Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

PROPERTIES OF COMPACTA THAT ARE PRESERVED BY FACTORIZATION AND GENERALIZATIONS OF THEOREMS OF A. DELEANU¹

J. S. CHOI

ABSTRACT. Under the condition that Π is a class of compacta and a compactum X has the property that for every $\epsilon > 0$ there exist a space $Y \in \Pi$, a surjective map $f_{\epsilon}: X \to Y$, and a map $g_{\epsilon}: Y \to X$ such that $d(g_{\epsilon}f_{\epsilon}, id_X) < \epsilon$, we show that (1) if for every $Y \in \Pi$, $H^q(Y)$ is finitely generated and the number of generators of $H^q(Y)$ is less than a fixed number n, then $H^q(X)$ is finitely generated and the number of generators of $H^q(X)$ is less than n. (2) if Π is the class of orientable n - cm compacta and X is in addition n-dimensional connected and locally connected then X has the property that if U is a connected open subset of X then $\tau_{U,X}: H^n(U) \to H^n(X)$ is an isomorphism. The latter generalizes a theorem of A.Deleanu.

¹⁹⁹¹ Mathematics Subject Classification. 55M10, 55M15, 55N05, 55N30, and 57P99.

Key words and phrases. compactum, n - cm compactum, ANR, factorization through a class of spaces, manifold.

¹Parts of this paper consist of parts of author's doctoral dissertation under the supervision of G. Kozlowski.

J. S. CHOI

1. INTRODUCTION

By a compactum we mean a compact metric space. The various metrics and distances will be designated by the letter d. If X is a space and $A \subset X$, then int(A) will denote the interior of the set A. By a map or mapping we mean a continuous function. If f is a map then Ker f will denote the kernel of f and Im f the image of f. A compactum X is said to have a factorization through a class Π of spaces if for every $\epsilon > 0$ there exist a space $Y \in \Pi$, a surjective map $f_{\epsilon} \colon X \to Y$, and a map $g_{\epsilon} \colon Y \to X$ such that $d(g_{\epsilon}f_{\epsilon}, id_X) < \epsilon$.

For cohomology we will use the Alexander-Spanier cohomology groups with compact supports and the notation of Massey's book [8]. The q-dimensional cohomology group with compact supports of a locally compact Hausdorff space X with integer coefficients will be denoted by $H^q(X)$. The homomorphism associated with the open subset U of X will be denoted by $\tau_{U,X}$ or simply τ when no confusion could occur. For a compact Hausdorff space Alexander-Spanier cohomology with compact supports is naturally isomorphic to Čech cohomology [10], and for any locally compact Hausdorff space X and for any integer q > 0, $H^q(X) \cong H^q(X^+)$, where X^+ is the one point compactification of X. Thus one can interpret the results of this paper in terms of Čech cohomology.

By a compact ANR we mean a compact absolute neighborhood retract [2]. If f is a map from X to Y, $f \simeq 0$ means that f is homotopic to a constant map, and $f^* \colon H^q(Y) \to H^q(X)$ will denote the induced homomorphism of f. The group of integers will be denoted by \mathbb{Z} . If A and B are groups then $A \leq B$ will mean that A is a subgroup of B. By the dimension of X we mean the covering dimension of X, and it will be denoted by dim X. The following definition is essentially stated in Borel [1].

Definition 1. The cohomological dimension $\dim_{\mathbf{Z}} X$ of a space X with respect to the group \mathbf{Z} is defined to be the least integer

 $n (or \infty)$ such that $H^q(U) = 0$ for every open subset U of X and q > n.

In 1962 A. Deleanu [4] published the following:

Let X be an n-dimensional connected compact ANR such that for every $\epsilon > 0$ there exists an ϵ -map of X onto a closed ndimensional orientable manifold (depending on ϵ). Let U be a non-empty connected open subset of X. Then the homomorphism

$$\tau_{U,X} \colon H^n(U) \to H^n(X)$$

is an isomorphism.

In this paper we weaken the condition on X replacing compact ANR by locally connected compactum and the existence of ϵ -map onto a closed *n*-dimensional orientable manifold by the existence of ϵ -map onto an orientable n - cm compactum. As an application of this generalization we could generalize the second theorem of A.Deleanu [4] in the same way.

We also show a sufficient condition for a compactum X to have finitely generated q-cohomology as a property that is preserved by factorization through a class of spaces.

2. PRELIMINARIES

In this section we will discuss the definition of n - cm compactum and an equivalent condition.

The following definitions are given by Bredon ([3] pp 281, 349, and 374).

Definition 2. A precosheaf \mathcal{A} on X is a covariant functor from the category of open subsets of X to the category of abelian groups and homomorphisms. If V and U are open subsets of X with $V \subset U$, the homomorphism corresponding to the inclusion is $i_{U,V}: \mathcal{A}(V) \to \mathcal{A}(U)$. We call the homomorphism $i_{U,V}$ the structure maps of the precosheaf \mathcal{A} . A homomorphism $h: \mathcal{A} \to \mathcal{B}$ of precosheaves is the family of homomorphisms $h_V: \mathcal{A}(V) \to \mathcal{B}(V)$ commuting with the structure maps of \mathcal{A} and \mathcal{B} ; that is, h is a natural transformation of functors. The constant precosheaf L is the precosheaf taking the value L on each U with the identity structure map for every pair of open subsets.

Definition 3. A precosheaf \mathcal{A} on X is said to be "locally zero" if for any open set $U \subset X$ and $y \in U$ there is a neighborhood $V \subset U$ of y with $i_{U,V} \colon \mathcal{A}(V) \to \mathcal{A}(U)$ trivial. A homomorphism $h \colon \mathcal{A} \to \mathcal{B}$ of precosheaves is said to be a "local isomorphism" if the precosheaves Ker h and \mathcal{B} /Im h are both locally zero.

Lemma 1. Let \mathcal{A} and \mathcal{B} be precosheaves on a first countable space X and $h: \mathcal{A} \to \mathcal{B}$ be a homomorphism. Then h is a local isomorphism if and only if for each $x \in X$ there is a decreasing sequence $\{V_k\}$ of open neighborhoods of x such that $\{V_k\}$ is a fundamental system of open neighborhoods of x and in the following commutative diagram

Ker $h_k \subset$ Ker i_{k-1} and Im $j_k \subset$ Im h_k .

The proof of the above lemma is straightforward so we omit it.

Remark: If $\{V_k\}$ satisfies the condition of the Lemma 1 then every subsequence of $\{V_k\}$ also satisfies the same condition.

Definition 4. [3] Precosheaves \mathcal{A} and \mathcal{B} on X are said to be "equivalent" if \mathcal{A} and \mathcal{B} are equivalent under the smallest equivalence relation containing the relation of local isomorphism.

The following can be found in Bredon ([3], pp. 411 and 422)

Lemma 2. 1. Precosheaves \mathcal{A} and \mathcal{B} on X are equivalent if and only if there exists a precosheaf \mathcal{C} and local isomorphisms $\mathcal{C} \to \mathcal{A}$ and $\mathcal{C} \to \mathcal{B}$.

2. Composites of local isoorphisms are local isomorphisms.

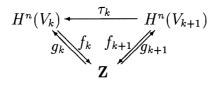
The following are also given by Bredon ([3] pp. 374)

Definition 5. If \mathcal{A} is a precosheaf on X and U is an open subset of X, then $\mathcal{A}|U$ is the precosheaf on U defined by using the group $\mathcal{A}(V)$ for $V \subset U$ and structure maps $i_{V,W}: \mathcal{A}(W) \to \mathcal{A}(V)$ for open sets $W \subset V \subset U$. A precosheaf \mathcal{A} will be said to be "locally constant" if each point $x \in X$ has a neighborhood U such that the precosheaf $\mathcal{A}|U$ on U is equivalent to a constant precosheaf. If this is the constant precosheaf M, where M is an abelian group, then \mathcal{A} is said to be "locally equivalent to M." The space X will be said to be possess "locally constant cohomology groups over \mathbb{Z} locally equivalent to M^* ," where M^* is a graded abelian group, if the precosheaf $\mathcal{H}^q: U \to H^q(U)$ is locally equivalent to M^q for all q.

Bredon used the notation $\mathcal{H}^q(X)$ for the precosheaf $(U \to H^q(U))$ but we omit X on the notation since we use this precosheaf for only one space X.

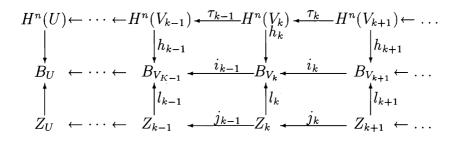
Definition 6. The space X is called an "n-dimensional cohomology manifold over \mathbb{Z} " (denoted n - cm) if X has locally constant cohomology groups, locally equivalent to \mathbb{Z} in degree n, and to zero in degrees other than n, and if $\dim_{\mathbb{Z}} X < \infty$.

Proposition 1. Let X be a compactum with $\dim_Z X < \infty$. Then X is an n - cm iff for each $x \in X$ there exists a decreasing sequence $\{V_k\}$ of open neighborhoods of x and homomorphisms $g_k \colon \mathbb{Z} \to H^n(V_k)$ and $f_k \colon H^n(V_k) \to \mathbb{Z}$ such that $\{V_k\}$ is a fundamental system of open neighborhoods of x, $\tau_k \colon H^q(V_{k+1}) \to H^q(V_k)$ is 0 for $q \neq n$ and for each k, in the following diagram



 $g_k f_{k+1} = \tau_k$ and $f_k g_k = i d_{\mathbf{Z}}$.

Proof: (\Rightarrow) By the definition of n - cm, the precosheaf $\mathcal{H}^n(U \to H^n(U))$ is locally equivalent to \mathbf{Z} . Let $x \in X$. Then there exists an open neighborhood U of x such that there exist a precosheaf \mathcal{B} and local isomorphisms $h: \mathcal{H}^n | U \to \mathcal{B}$ and $l: \mathbf{Z} \to \mathcal{B}$. By Lemma 1 we can find a decreasing sequence $\{V_k\}$ of open neighborhoods of x in U such that $\{V_k\}$ is a fundamental system of open neighborhoods of x and $Ker \ h_k \subset Ker \ \tau_{k-1}$, $Im \ i_k \subset Im \ h_k \cap Im \ l_k$ and $Ker \ l_k \subset Ker \ j_{k-1}$ are true in the following diagram:



where $B_{V_k} = \mathcal{B}(V_k)$ and $Z_k = \mathbb{Z}$ for all k and $j_k = id_{\mathbb{Z}}$ for all k.

Since Ker $j_{k-1} = 0$ and Ker $l_k \subset$ Ker j_{k-1} for all k, l_k is a monomorphism for all k. Also, since $Im \ i_{k-1} \subset Im \ l_{k-1}$, for each element $a \in B_{V_k}$ there is an unique element $a' \in Z_k$ such that $i_{k-1}(a) = l_{k-1}j_{k-1}(a')$. Define $\varphi_k \colon B_{V_k} \to Z_k$ by $\varphi_k(a) =$ a'. Then φ_k is a homomorphism. Since $i_{k-1}l_k = l_{k-1}j_{k-1}$ and l_k is a monomorphism, φ_k is an epimorphism.

126

We now show that $\varphi: \mathcal{B} \to Z$ is a local isomorphism. By Lemma 1 it suffices to show that $Ker \varphi_k \subset Ker i_{k-1}$ and $Im j_k \subset Im \varphi_k$. Since φ_k is an epimorphism, $Im j_k \subset Im \varphi_k$ holds. Also if $\varphi_k(a) = 0$ then by the definition of φ_k we have that $i_{k-1}(a) = l_{k-1}j_{k-1}(0) = 0$. Thus $a \in Ker i_{k-1}$. Therefore φ is a local isomorphism. Thus, by Lemma 2, $\varphi \circ h$ is a local isomorphism.

We now show that $\varphi_k \circ h_k$ is an epimorphism. Let $a_k \in Z_k$, then there is $a_{k+1} \in Z_{k+1}$ such that $j_k(a_{k+1}) = a_k$. Since φ_{k+1} is an epimorphism, there is an element $b_{k+1} \in B_{V_{k+1}}$ such that $\varphi_{k+1}(b_{k+1}) = a_{k+1}$. Thus $i_k(b_{k+1}) \in B_{V_k}$ and $\varphi_k i_k(b_{k+1}) = j_k \varphi_{k+1}(b_{k+1}) = a_k$. Since $Im \ i_k \subset Im \ h_k$ there is an element $c_k \in H^n(V_k)$ such that $h_k(c_k) = i_k(b_{k+1})$. Therefore $\varphi_k h_k(c_k) = \varphi_k i_k(b_{k+1}) = a_k$.

Note that the relationships $Ker \varphi_k h_k \subset Ker \tau_{k-1}$ and $Im j_k \subset Im \varphi_k h_k$ are not necessarily true but we have a subsequence of $\{V_k\}$ which satisfies the above condition. Abusing notation by using the same notation for this subsequence, we have the following diagram:

with the properties that for each k, f_k is an epimorphism, Ker $f_k \subset Ker \tau_{k-1}$ and $Im \ j_k \subset Im \ f_k$.

Since, for each k, f_k is an epimorphism and $Z_k = \mathbb{Z}$ is a free abelian group, we have $H^n(V_k) \cong Ker f_k \oplus Z_k$. We also have an isomorphism $H^n(V_k)/Ker f_k \cong Z_k$; call it f'_k . Since Ker $f_{k+1} \subset Ker \tau_k$, we have a homomorphism

$$\tau'_k \colon H^n(V_{k+1})/Ker \ f_{k+1} \to H^n(V_k)$$

such that $\tau_k = \tau'_k p_{k+1}$, where

$$p_{k+1}: H^n(V_{k+1}) \to H^n(V_{k+1})/Ker f_{k+1}$$

is the natural homomorphism.

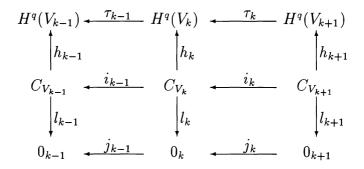
Define
$$g_k \colon Z_k \to H^n(V_k)$$
 by $g_k = \tau'_k \circ f'_{k+1}^{-1} \circ j_k^{-1}$. Then
 $f_k g_k = f_k \tau'_k f'_{k+1}^{-1} j_k^{-1} = j_k f'_{k+1} f'_{k+1}^{-1} j_k^{-1} = id_{Z_k}$

and

$$\tau_k = \tau'_k p_{k+1} = \tau'_k f'_{k+1}^{-1} f_{k+1} = \tau'_k f'_{k+1}^{-1} j_k^{-1} j_k f_{k+1} = g_k j_k f_{k+1}.$$

Therefore if we let $j_k = id_Z$, we have the desired diagram.

For $q \neq n$, by Lemma 2, there exist a precosheaf C and local isomorphisms $h: C \to \mathcal{H}^q | U$ and $l: C \to 0$. Then we have a subsequence of $\{V_k\}$ (abusing notation we use the same notation again) such that in the following diagram



for each k, Ker $h_k \cup$ Ker $l_k \subset$ Ker i_{k-1} , Im $\tau_k \subset$ Im h_k , and Im $j_k \subset$ Im l_k . Where $0_k = 0$ for each k. Thus $i_k = 0$ for each k. If we let $\varphi_k : 0_k \to C_{V_k}$ be the zero homomorphism then, since $i_k = 0$, φ is a local isomorphism by Lemma 1. Hence $h \circ \varphi$ is a local isomorphism. Therefore there is a subsequence of $\{V_k\}$ (again we use the same notation for this subsequence) which has the property that $Im \tau_k \subset Im (h_k \circ \varphi_k) = 0$. Hence $\tau_k = 0$.

 (\Leftarrow) By Lemma 1, we have local isomorphisms $f: \mathcal{H}^n|U \to \mathbf{Z}$ and $\mathcal{H}^q | U \to 0$ for $q \neq n$. For any $V \subset U$ let $\mathcal{B}(V) = H^n(V)/Ker f_V$, and let $h_V: H^n(V) \to H^n(V)/Ker f_V$ be the natural homomorphism. Then it is easy to see that $h: \mathcal{H}^n|U \to \mathcal{B}$ is a local isomorphism. Let $g_V: \mathbf{Z} \to H^n(V)/Ker f_V$ be the isomorphism such that $g_V^{-1}h_V = f_V$. Then $g: \mathbf{Z} \to \mathcal{B}$ is a local isomorphism. Therefore, the precosheaf $\mathcal{H}^n \colon U \to H^n(U)$ is locally equivalent to **Z**. Hence X is an n - cm.

3. PROPERTIES OF COMPACTA THAT ARE PRESERVED BY FACTORIZATION THROUGH A CLASS OF SPACES

Definition 7. Let X be a compactum and Π a class of spaces. Then X is said to "have a factorization through Π " provided for every $\epsilon > 0$ there exist a space $Y \in \Pi$, a surjective map $f_{\epsilon}: X \to Y$, and a map $g_{\epsilon}: Y \to X$ such that $d(g_{\epsilon}f_{\epsilon}, id_X) < \epsilon$. X is said to "have an approximate factorization through Π " provided for every $\epsilon > 0$ there exist a space $Y \in \Pi$ and maps $f_{\epsilon}: X \to Y$ and $g_{\epsilon}: Y \to X$ such that $d(g_{\epsilon}f_{\epsilon}, id_X) < \epsilon$.

Clearly, If X has a factorization through a class Π of spaces, then X has an approximate factorization through Π .

Lemma 3. Let X and Y be compact and $f: X \to Y$ a map. Suppose that $a \in H^q(X)$ and $b \in H^q(Y)$ such that $f^*(b) = a$. Then there exists a positive ϵ such that if $g: X \to Y$ is a map with $d(f,g) < \epsilon$, then $g^*(b) = a$.

Proof: Consider Y as a closed subset of Hilbert cube Q. By the weak continuity of the Alexander-Spanier cohomology with compact supports, there exist a closed neighborhood P of Y in Q and $c \in H^q(P)$ such that $i^*(c) = b$, where $i^*: H^q(P) \to$ $H^q(Y)$ is induced by inclusion. Let $\epsilon = d(Y, Q \setminus intP)$.

If $g: X \to Y$ is a map with $d(f,g) < \epsilon$, then $d(if,ig) < \epsilon$. Thus $if \simeq ig$ in P and therefore $(if)^*(c) = (ig)^*(c)$. Hence $g^*(b) = g^*i^*(c) = f^*i^*(c) = f^*(b) = a$.

Theorem 1. Suppose that X is a compactum, n and n' are positive integers, and Π is a class of compacta such that for each $Y \in \Pi$ the q-th cohomology group $H^q(Y)$ is finitely generated and the number of generators and torsion elements of $H^q(Y)$ is less than n and n', respectively. Suppose also that X has an approximate factorization through Π . Then $H^q(X)$ is finitely generated and the number of generators and torsion elements of $H^q(X)$ is less than n and n', respectively. **Proof:** By Lemma 3 combined with the hypothesis, for each $a \in H^q(X)$ there exists a positive number ϵ_a such that if $\epsilon \leq \epsilon_a$ then $(g_{\epsilon}f_{\epsilon})^*(a) = f_{\epsilon}^*(g_{\epsilon}^*(a)) = a$, where $f_{\epsilon} \colon X \to Y_{\epsilon}$, and $g_{\epsilon} \colon Y_{\epsilon} \to X$ are maps such that $d(g_{\epsilon}f_{\epsilon}, id_X) < \epsilon$.

We first show that the number of linearly independent elements in $H^q(X)$ is less than n. Suppose that $\{a_1, a_2, \ldots, a_s\}$ is a linearly independent set in $H^q(X)$. If $\epsilon \leq \min(\epsilon_{a_1}, \ldots, \epsilon_{a_s})$, then we have that $f^*_{\epsilon}g^*_{\epsilon}(a_k) = a_k$ for each k. It is easy to see that $\{g^*_{\epsilon}(a_k)\}_{k=1}^s$ is a linearly independent set in $H^q(Y_{\epsilon})$. Thus s < n.

We now show that the number of torsion elements of $H^q(X)$ is less than n'. Let $\{a_1, a_2, \ldots, a_s\}$ be a set of distinct torsion elements of $H^q(X)$. If $\epsilon \leq \min(\epsilon_{a_1}, \ldots, \epsilon_{a_s})$, then for each $1 \leq k \leq s \ f_{\epsilon}^* g_{\epsilon}^*(a_k) = a_k \text{ and } g_{\epsilon}^*(a_k)$ is a torsion element of $H^q(Y_{\epsilon})$. Thus $\{g_{\epsilon}^*(a_1), \ldots, g_{\epsilon}^*(a_s)\}$ is a set of distinct torsion elements of $H^q(Y_{\epsilon})$. Thus s < n'.

Let T(X) and $T(Y_{\epsilon})$ be torsion subgroups of $H^{q}(X)$ and $H^{q}(Y_{\epsilon})$, respectively. Then f_{ϵ}^{*} and g_{ϵ}^{*} induce homomorphisms

$$\bar{f}^*_{\epsilon} \colon H^q(Y_{\epsilon})/T(Y_{\epsilon}) \to H^q(X)/T(X)$$

and

$$\bar{g}_{\epsilon}^* \colon H^q(X)/T(X) \to H^q(Y_{\epsilon})/T(Y_{\epsilon}).$$

Let $\overline{H}^q(X)$ and $\overline{H}^q(Y_{\epsilon})$ denote $H^q(X)/T(X)$ and $H^q(Y_{\epsilon})/T(Y_{\epsilon})$, respectively. For each $a \in H^q(X)$ let $\overline{a} = a + T(X)$. Since T(X) is finite, in order to prove $H^q(X)$ is finitely generated, it suffices to show that $\overline{H}^q(X)$ is a finitely generated free abelian group.

Let K be a free subgroup of $\overline{H}^q(X)$ with maximum rank. Then K is a subgroup generated by $\overline{a}_1, \ldots, \overline{a}_s$ with s < n. If $\overline{a} \in \overline{H}^q(X)$ then $\{\overline{a}, \overline{a}_1, \ldots, \overline{a}_s\}$ is not a linearly independent set. Thus there is a positive integer m such that $m\overline{a} \in K$. Therefore $\overline{H}^q(X)/K$ is a torsion group.

Choose a positive ϵ such that $\epsilon \leq \min(\epsilon_{a_1}, \ldots, \epsilon_{a_s})$. Then $\overline{H}^q(X) \cong Ker \ \overline{g}^*_{\epsilon} \oplus Im \ \overline{g}^*_{\epsilon}$ and $Im \ \overline{g}^*_{\epsilon}$ is free. If $\overline{a} \in K \cap Ker \ \overline{g}^*_{\epsilon}$,

then $\bar{a} = \sum_{k=1}^{s} m_k \bar{a}_k$ and so $0 = \bar{f}^*_{\epsilon} \bar{g}^*_{\epsilon}(\bar{a}) = \bar{f}^*_{\epsilon} \bar{g}^*_{\epsilon}(\sum m_k \bar{a}_k) = \sum m_k \bar{f}^*_{\epsilon} \bar{g}^*_{\epsilon}(\bar{a}_k) = \sum m_k \bar{a}_k = \bar{a}.$ Thus $Ker \ \bar{g}^*_{\epsilon} \cong (Ker \ \bar{g}^*_{\epsilon} + K)/K \leq \bar{H}^q(X)/K.$

But Ker \bar{g}_{ϵ}^* is torsion-free and $\bar{H}^q(X)/K$ is torsion and hence Ker $\bar{g}_{\epsilon}^* = 0$. Therefore $\bar{H}^q(X) \cong Im \ \bar{g}_{\epsilon}^*$ which is free.

Lemma 4. Let X be a locally connected compactum that has a factorization through a class Π of locally connected compacta. Then if A and C are proper closed subsets of X such that $A \subset int(C)$, there exists a positive η such that for any $\epsilon \leq \eta$ there exist a proper closed subset B of a locally connected compactum Y in Π and two maps of pairs

$$(X, A) \xrightarrow{f_{\epsilon}} (Y, B) \xrightarrow{g_{\epsilon}} (X, C)$$

such that $d(g_{\epsilon}f_{\epsilon},h) < \epsilon$, where $h: (X,A) \hookrightarrow (X,C)$. Moreover, if $X \setminus A$ is connected, $Y \setminus B$ may also be assumed to be connected.

It is a generalization of a result of Ganea [6], but his argument works here too. So we omit the proof.

We have the following properties of n - cm [1].

Lemma 5. Let X be a connected locally compact Hausdorff n - cm. Then (1) $H^n(A) = 0$ for every proper closed subset A of X.

(2) If X is orientable and U is connected, then $\tau_{U,X}$ is an isomorphism.

Theorem 2. Let X be a connected and locally connected compactum that has a factorization through the class of orientable n - cm compacta. If U is a connected open subset of X, then

$$\tau_{U,X} \colon H^n(U) \to H^n(X)$$

is an isomorphism.

Proof: Let $A = X \setminus U$. We first show that the map $i^* \colon H^{n-1}(X) \to H^{n-1}(A)$ induced by the inclusion is an epimorphism. Let $a \in H^{n-1}(A)$. By the weak continuity of the

Alexander-Spanier cohomology with compact supports, there exists a closed neighborhood C of A such that there is $c \in H^{n-1}(C)$ with $h_1^*(c) = a$, where $h_1^* \colon H^{n-1}(C) \to H^{n-1}(A)$ is induced by inclusion. By Lemma 3, there exists a positive ϵ_1 such that for any map $f \colon A \to C$ with $d(f, h_1) < \epsilon_1$, we have $f^*(c) = a$. Since X has a factorization through the class of n - cm compacta, by Lemma 4, there exist a positive $\epsilon(< \epsilon_1)$, a proper closed subset B of an n - cm compactum Y such that $Y \setminus B$ is connected, and two maps of pairs

$$(X, A) \xrightarrow{f} (Y, B) \xrightarrow{g} (X, C)$$

such that $d(gf, h) < \epsilon$, where $h: (X, A) \hookrightarrow (X, C)$.

Let $f_1: X \to Y, f_2: A \to B, g_1: Y \to X$, and $g_2: B \to C$ be the maps induced by f and g, respectively. Then $f_2^*g_2^*(c) = h_1^*(c) = a$.

Following the argument of A. Deleanu [4] and Ganea [6], it is easy to show that a is in the image of i^* and therefore i^* is an epimorphism. This implies that $\delta_{X,A} \colon H^{n-1}(A) \to H^n(U)$ in the long exact sequence is 0, and so $\tau_{U,X}$ is a monomorphism.

The same argument also shows that $H^n(A) = 0$ and hence $\tau_{U,X}$ is an epimorphism.

Remark. If we use $\mathbb{Z}/2$ coefficients, then Theorem 2 is true even when X has a factorization through the class of n - cm compacta.

Lemma 6. [6] Suppose that X is a compact ANR such that for every $\epsilon > 0$ there exists an ϵ -map of X onto a closed ndimensional orientable manifold (depending on ϵ). Then X has a factorization through the class of closed n-dimensional orientable manifolds.

Corollary 1. Let X be an n-dimensional connected compact ANR such that for every $\epsilon > 0$ there exists an ϵ -map of X onto a closed n-dimensional orientable manifold (depending on ϵ). Let U be a non-empty connected open subset of X. Then the homomorphism

$$\tau_{U,X} \colon H^n(U) \to H^n(X)$$

is an isomorphism.

Proof: By Lemma 6 and Theorem 2, it is clear.

The above corollary is a theorem of A. Deleanu [4]. So our Theorem 2 is a generalization of Deleanu's.

Corollary 2. Let X be an n-dimensional space satisfying the conditions stated in Theorem 2. Then $H^n(X) \neq 0$.

Ganea's argument [6] works here too. So we omit the proof.

Theorem 3. Let X be an n-dimensional connected and locally connected compactum that has a factorization through the class of orientable n - cm compacta. Let A be a closed subset of X and $x \in A$. A necessary and sufficient condition for x to be an interior point of A is that

 $H^n(U) \neq 0$

for all suficiently small neighborhoods U of x in A.

The above theorem is a generalization of the second theorem of A. Deleanu [4], but his argument works here too. So we omit the proof. The following is the second theorem of A.Deleanu [4];

Corollary 3. Let X be an n-dimensional connected compact ANR such that for every $\epsilon > 0$ there exists an ϵ -map of X onto a closed n-dimensional orientable manifold (depending on ϵ). Let A be a closed subset of X and $x \in A$. A necessary and sufficient condition for x to be an interior point of A is that

$$H^n(U) \neq 0$$

for all sufficiently small neighborhoods U of x in A.

Corollary 4. (Invariance of domain). Let X be an ndimensional connected and locally connected compactum that has a factorization through the class of orientable n - cm compacta. Let G_1 and G_2 be homeomorphic subsets of X. If G_1 is open, then G_2 is also open.

Deleanu's argument [4] works here. so we omit the proof.

References

- A. Borel, Seminar on Transformation Groups, Annals of Mathematics Studies 46 (1960). MR 22:7129.
- [2] K. Borsuk, Theory of Retracts, Monografie Matematyczne 44, Polish Scientific Publishers, Warszawa 1967. MR 35:7306.
- [3] G. E. Bredon, Sheaf Theory, Second Edition, Graduate texts in Mathematics 170, Springer, 1997.
- [4] A. Deleanu On Spaces which may be mapped with Arbitrarily Small Counter-Images onto Manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys, 10 (1962), 193-198. MR 25:2602.
- [5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952. MR 14:398.
- [6] T. Ganea, On ε-Maps onto Manifolds, Fund. Math., 47 (1959) 35-44. MR 21:4427.
- [7] K. Kuratowski, Topology II, Monografie Matematyczne 21, Polish Scientific Publishers, Warszawa, 1968. MR 41:4467.
- [8] W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, New York, 1978. MR 58:7594.
- [9] K. Nagami, Dimension Theory, Pure and Applied Mathematics, 37, Academic Press. New York and London 1970. MR 42:6799.
- [10] E. H. Spanier, Algebraic Topology, Springer-Verlag Publishers, New York, 1966. MR 35:1007.

PUSAN NATIONAL UNIVERSITY, PUSAN KOREA 609-735 E-mail address: choijon@hyowon.cc.pusan.ac.kr