. The g-dimensional cohomology group with
compact supports of a locally compact Hausdorff space X with
integer coefficients will be denoted by H?(X). The homomor-
phism associated with the open subset U of X will be denoted
by Ty x or simply 7 when no confusion could occur. For a
compact Hausdorff space Alexander-Spanier cohomology with
compact supports is naturally isomorphic to Cech cohomol-
ogy [10], and for any locally compact Hausdorff space X and
for any integer ¢ > 0, HY(X) = HY(X™"), where Xt is the
one point compactification of X. Thus one can interpret the
results of this paper in terms of Cech cohomology.

By a compact ANR we mean a compact absolute neighbor-
hood retract [2]. If f is a map from X to Y, f ~ 0 means that
f is homotopic to a constant map, and f*: Hi(Y) — HY(X)
will denote the induced homomorphism of f. The group of
integers will be denoted by Z. If A and B are groups then
A < B will mean that A is a subgroup of B. By the dimension
of X we mean the covering dimension of X, and it will be de-
noted by dim X. The following definition is essentially stated
in Borel [1].

Definition 1. The cohomological dimension dimzX of a space
X with respect to the group Z is defined to be the least integer
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n (or co) such that HY(U) = 0 for every open subset U of X
and ¢ > n.

In 1962 A. Deleanu [4] published the following:

Let X be an n-dimensional connected compact ANR such that
for every € > 0 there exists an e-map of X onto a closed n-
dimensional orientable manifold (depending on €). Let U be a
non-empty connected open subset of X. Then the homomor-
phism

TU,X - Hn(U) — Hn(X)

is an tsomorphism.

In this paper we weaken the condition on X replacing com-
pact ANR by locally connected compactum and the existence
of e-map onto a closed n-dimensional orientable manifold by
the existence of e-map onto an orientable n — em compactum.
As an application of this generalization we could generalize the
second theorem of A.Deleanu [4] in the same way.

We also show a sufficient condition for a compactum X to
have finitely generated ¢-cohomology as a property that is pre-
served by factorization through a class of spaces.

2. PRELIMINARIES

In this section we will discuss the definition of n — cm
compactum and an equivalent condition.
The following definitions are given by Bredon ([3] pp 281,
349, and 374).

Definition 2. A precosheaf A on X is a covariant functor
from the category of open subsets of X to the category of abelian
groups and homomorphisms. If V and U are open subsets of
X with V. C U, the homomorphism corresponding to the in-
clusion 1s iyy: A(V) —» A(U). We call the homomorphism
w,v the structure maps of the precosheaf A. A homomorphism
h: A — B of precosheaves is the family of homomorphisms
hy: A(V) — B(V) commuting with the structure maps of A
and B; that is, h ts a natural transformation of functors.
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The constant precosheaf L is the precosheaf taking the value
L on each U with the identity structure map for every pair of
open subsets.

Definition 3. A precosheaf A on X is said to be “locally zero”
if for any open set U C X and y € U there is a neighborhood
V c U of y with wgy: A(V) — A(U) trivial. A homomor-
phism h: A — B of precosheaves is said to be a “local isomor-
phism” if the precosheaves Ker h and B /Im h are both locally
zero.

Lemma 1. Let A and B be precosheaves on a first countable
space X and h: A — B be a homomorphism. Then h is a
local isomorphism if and only if for each * € X there is a
decreasing sequence {Vi} of open neighborhoods of  such that
{Vi} is a fundamental system of open neighborhoods of x and
in the following commutative diagram

A(Vir) —2=1— A(V) A(Vi)
hi
B(Vi_r) B() —L— B(Vip)

Ker hi C Ker ix_1 and Im ji C Im hy.
The proof of the above lemma is straightforward so we omit

it.

Remark: If {V;} satisfies the condition of the Lemma 1 then
every subsequence of {V;} also satisfies the same condition.

Definition 4. [3] Precosheaves A and B on X are said to be
“equivalent” if A and B are equivalent under the smallest equiv-
alence relation containing the relation of local isomorphism.

The following can be found in Bredon ([3], pp. 411 and 422)
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Lemma 2. 1. Precosheaves A and B on X are equivalent if
and only if there exists a precosheaf C and local isomorphisms
C— AandC — B.

2. Composites of local isoorphisms are local isomorphisms.
The following are also given by Bredon ([3] pp. 374)

Definition 5. If A is a precosheaf on X and U is an open
subset of X, then A|U is the precosheaf on U defined by using
the group A(V) for V. C U and structure maps ivw: A(W) —
A(V) for open sets W C V C U. A precosheaf A will be said
to be “locally constant” if each point x € X has a neighborhood
U such that the precosheaf AU on U is equivalent to a constant
precosheaf. If this is the constant precosheaf M, where M is an
abelian group, then A is said to be “locally equivalent to M.”
The space X will be said to be possess “locally constant coho-
mology groups over Z locally equivalent to M*,” where M* is
a graded abelian group, if the precosheaf H?: U — HY(U) is
locally equivalent to M7 for all q.

Bredon used the notation H?(X) for the precosheaf (U —
HY(U)) but we omit X on the notation since we use this pre-
cosheaf for only one space X.

Definition 6. The space X is called an “n-dimensional coho-
mology manifold over Z” (denoted n — em) if X has locally
constant cohomology groups, locally equivalent to Z in degree
n, and to zero in degrees other than n, and if dimzX < co.

Proposition 1. Let X be a compactum with dimzX < oo.
Then X ts an n — cm iff for each * € X there ezists a de-
creasing sequence {Vi} of open neighborhoods of z and ho-
momorphisms gx: Z — H™(Vi) and fir: H* (Vi) — Z such
that {Vi} is a fundamental system of open neighborhoods of z,
Tk H (Viy1) = HY(Vi) is 0 for ¢ # n and for each k, in the

following diagram
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H"™(Vi41)

\’i f’“%ﬂ

9k fe41 = T and frgr = 1dz.

Proof: (=) By the definition of n — ¢m, the precosheaf
H(U — H™(U)) is locally equivalent to Z. Let z € X. Then
there exists an open neighborhood U of z such that there exist
a precosheaf B and local isomorphisms h: H"|U — B and
l:Z — B. By Lemma 1 we can find a decreasing sequence
{Vi} of open neighborhoods of z in U such that {V4} is a
fundamental system of open neighborhoods of z and Ker hy C
Ker 1x_1, Im 1, C Im hy 0N Im Iy and Ker [y C Ker jr_; are
true in the following diagram:

H"(U)= -+ —H"(Veer) <=L H™ (Vi) « T H™ (Vi1 ) =

hi
-1 41
By &« By, b1 By, L BVk+1 A
[ lies I liss
Ly — - — ZLpq JE-1 Lk jk Zk+1 — ...

where By, = B(Vi) and Z = Z for all k and jx = tdz for all
k.

Since Ker jr_1 = 0 and Ker Iy C Ker jx_; for all k, I}, is a
monomorphism for all k. Also, since Im 1x_;y C Im l;_y, for
each element a € By, there is an unique element a’ € Z; such
that ix_1(a) = lk—1jk-1(a’). Define p: By, — Zi by ¢i(a) =
a’. Then ¢y is a homomorphism. Since 2x_1l; = lk—1Jx-1 and
Iy is a monomorphism, ¢ is an epimorphism.
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We now show that ¢p: B — Z is a local isomorphism. By
Lemma 1 it suffices to show that Ker ¢ C Ker 141 and
Im j; C Im . Since ¢y is an epimorphism, Im 3, C Im @4
holds. Also if ¢x(a) =0 then by the definition of ¢, we have
that 4x—1(a) = lk—1Jk-1(0) = 0. Thus a € Ker 1;_;. Therefore
¢ is a local isomorphism. Thus, by Lemma 2, ¢ o h is a local
isomorphism.

We now show that ¢ o hy is an epimorphism. Let ax € Zy,
then there is ay41 € Zg4y such that jx(axs1) = ax. Since iqq
is an epimorphism, there is an element bxy; € By,,, such that
99k+1(bk+1) = Ok41- Thus ik(bk+1) S BVk and (Pk?:lc(bk+1) =
Jk@k+1(bkt1) = ax. Since Im i C Im hy there is an element
cp € Hn(Vk) such that hk(ck) = ik(bk+l)- Therefore L,thk(ck) =
Crtk(bry1) = ak.

Note that the relationships Ker @rhy C Ker 7¢._y and Im 7 C
Im @rhy are not necessarily true but we have a subsequence of
{Vi} which satisfies the above condition. Abusing notation
by using the same notation for this subsequence, we have the
following diagram:

Hn(vk—l) Tk—1 H”(Vk) Tk Hn(vk+1)

Jr-1 fx fr+1
Tpoy D=tz 0 g

with the properties that for each k, fx is an epimorphism,
Ker fr C Ker 1x_1 and Im 33, C Im fy.

Since, for each k, fx is an epimorphism and Zy = Z is a
free abelian group, we have H™(Vi) = Ker fi & Z;. We also
have an isomorphism H™(V;)/Ker fi = Zy; call it f{. Since
Ker fry1 C Ker 71, we have a homomorphism

71:3 Hn(Vk+1)/K€7‘ fre1 = H (Vi)

such that 7, = 7/ pg41, where

Prsr: H'(Vir) = H™ (Vi) / Ker frp
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is the natural homomorphism.
Define gx: Zx — H™(Vi) by gk = 7/ 0 fi,1 ' 0j;'. Then

-1 .— . -1 .— .
frgk = fimifrpn Ui '= ]kfllc+1fl::+l Jk t= idz,

and

-1 -1 =1 - .
Tk = TePk+1 = Thfigr Jetr = Tofiwr Jn Jkfet1 = Grdefrir-

Therefore if we let j, = idz, we have the desired diagram.

For ¢ # n, by Lemma 2, there exist a precosheaf C and
local isomorphisms h: C — H?|U and {: C — 0. Then we
have a subsequence of {V;4} (abusing notation we use the same
notation again) such that in the following diagram

H(Vio1) k=1 HY(V}) b HY(Vi)
hi—1 hi P41
Ov,., =1 ¢y Oy,
le—1 Uk lk+1
Or—1 Jk=1 Ok e Ok+1

for each k, Ker hy U Ker l;, C Ker ix_y, Im 7, C Im hy, and
Im j; C Im ly. Where 0; = 0 for each k. Thus 7, = 0 for each
k. If we let ¢r: 0 — Cv, be the zero homomorphism then,
since ¢y = 0, ¢ is a local isomorphism by Lemma 1. Hence
h o ¢ is a local isomorphism. Therefore there is a subsequence
of {Vix} (again we use the same notation for this subsequence)
which has the property that Im 7, C Im (hy o ¢x) = 0. Hence
Tk = 0.

(<) By Lemma 1, we have local isomorphisms f: H*|U — Z
and H2|U — 0 for ¢ # n. For any V C U let B(V) =
H™(V)/Ker fy, and let hy: H*(V) — H™(V)/Ker fv be the
natural homomorphism. Then it is easy to see that h: H*|U —
B is a local isomorphism. Let gv: Z — H™(V)/Ker fv be the
isomorphism such that gi;'hy = fy. Then g: Z — B is a local
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“isomorphism. Therefore, the precosheaf H": U — H™(U) is
locally equivalent to Z. Hence X is an n — cm.

3. PROPERTIES OF COMPACTA THAT ARE PRESERVED BY
FACTORIZATION THROUGH A CLASS OF SPACES

Definition 7. Let X be a compactum and I1 a class of spaces.
Then X is said to “have a factorization through I1” provided
for every € > 0 there exist a space Y € II, a surjective map
fe: X =Y, and a map g.: Y — X such that d(g.fe,1dx) < €.
X 1is said to “have an approzimate factorization through I1”
provided for every € > 0 there exist a space Y € Il and maps
fe: X =Y and g.: Y — X such that d(gefe,2dx) < e.

Clearly, If X has a factorization through a class II of spaces,
then X has an approximate factorization through II.

Lemma 3. Let X and Y be compacta and f: X — Y a map.
Suppose that a € HI(X) and b € HY(Y) such that f*(b) = a.
Then there ezists a positive € such that if g: X — Y is a map
with d(f,g) < €, then g*(b) = a.

Proof: Consider Y as a closed subset of Hilbert cube Q). By
the weak continuity of the Alexander-Spanier cohomology with
compact supports, there exist a closed neighborhood P of Y
in @ and ¢ € HI(P) such that :*(c) = b, where :*: HI(P) —
H1(Y) is induced by inclusion. Let ¢ = d(Y, @ \ intP).

If g: X - Y is a map with d(f,g) < ¢, then d(if,ig) < e.

Thus if ~ ig in P and therefore (:f)*(c) = (19)*(c). Hence
g*(b) = g*i*(c) = f*i*(c) = f*(b) = a.
Theorem 1. Suppose that X is a compactum, n and n' are
positive integers, and Il is a class of compacta such that for
each Y € Il the g-th cohomology group H(Y) is finitely gen-
erated and the number of generators and torsion elements of
HY(Y) is less than n and n', respectively. Suppose also that
X has an approzimate factorization through 11. Then H?(X)
is finitely generated and the number of generators and torsion
elements of H1(X) is less than n and n’, respectively.
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Proof: By Lemma 3 combined with the hypothesis, for each
a € HI(X) there exists a positive number ¢, such that if € <
¢a then (g.fo)"(a) = f2(97(a)) = a, where fo: X — Y, and
ge: Yo = X are maps such that d(g.fe,idx) < e.

We first show that the number of linearly independent ele-
ments in H?(X) is less than n. Suppose that {as,as,...,as} is
a linearly independent set in H?(X). If ¢ < min(e,,,...,¢€,,),
then we have that f’g’(ar) = ai for each k. It is easy to see
that {g(ax)};-; 1s a linearly independent set in H9(Y,). Thus
s <n.

We now show that the number of torsion elements of H?(X)
is less than n'. Let {ay,as,...,as} be a set of distinct torsion
elements of HI(X). If ¢ < min(eg,...,¢€,,), then for each
1 <k < s frgf(ax) = ar and g¢(ax) is a torsion element of
H(Y.). Thus {gf(a1),...,9(as)} is a set of distinct torsion
elements of H(Y;). Thus s < n'.

Let T(X) and T'(Y:) be torsion subgroups of H?(X) and
HY(Y.), respectively. Then f* and ¢F induce homomorphisms

foo HA(Y)/T(Y.) — HY(X)/T(X)

and
9. HI(X)/T(X) — H'(Y)/T(Ye).

Let H¢(X) and H4(Y,) denote HY(X)/T(X) and H(Y.)/T(Y.),
respectively. For each a € H%(X) let @ = a + T(X). Since
T(X) is finite, in order to prove H?(X) is finitely generated, it
suffices to show that H?(X) is a finitely generated free abelian
group.

Let K be a free subgroup of H?(X) with maximum rank.
Then K is a subgroup generated by aq,...,as with s < n. If
a € HY(X) then {@,a,,...,a,} is not a linearly independent
set. Thus there is a positive integer m such that ma € K.
Therefore H?(X)/K is a torsion group.

Choose a positive € such that € < min(e,,,...,¢€,). Then
HY(X) = Ker g*® Im §* and Im §* is free. If a € K N Ker g7,
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then a =) ;_, mxax and so

=f:q:(a)=fIg:( kaak kaf g: (ax) kaa = a.
Thus Ker g* = (Ker g: + K)/K < HY(X)/K.

But Ker g} is torsion-free and H?(X)/K is torsion and hence
Ker g* = 0. Therefore H4(X) = Im g’ which is free.

Lemma 4. Let X be a locally connected compactum that has a
factorization through a class 11 of locally connected compacta.
Then if A and C are proper closed subsets of X such that A C
int(C'), there exists a positive ) such that for any € < n there
exist a proper closed subset B of a locally connected compactum
Y in 11 and two maps of pairs

(X, 4) 25 (v, B) 25 (X,0)

such that d(g.fe,h) < €, where h: (X,A) — (X,C). More-
over, if X \ A is connected Y \ B may also be assumed to be
connected.

It is a generalization of a result of Ganea [6], but his argu-
ment works here too. So we omit the proof.
We have the following properties of n — em [1].

Lemma 5. Let X be a connected locally compact Hausdorff
n —cm. Then

(1) H*(A) = 0 for every proper closed subset A of X.

(2) If X is orientable and U is connected, then 1y x is an
isomorphism.

Theorem 2. Let X be a connected and locally connected com-
pactum that has a factorization through the class of orientable
n —cm compacta. If U is a connected open subset of X, then

TU,X - Hn(U) - Hn(X)
is an isomorphism.

Proof: Let A= X\ U. We first show that the map
i*: H*'(X) — H™'(A) induced by the inclusion is an epi-
morphism. Let a € H""'(A). By the weak continuity of the
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Alexander-Spanier cohomology with compact supports, there
exists a closed neighborhood C of A such that there is ¢ €
H™1(C) with hi(c) = a, where hi: H*1(C) — H" '(A) is
induced by inclusion. By Lemma 3, there exists a positive ¢
such that for any map f: A — C with d(f, k1) < €, we have
f*(¢) = a. Since X has a factorization through the class of
n — c¢m compacta, by Lemma 4, there exist a positive e(< €;),
a proper closed subset B of an n —c¢m compactum Y such that
Y \ B is connected, and two maps of pairs

(X, A) -1 (v,B) % (X,0)

such that d(gf,h) < ¢, where h: (X, A) — (X, C).

Let fi: X =Y, fo: A— B,¢g1: Y - X, and ¢g2: B —» C
be the maps induced by f and g, respectively. Then f5g5(c) =
hi(c) = a.

Following the argument of A. Deleanu [4] and Ganea [6], it
is easy to show that a is in the image of 7* and therefore * is an
epimorphism. This implies that éx 4: H*'(A) — H™(U) in
the long exact sequence is 0, and so 7y x is a monomorphism.

The same argument also shows that H™"(A) = 0 and hence
Tu,x 1s an epimorphism.

Remark. If we use Z/2 coefficients, then Theorem 2 is true
even when X has a factorization through the class of n — ecm
compacta.

Lemma 6. [6] Suppose that X is a compact ANR such that
for every € > 0 there exists an e-map of X onto a closed n-
dimensional orientable manifold (depending on €). Then X
has a factorization through the class of closed n-dimensional
orientable manifolds.

Corollary 1. Let X be an n-dimensional connected compact
ANR such that for every e > 0 there ezists an e-map of X onto
a closed n-dimensional orientable manifold (depending on €).
Let U be a non-empty connected open subset of X. Then the
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homomorphism
wx: H'(U) - H"(X)
is an isomorphism.
Proof: By Lemma 6 and Theorem 2, it is clear.

The above corollary is a theorem of A. Deleanu [4]. So our
Theorem 2 is a generalization of Deleanu’s.

Corollary 2. Let X be an n-dimensional space satisfying the
conditions stated in Theorem 2. Then H™(X) # 0.

Ganea’s argument [6] works here too. So we omit the proof.

Theorem 3. Let X be an n-dimensional connected and locally
connected compactum that has a factorization through the class
of orientable n — ecm compacta. Let A be a closed subset of X
and x € A. A necessary and sufficient condition for z to be an
interior point of A is that

H™(U) # 0
for all suficiently small neighborhoods U of x in A.

The above theorem is a generalization of the second theorem
of A. Deleanu [4], but his argument works here too. So we omit
the proof. The following is the second theorem of A.Deleanu

[4];

Corollary 3. Let X be an n-dimenstonal connected compact
ANR such that for every € > 0 there exists an e-map of X onto
a closed n-dimensional orientable manifold (depending on €).
Let A be a closed subset of X and z € A. A necessary and
sufficient condition for x to be an interior point of A is that

HMU) #0
for all sufficiently small neighborhoods U of z in A.

Corollary 4. (Invariance of domain). Let X be an n-
dimensional connected and locally connected compactum that
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has a factorization through the class of orientable n —cm com-
pacta. Let Gy and G5 be homeomorphic subsets of X. If Gy s
open, then G4 is also open.

Deleanu’s argument [4] works here. so we omit the proof.
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