Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE CARDINALITY OF THE COARSEST QUASI-PROXIMITY CLASS OF LOCALLY COMPACT T₂ SPACES

A. LOSONCZI

ABSTRACT. In the class of the locally compact T_2 spaces we prove that the cardinality of the coarsest quasi-proximity class is equal to 1 if and only if either X is compact or X is non-Lindelöf. If the space is non-compact, Lindelöf then we show that this cardinality is at least $2^{2^{\aleph_0}}$. A characterization of the elements of the coarsest compatible quasi-uniformity is also given.

1. INTRODUCTION

In this paper we are going to continue the investigation of the problems arisen in [12], [13] and [8]. In [12] we partly answer the following question: what is the cardinality of the set of all compatible (transitive, non-transitive, totally bounded) quasiuniformities for a given topological space. We proved that the number of the transitive quasi-uniformities that a topological space admits is either 1 or at least $2^{2^{\aleph_0}}$. In the T₂ case it was

¹⁹⁹¹ Mathematics Subject Classification. 54E15; 54A25.

Key words and phrases. compatible quasi-proximity, quasi-proximity class, compatible quasi-uniformity, totally bounded quasi-uniformity, uniformly regular quasi-uniformity, uniform local compactness.

Research partially supported by the Hungarian National Foundation of Scientific Research, Grant NO. 019476.

shown that there are at least $2^{2^{\aleph_0}}$ compatible non-transitive quasi-uniformities if X is infinite. In [8] Künzi proved that there exists a space which admits exactly two compatible totally bounded quasi-uniformities and he also showed that the number of compatible quasi-uniformities on X is less than or equal to $2^{2^{nw(X)}}$ where nw(X) denotes the network weight of X.

In [13] we generalized a theorem of [12] by showing that if δ is a quasi-proximity such that \mathcal{V}_{δ} is transitive then the number of the (transitive) quasi-uniformities compatible with δ are either 1 or at least $2^{2^{\aleph_0}}$.

The following question remained open however: what can be said about this cardinality if \mathcal{V}_{δ} is not transitive. An important and interesting quasi-proximity of a topological space is the coarsest one if it exists and in most cases it is non-transitive. In this paper we examine the cardinality of the quasi-proximity class of the coarsest compatible quasi-proximity of locally compact T₂ spaces.

In the first section we give some basic results. For example we characterize in two distinct ways when a quasi-uniformity is in $\pi(\delta^0)$. We also verify that $\pi(\delta^0)$ is closed for sup hence it has a finest member. It is shown that if X is compact then the cardinality of the coarsest quasi-proximity class is equal to 1 and in the next paragraph we prove that this is also true when X is non-Lindelöf. To prove this we use a characterization of the elements of \mathcal{V}^0 . We also prove that if $\mathcal{V} \in \pi(\delta^0)$, $\mathcal{V} \neq$ \mathcal{V}^0 then \mathcal{V} is uniformly locally compact. In the last section it is proved that the cardinality of $\pi(\delta^0)$ is at least $2^{2^{\aleph_0}}$ if X is non-compact and Lindelöf.

Now we shall mention some results and definitions which will be frequently used later; for elementary results on quasiuniform spaces the reader has to consult [3].

We call an entourage V in X open if int V = V where (int V)(x) = int(V(x)).

If we say that δ is a quasi-proximity we use it in the sense of [3]1.22. If \mathcal{V} is a quasi-uniformity, then $\delta(\mathcal{V})$ and $\tau(\mathcal{V})$ will always denote the quasi-proximity and the topology induced by \mathcal{V} respectively, $\tau(\delta)$ will denote the topology induced by δ . Let $\pi(\delta) = {\mathcal{V} : \delta(\mathcal{V}) = \delta}$. We know from [3]1.33 that for every δ , $\pi(\delta) \neq \emptyset$ moreover there exists a coarsest element of $\pi(\delta)$; it is denoted by \mathcal{V}_{δ} and is totally bounded and the only totally bounded member of $\pi(\delta)$.

If a topological space X is given such that there exists the coarsest compatible quasi-proximity then it will be denoted by δ_X^0 or simply δ^0 if there is no danger of misunderstanding. If there exists the coarsest compatible quasi-uniformity then we use the notation \mathcal{V}^0 or \mathcal{V}_X^0 for this quasi-uniformity.

If X is T₂ then the condition that there is a coarsest compatible quasi-uniformity is equivalent with X being locally compact (see [11]4.6 and [6]). It is easy to check that \mathcal{V}^0 is transitive if and only if X is 0-dimensional.

If X is a space, $A, B \subset X$ then we will use the notation $U_{A,B}^X = U_{A,B} = (A \times B) \cup ((X - A) \times X)$. It is known that a totally bounded quasi-uniformity has a subbase consisting of sets of the form $U_{A,B}$ where $A\overline{\delta(\mathcal{V})}(X - B)$.

It is known from [3]1.46 that if X is locally compact T_2 then a subbase for \mathcal{V}^0 is $\{U_{K,G} : K \subset G \subset X, K \text{ is compact and } G \text{ is open}\}.$

We will need a basic definition.

Definition 1.1. Let (X, τ) be a topological space. Then N(X) or $N(\tau)$ $(T(X) \text{ or } T(\tau))$ denotes the set of all compatible (transitive) quasi-uniformities on X respectively.

We emphasize that in this paper each topological space considered is a locally compact T_2 space.

2. The tools

First we give characterizations for $\mathcal{V} \in N(X)$ being in $\pi(\delta^0)$.

Proposition 2.1. Let X be locally compact T_2 , $\mathcal{V} \in N(X)$. Then $\mathcal{V} \in \pi(\delta^0)$ if and only if $V \in \mathcal{V}$, $V(A) \neq X$ $(A \subset X)$ implies cl(A) is compact and $cl(A) \subset V(A)$. **Proof:** To prove the necessity let $V \in \mathcal{V} \in \pi(\delta^0)$, $A \subset X$ such that $V(A) \neq X$. Then by [3]1.28 $A\overline{\delta(\mathcal{V})}(X - V(A))$ hence $U_{A,V(A)} \in \mathcal{V}_{\delta(\mathcal{V})} = \mathcal{V}^0$ and there are $K_i \subset G_i \subset X$ such that K_i is compact, G_i is open and $\bigcap_{1}^{n} U_{K_i,G_i} \subset U_{A,V(A)}$. If $x \in A$ then let $J(x) = \{i : x \in K_i\}$. By assumption $J(x) \neq \emptyset$ for every $x \in A$. It is easy to check that

$$A \subset \bigcup_{x \in A} \bigcap_{j \in J(x)} K_j \subset V(A),$$

but $\bigcup_{x \in A} \bigcap_{j \in J(x)} K_j$ is obviously compact, so is cl(A) and $cl(A) \subset V(A)$.

To prove the converse we have to verify that $\mathcal{V}_{\delta(\mathcal{V})} \subset \mathcal{V}^0$. Let $U_{A,B} \in \mathcal{V}_{\delta(\mathcal{V})}$ such that $B \neq X$. Since $A\overline{\delta(\mathcal{V})}(X-B)$ then there is an open $V \in \mathcal{V}$ such that $V(A) \subset B$ so by assumption $\mathrm{cl}(A)$ is compact and $\mathrm{cl}(A) \subset V(A)$. One can easily show that $U_{\mathrm{cl}(A),V(A)} \subset U_{A,B}$ which yields that $U_{A,B} \in \mathcal{V}^0$. \Box

Corollary 2.2. If $\mathcal{V} \in \pi(\delta^0)$, $V_0, V \in \mathcal{V}$ such that $V_0^2 \subset V$, and $V(B) \neq X$ $(B \subset X)$ then $cl(V_0(B))$ is compact and $cl(V_0(B)) \subset V(B)$.

Proof: Let $A := V_0(B), V := V_0$ in 2.1. \Box

Corollary 2.3. If $A \subset X$, $A \neq X$, V(A) = A ($V \in \mathcal{V} \in \pi(\delta^0)$) then A is compact. \Box

Corollary 2.4. If there exists a transitive $\mathcal{V} \in \pi(\delta^0)$ then X is 0-dimensional. \Box

Recall that a quasi-uniformity \mathcal{V} is called uniformly regular if for every $V \in \mathcal{V}$ there is $V_0 \in \mathcal{V}$ such that $\forall x \in X \operatorname{cl}(V_0(x)) \subset$ V(x) (see [2]1.10, [1]). 2.2 yields that if $\mathcal{V} \in \pi(\delta^0)$ then \mathcal{V} fulfills a much stronger condition.

Definition 2.5. Let us call a quasi-uniformity \mathcal{V} strongly uniformly regular if for every $V \in \mathcal{V}$ there is $V_0 \in \mathcal{V}$ such that $\operatorname{cl}(V_0(A)) \subset V(A) \ (\forall A \subset X)$.

Obviously every uniformity is strongly uniformly regular and the converse does not hold. A possible counterexample is \mathcal{V}^0 of a 0-dimensional, locally compact, non-compact T₂ space (see 2.16).

Remark 2.6. The two notions, uniform regularity and strong uniform regularity do not coincide.

Proof: Let $X = \{0; \frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ with the standard topology and let $\mathcal{V} = \operatorname{fil}_{X \times X}\{V_n : n \in \mathbb{N}\}$ where $V_n(x) = \{x\}$ if $x \neq 0$ and $V_n(0) = \{0; \frac{1}{k} : k \geq n\}$. It is obvious that $\mathcal{V} \in T(X)$. It is straightforward to check that \mathcal{V} is uniformly regular. If $A = X - \{0\}$ then V(A) = A and $\operatorname{cl}(V(A)) = X$ for every $V \in \mathcal{V}$ which shows that it is not strongly uniformly regular. \Box

Proposition 2.7. If $\mathcal{V} \in \pi(\delta^0)$ then \mathcal{V} is strongly uniformly regular, moreover each $V_0 \in \mathcal{V}$ is suitable which satisfies $V_0^2 \subset V$.

Proof: 2.2. □

Proposition 2.8. Let $V \in \mathcal{V} \in N(X)$, $A \subset X$. Then $(V(A) \neq X$ implies $cl(A) \subset V(A)$) is equivalent with the condition that for every $x \in X$, $V^{-1}(x)$ is a neighbourhood of x ($\iff \mathcal{V}^* = sup\{\mathcal{V}, \mathcal{V}^{-1}\} \in N(X)$).

Proof: Let us prove first the necessity. Suppose indirectly that there is a point $x \in X$ which does not satisfy the condition. Let $A = \{y \in X : x \notin V(y)\}$. Obviously $x \notin V(A), x \in cl(A)$ and $V(A) \neq X$. By assumption we get $cl(A) \subset V(A)$ hence $x \in V(A)$ which is a contradiction.

To prove the opposite case suppose that there exists a subset A of X such that $V(A) \neq X$ and $cl(A) \not\subset V(A)$. Now there is $x \in cl(A)$ such that $x \notin V(A)$, and there is $y \in V^{-1}(x) \cap A$. Obviously $x \in V(y)$ and $x \notin V(y)$. \Box

Proposition 2.9. Let $\mathcal{V} \in N(X)$ and \mathcal{V}' be one of its subbases. In this case $\mathcal{V} \in \pi(\delta^0)$ if and only if $\forall x \in X, \forall V \in \mathcal{V}'$

- 1. $V^{-1}(x)$ is a neighbourhood of x and
- 2. $X int(V^{-1}(x)) = cl(X V^{-1}(x))$ is compact.

Proof: First we prove the necessity. 2.8 implies 1, and let $A = \{y \in X : x \notin V(y)\}$. Obviously $V(A) \neq X$ hence cl(A) is compact by 2.1 and $A = X - V^{-1}(x)$.

If we want to prove the sufficiency then by 2.1 and 2.8 it is enough to show that $V(A) \neq X$ implies cl(A) is compact. Let $\bigcap_1^n V_i \subset V$ where $V_i \in \mathcal{V}'$. Let $x \in X - V(A)$. Then $A \cap V^{-1}(x) = \emptyset$ therefore $A \subset cl(X - V^{-1}(x)) \subset \bigcup_1^n cl(X - V_i^{-1}(x))$ which is compact by assumption. \Box

We emphasize a trivial but important consequence.

Corollary 2.10. Let $\mathcal{V} \in N(X)$. Then $\mathcal{V} \in \pi(\delta^0)$ if and only if $\forall x \in X$, $\forall V \in \mathcal{V} V^{-1}(x)$ is a neighbourhood of x and $\operatorname{cl}(X - V^{-1}(x))$ is compact.

Examining the second condition we may say that it means that $V^{-1}(x)$ is a huge set $(V \in \mathcal{V} \in \pi(\delta^0), x \in X)$ in the sense that its complement is contained in a compact set where we can think that compact sets are small (since the set of all compact sets is an ideal in the lattice of all closed sets).

Proposition 2.11. Let $\mathcal{V} \in N(X)$. In this case $\mathcal{V} \in \pi(\delta^0)$ if and only if $\mathcal{V}^{-1} \in N(\tau')$ where $\tau' = \{N \in \tau : X - N \text{ is compact} \} \cup \{\emptyset\}.$

Proof: First observe that τ' is a topology.

Let $\mathcal{V} \in \pi(\delta^0)$ and $x \in X$, $V \in \mathcal{V}$. By 2.10 $x \in \operatorname{int}_{\tau} V^{-1}(x) \subset V^{-1}(x)$ and $\operatorname{int} V^{-1}(x) \in \tau'$.

Let $x \in G \in \tau'$. Then K = X - G is compact and $x \notin K$. It is known that there exists a compact set K_1 such that $K \subset$ int K_1 and $x \notin K_1$. Obviously $U_{K,K_1} \in \mathcal{V}^0$ hence $U_{K,K_1}^{-1} =$ $U_{X-K_1,X-K} \in (\mathcal{V}^0)^{-1} \subset \mathcal{V}^{-1}$. Now $U_{X-K_1,G}(x) = G$ which yields that $\tau' \subset \tau(\mathcal{V}^{-1})$.

To prove the sufficiency let $x \in X$, $V \in \mathcal{V}$. $V^{-1}(x)$ is a τ' -neighbourhood of x so it is a τ -neighbourhood too and there is $N \in \tau'$ such that $x \in N \subset V^{-1}(x)$. By 2.10, $X - V^{-1}(x) \subset X - N$ yields the required statement. \Box

Corollary 2.12. $\pi(\delta^0)$ is closed for sup.

Proof: Let $\mathcal{V}_i \in \pi(\delta^0)$ $(i \in I)$. By the previous proposition (2.11) $\mathcal{V}_i^{-1} \in N(\tau')$ and so is $(\sup\{\mathcal{V}_i : i \in I\})^{-1}$. \Box

Corollary 2.13. $\pi(\delta^0)$ always has a finest member.

The following fact is known in some ways (see e.g. [3] 1.45) but we give here a simple direct proof.

Proposition 2.14. If X is compact T_2 then there exists a unique compatible uniformity on X, moreover it equals to the coarsest compatible quasi-uniformity.

Proof: Let \mathcal{V} be a compatible uniformity and \mathcal{V}^0 be the coarsest compatible quasi-uniformity whose subbase is $\{U_{K,G} : K \subset G \subset X, K \text{ is compact and } G \text{ is open}\}$. Let $V \in \mathcal{V}$ and $V_0 \in \mathcal{V}$ be symmetric such that $V_0^4 \subset V$. By the compactness of X there are points x_1, \ldots, x_n in X such that $X = \bigcup_{i=1}^n V_0(x_i)$. Let $K_i = \operatorname{cl}(V_0(x_i)), G_i = \operatorname{int}(V_0(K_i))$. Obviously K_i is compact, G_i is open and $K_i \subset G_i$. In the standard way one can easily prove that $\bigcap_{i=1}^n U_{K_i,G_i} \subset V$ which yields that $V \in \mathcal{V}^0$. \Box

We are ready to prove the main theorem of this section.

Theorem 2.15. If X is compact T_2 then $|\pi(\delta^0)| = 1$.

Proof: By 2.10 it is straightforward that $\mathcal{V}^* = \sup{\{\mathcal{V}, \mathcal{V}^{-1}\}}$ is a compatible uniformity if $\mathcal{V} \in \pi(\delta^0)$. But $\mathcal{V} \subset \mathcal{V}^* = \mathcal{V}^0$ by the previous observation (2.14). \Box

Proposition 2.16. For a locally compact T_2 space X the followings are equivalent: 1. X is compact 2. \mathcal{V}^0 is a uniformity 3. $\exists \mathcal{V} \in \pi(\delta^0)$ such that $\mathcal{V}^{-1} \in \pi(\delta^0)$ 4. $\exists \mathcal{V} \in \pi(\delta^0)$ such that $\mathcal{V}^{-1} \in N(X)$ 5. $\exists \mathcal{V} \in \pi(\delta^0)$ such that $\mathcal{V}^* \in \pi(\delta^0)$.

Proof: 1⇒2: 2.14. The implications 2⇒3, 3⇒4, 2⇒5 are obvious. 5⇒2: If \mathcal{V} is a uniformity then so is $\mathcal{V}_{\omega} = \mathcal{V}_{\delta(\mathcal{V})}$. 4⇒1: Let $x \in K \subset X$ such that K is a compact neighbourhood of x. Then there is a $V \in \mathcal{V}$ such that $V^{-1}(x) \subset K$. Therefore $X = K \cup (X - \operatorname{int}(V^{-1}(x)))$ but by 2.9 $X - \operatorname{int}(V^{-1}(x))$ is compact. \Box

Lemma 2.17. Let $Y \subset X$ be closed, $\mathcal{V} \in \pi(\delta_X^0)$. Then $\mathcal{V}|_Y \in \pi(\delta_Y^0)$.

Proof: If $V \in \mathcal{V}$ then conditions 1 and 2 hold in 2.9. We have to show that $V|_Y$ also satisfies these conditions for Y. 1 is obvious, and $\operatorname{cl}_Y(Y - V|_Y^{-1}(y)) = \operatorname{cl}_X(Y - V|_Y^{-1}(y)) \cap Y \subset \operatorname{cl}_X(X - V^{-1}(y)) \cap Y \ (y \in Y)$ which is compact and we get condition 2 holds too. \Box

3. Non-Lindelöf spaces

The aim of this section is proving the fact that $|\pi(\delta^0)| = 1$ if X is non-Lindelöf.

Definition 3.1. If V is an entourage on X then let

 $\operatorname{supp} V = \operatorname{cl}(\{x \in X : V(x) \neq X\}).$

Proposition 3.2. Let $V_0, V \in \mathcal{V} \in \pi(\delta^0)$ such that $V_0^3 \subset V$. Then $V_0(\operatorname{supp} V) \subset \operatorname{supp} V_0$. (Hence $\operatorname{supp} V \subset \operatorname{int}(\operatorname{supp} V_0)$.)

Proof: Let $x \in \operatorname{supp} V$, $y \in V_0(x)$. We have to prove that $y \in \operatorname{supp} V_0$. By 2.9 there exists $z \in V_0^{-1}(x) \cap \{x' : V(x') \neq X\} \neq \emptyset$. Now $V_0(y) \subset V_0^2(x) \subset V_0^3(z) \subset V(z) \neq X$ and we get $V_0(y) \neq X$. \Box

Proposition 3.3. Let $V_0, V \in \mathcal{V} \in \pi(\delta^0)$ such that $V_0^2 \subset V$. If $x \in \text{supp}V$ then $V_0(x) \neq X$.

Proof: By 2.9 there is a $z \in V_0^{-1}(x) \cap \{x' : V(x') \neq X\} \neq \emptyset$. In the usual way we get $V_0(x) \neq X$. \Box

Lemma 3.4. Let $V, V_0 \in \mathcal{V} \in \pi(\delta^0)$, $V_0^4 \subset V$. Then if $x \in \text{supp } V$ then $\operatorname{cl}(V_0(x))$ is compact.

Proof: By 3.3 $V_0^2(x) \neq X$ and then 2.2 gives the statement. \Box

Theorem 3.5. Let V be a neighbournet in X. Then $V \in \mathcal{V}^0$ if and only if $\operatorname{supp} V$ is compact, there exists a neighbournet V_0 such that $V_0^2 \subset V$ and $V_0^{-1}(x)$ is a neighbourhood of x for every $x \in \operatorname{supp} V$.

Proof: If $V \in \mathcal{V}^0$ then there are $K_i \subset G_i \subset X$ such that K_i is compact, G_i is open, and $U = \bigcap_1^n U_{K_i,G_i} \subset V$. If $x \notin \bigcup_1^n K_i$ then $U(x) = X \subset V(x)$. By 2.9 $V_0^{-1}(x)$ is a neighbourhood of x if $x \in X$ whenever $V_0 \in \mathcal{V}^0$.

To prove the sufficiency let $L_x = \operatorname{int}(V_0(x) \cap V_0^{-1}(x))$ and $K_x \subset L_x$ be a compact neighbourhood of x if $x \in K = \operatorname{supp} V$. Then $K \subset \bigcup_{x \in K} K_x$ and K being compact imply that $K \subset \bigcup_{i=1}^n K_{x_i}$. We show that $U = \bigcap_1^n U_{K_{x_i}, L_{x_i}} \subset V$ which yields that $V \in \mathcal{V}^0$. If $x \notin K$ then V(x) = X. If $x \in K$ then there is i such that $x \in K_{x_i}$. Then $x \in V_0^{-1}(x_i)$ and $V_0(x_i) \subset V(x)$ and $L_{x_i} \subset V_0(x_i)$ so that $U(x) \subset U_{K_{x_i}, L_{x_i}}(x) \subset V(x)$. \Box

We remark that $cl(X - V^{-1}(x))$ is compact in the previous theorem $(x \in X)$; moreover all sets $cl(X - V^{-1}(x))$ are contained in the same compact set (suppV). (Compare with 2.9.)

Corollary 3.6. Let $V \in \mathcal{V} \in \pi(\delta^0)$. Then $V \in \mathcal{V}^0$ if and only if supp V is compact.

The following proposition generalizes the fact that $cl(X - V^{-1}(x))$ is compact if $V \in \mathcal{V} \in \pi(\delta^0)$.

Proposition 3.7. If $V \in \mathcal{V} \in \pi(\delta^0)$, $K \subset X$ is compact then $\operatorname{cl}(X - \bigcap_{x \in K} V^{-1}(x)) = \operatorname{cl}(\{x \in X : K \not\subset V(x)\})$ is compact.

Proof: Let $V_0 \in \mathcal{V}$ such that $V_0^2 \subset V$. Then obviously there are $x_i \in X$ (i = 1, ..., n) such that $K \subset \bigcup_1^n V_0(x_i)$. We show that $\bigcap_1^n V_0^{-1}(x_i) \subset \bigcap_{x \in K} V^{-1}(x)$. If $y \in K$ then there is *i* such that $y \in V_0(x_i)$, hence $x_i \in V_0^{-1}(y)$, $V_0^{-1}(x_i) \subset V^{-1}(y)$ and we get $\bigcap_1^n V_0^{-1}(x_j) \subset \bigcap_{x \in K} V^{-1}(x)$.

Now $\operatorname{cl}(X - \bigcap_{x \in K} V^{-1}(x)) \subset \operatorname{cl}(X - \bigcap_1^n V_0^{-1}(x_i)) = \bigcup_1^n \operatorname{cl}(X - V_0^{-1}(x_i))$ which is compact (2.9). \Box

Proposition 3.8. Let $\mathcal{V} \in \pi(\delta^0)$, $V, V_0 \in \mathcal{V}$ such that $V_0^2 \subset V$ and suppose that there exists $x \in X$ such that $X - V_0(x)$ is compact. In this case $V \in \mathcal{V}^0$

Proof: Let $K_1 = X - V_0(x)$, $K_2 = cl(X - V_0^{-1}(x))$. We know that both sets are compact. By 3.7, there exists a compact set

 K_3 such that if $z \notin K_3$ then $K_1 \subset V(z)$. If $y \notin K_2$ then $y \in V_0^{-1}(x)$, and $X - K_1 \subset V_0(x) \subset V_0^2(y) \subset V(y)$. We get that if $y \notin K_2 \cup K_3$ then V(y) = X. In other words supp V is compact and 3.6 is applicable. \Box

Corollary 3.9. If $V_0, V \in \mathcal{V} \in \pi(\delta^0)$ such that $V_0^2 \subset V$ and $V \notin \mathcal{V}^0$ then supp $V_0 = X$.

Proposition 3.10. Let $V_0, V \in \mathcal{V} \in \pi(\delta^0)$ such that $V_0^8 \subset V$ and $V \notin \mathcal{V}^0$. In this case $\operatorname{cl}(V_0(x))$ is compact for every $x \in X$.

Proof: By 3.9 supp $V_0^4 = X$ and by 3.4 cl $(V_0(x))$ is compact.

Recall that a quasi-uniform space (X, \mathcal{V}) is uniformly locally compact provided that there is a $V \in \mathcal{V}$ such that $\forall x \in X$, $\operatorname{cl}(V(x))$ is compact (see [9]2). Now we can prove the following:

Corollary 3.11. If X is locally compact T_2 , $\mathcal{V} \in \pi(\delta^0)$, $\mathcal{V} \neq \mathcal{V}^0$ then \mathcal{V} is uniformly locally compact. If X is non-compact then \mathcal{V}^0 is not uniformly locally compact.

Proof: There is $V \in \mathcal{V} - \mathcal{V}^0$ and 3.10 is applicable.

To prove the second part indirectly observe that if cl(V(x)) is compact for every $x \in X$ then supp V = X. But by 3.6 supp V must be compact as well – a contradiction. \Box

Now we can already prove the following:

Theorem 3.12. If X is locally compact T_2 , non-Lindelöf (\iff not σ -compact) then $|\pi(\delta^0)| = 1$.

Proof: Suppose the contrary, that there exists $\mathcal{V} \in \pi(\delta^0)$, $\mathcal{V} \neq \mathcal{V}^0$. Then there is $V \in \mathcal{V} - \mathcal{V}^0$. Let $V_0 \in \mathcal{V}$ such that $V_0^8 \subset V$ and let V_0 be open. By 3.10 $\operatorname{cl}(V_0(x))$ is compact $(x \in X)$. Then we can find a sequence (x_i) such that $x_{n+1} \notin \bigcup_1^n V_0(x_i)$. By X being non-Lindelöf there exists $y \in X - \bigcup_1^\infty V_0(x_i)$ thus $\{x_i : i \in \mathbb{N}\} \subset X - V_0^{-1}(y)$ but the closure of this set is compact by 2.9 so there is a cluster point z of (x_i) . By $2.9 V_0^{-1}(z)$

is a neighbourhood of z so there is $n \in \mathbb{N}$ such that $x_n \in V_0^{-1}(z), z \in V_0(x_n)$. But obviously $\{x_i : i > n\} \subset X - V_0(x_n)$ which is closed. Hence $z \in X - V_0(x_n)$ which is a contradiction. \Box

4. THE LINDELÖF, NON-COMPACT CASE

In this section we partly answer the question : what can be said about $|\pi(\delta^0)|$ if X is non-compact, Lindelöf, by proving that $|\pi(\delta^0)| \ge 2^{2^{\aleph_0}}$ in this case.

Lemma 4.1. Let $f : X \to Y$ be a continuous surjective function such that K being compact in Y implies that $f^{-1}(K)$ is compact. If V is a neighbournet in Y such that 2.9 1 and 2 hold then $(f \times f)^{-1}(V)$ is also a neighbournet in X and satisfies these conditions.

Proof: If $x \in X$ then $(f \times f)^{-1}(V)(x) = f^{-1}(V(f(x)))$ and similarly $((f \times f)^{-1}(V))^{-1}(x) = f^{-1}(V^{-1}(f(x)))$. Condition 1 and $(f \times f)^{-1}(V)$ being a neighbournet are straightforward. If $x \in X, X - f^{-1}(V^{-1}(f(x))) = f^{-1}(Y - V^{-1}(f(x)))$; but $cl(Y - V^{-1}(f(x)))$ is compact. \Box

Lemma 4.2. Let $f : X \to Y$ be a surjective function, and $\mathcal{V}_1, \mathcal{V}_2$ be two distinct quasi-uniformities on Y. Then $f^{-1}(\mathcal{V}_1) \neq f^{-1}(\mathcal{V}_2)$.

Proof: Suppose that there is a $V \in \mathcal{V}_1 - \mathcal{V}_2$ and there is $V_2 \in \mathcal{V}_2$ such that $(f \times f)^{-1}(V_2) \subset (f \times f)^{-1}(V)$. Obviously $f^{-1}(V_2(f(x))) \subset f^{-1}(V(f(x)))$ $(x \in X)$. By the surjectivity of $f, V_2(f(x)) \subset V(f(x))$ and again by the surjectivity $V_2 \subset V$ and $V \in \mathcal{V}_2$ - a contradiction. \Box

Theorem 4.3. Let X and Y be locally compact, non-compact T_2 spaces. Let $f : X \to Y$ be continuous, surjective and if K is a compact set then let $f^{-1}(K)$ be compact. In this case $|\pi(\delta_Y^0)| \leq |\pi(\delta_X^0)|$.

Proof: Let $\mathcal{V}_1, \mathcal{V}_2 \in \pi(\delta_Y^0)$ such that $\mathcal{V}_1 \neq \mathcal{V}_2$. It is enough to prove that $\mathcal{V}'_1 = \operatorname{fil}_{X \times X} \{ f^{-1}(\mathcal{V}_1), \mathcal{V}^0 \} \neq \mathcal{V}'_2 = \operatorname{fil}_{X \times X} \{ f^{-1}(\mathcal{V}_2), \mathcal{V}^0 \}$

since by 4.1 $\mathcal{V}'_1, \mathcal{V}'_2 \in \pi(\delta^0_X)$. Suppose that there exist $V \in$ $\mathcal{V}_1 - \mathcal{V}_2, \ V_2 \in \mathcal{V}_2 \text{ and } U \in \mathcal{V}^0 \text{ such that } U \cap (f \times f)^{-1}(V_2) \subset$ $(f \times f)^{-1}(V)$. Then for every $x \in X$, $U(x) \cap f^{-1}(V_2(f(x))) \subset$ $f^{-1}(V(f(x)))$. Let $K = \operatorname{supp} U$ and $x \notin K$. There exists such an x by 3.6 and the assumption. Hence $V_2(f(x)) \subset$ $V(f(x)) \ \forall x \in X - K \text{ and we get } V_2(y) \subset V(y) \ \forall y \in Y - f(K).$ Let $V_0 \in \mathcal{V}_1$ such that $V_0^4 \subset V$ and V_0 is open. $f(K) \subset$ $\bigcup_{x \in f(K)} (V_0(x) \cap V_0^{-1}(x))$ and f(K) being compact implies that $f(K) \subset \bigcup_{1}^{n} (V_{0}(x_{i}) \cap V_{0}^{-1}(x_{i})).$ Let $W = \bigcap_{1}^{n} U_{K_{i},G_{i}}$ where $K_i = \operatorname{cl}(V_0(x_i))$ and $G_i = V_0^2(x_i)$. Since $V \notin \mathcal{V}_2$ then $V \notin \mathcal{V}_2$ \mathcal{V}_{Y}^{0} and by 3.8 $V_{0}^{2}(x_{i}) \neq Y$ and 3.4 yields that $cl(V_{0}(x_{i}))$ is compact, and $K_i \subset G_i$ holds by 2.2. Hence $W \in \mathcal{V}_Y^0$, we want to prove that $W(y) \subset V(y) \ \forall y \in f(K)$. If $y \in$ f(K) then there is i such that $y \in V_0(x_i) \cap V_0^{-1}(x_i)$ and $y \in V_0(x_i) \cap V_0^{-1}(x_i)$ K_i . Thus $x_i \in V_0(y)$ implies $V_0^2(x_i) \subset V_0^3(y) \subset V(y)$. In other words $U_{K_i,G_i}(y) \subset V(y)$ and $W(y) \subset V(y)$.

Now $W \cap V_2 \subset V$ but $W \in \mathcal{V}_Y^0 \subset \mathcal{V}_2$. Therefore $V \in \mathcal{V}_2$ which is a contradiction. \Box

Theorem 4.4. If X is non-compact, Lindelöf and 0-dimensional then $|\pi(\delta^0) \cap (N(X) - T(X))| \ge 2^{2^{\aleph_0}}$.

Proof: To prove the inequality it is enough to show that each quasi-uniformity \mathcal{V}_{σ} constructed in [12]3.1 is in $\pi(\delta^0)$ if we set $\mathcal{B} = \{\text{compact-open sets}\} \cup \{X, \emptyset\}$ and let (N_i) be a strictly increasing sequence of compact-open sets such that $\bigcup_1^{\infty} N_i = X$. It is straightforward that $\mathcal{V}_{\mathcal{B}} = \mathcal{V}^0$. Using the notation of [12], by 2.9 we have to check that each V_i and U_A $(i \in \mathbb{N}, A \in \sigma)$ satisfy conditions 1 and 2. To prove condition 1 let $x \in N_n - N_{n-1}$. Then $N_n - N_{n-1} \subset V_i^{-1}(x) \cap U_A^{-1}(x)$. Condition 2 is a consequence of $X - N_n \subset V_i^{-1}(x) \cap U_A^{-1}(x)$.

Corollary 4.5. Let $X = \mathbb{N}$ be equipped with the discrete topology. Then $|\pi(\delta^0)| = 2^{2^{\aleph_0}}$.

Proof: Obviously $|\pi(\delta^0)| \leq |N(X)| \leq 2^{2^{\aleph_0}}$ and apply 4.4. \Box **Theorem 4.6.** If $X = [0, +\infty) \subset \mathbb{R}$ is equipped with the standard topology then $|\pi(\delta^0)| = 2^{2^{\aleph_0}}$. **Proof:** We know that $|N(X)| = 2^{2^{\aleph_0}}$ (see [12]4.4 and [8] Corollary 2) so we have to prove that $|\pi(\delta^0)| \ge 2^{2^{\aleph_0}}$.

Let $\mathcal{A} \subset \exp(\mathbb{I}\mathbb{N})$ be an almost disjoint system such that $|\mathcal{A}| = 2^{\aleph_0}$ and $A \in \mathcal{A}$ implies $|A| = \aleph_0$. (Almost disjoint means that if $A, B \in \mathcal{A}$ then $|A \cap B|$ is finite.) If $A \in \mathcal{A}, \epsilon \in \mathbb{I}\mathbb{R}^+$, $0 < \epsilon \leq 1$ are given then we define $f = f_{A,\epsilon}$. If $n \in \mathbb{I}\mathbb{N} \cup \{0\}$ then let

$$f(n) = \begin{cases} \epsilon & \text{if } n \notin A \\ \frac{\epsilon}{n} & \text{if } n \in A. \end{cases}$$

If $x \in X, n < x < n + 1$ for some $n \in \mathbb{N}$ then let f(x) be the point on the line segment between (n, f(n)) and (n + 1, f(n + 1)) which is above x. Obviously f is continuous. Let $V_{A,\epsilon}(x) = V_{f_{A,\epsilon}}(x) = [0, x + f_{A,\epsilon}(x)).$

We prove that $V_{f_{A,\epsilon}}^2 \subset V_{f_{A,3\epsilon}}$. Let $f = f_{A,\epsilon}$. Let $x \in X$ be fixed. If $y \in V_f(x)$ then $0 \leq y < x + f(x)$. If y < xthen the absolute value of the slope of the segment between (y, f(y)) and (x, f(x)) is less than 1. Hence y + f(y) < x + f(x)in other words $V_f(y) \subset V_f(x)$. If x < y < x + f(x) holds then we can say the same about the slope of that segment so $f(y) \leq 2f(x)$. We get y + f(y) < x + 3f(x) in other words $V_f(y) \subset V_{f_{A,3\epsilon}}(x)$.

Now let $\mathcal{B} \subset \mathcal{A}$. Let

$$\mathcal{V}_{\mathcal{B}} = \operatorname{fil}_{X \times X} \{ \mathcal{V}^0, V_{f_{A,\epsilon}} : A \in \mathcal{B}, 0 < \epsilon \leq 1 \}.$$

By the previous observation the set which generates $\mathcal{V}_{\mathcal{B}}$ is a quasi-uniform subbase. It is easy to check that $\mathcal{V}_{\mathcal{B}} \in N(X)$. To prove that $\mathcal{V}_{\mathcal{B}} \in \pi(\delta^0)$ we have to check conditions 1 and 2 in 2.9 for the given subbase. Let $f = f_{A,\epsilon}, x \in X$. Obviously $[x, +\infty) \subset V_f^{-1}(x)$ so condition 2 holds. Suppose indirectly that there is a sequence (y_n) such that $y_n \to x, y_n < x$ and $x \notin V_f(y_n)$ $(n \in \mathbb{N})$. Then $f(y_n) \to 0$ must hold and we would get that f(x) = 0 since f is continuous and this is a contradiction. It remains to show that if $\mathcal{B}_1 \neq \mathcal{B}_2$ then $\mathcal{V}_{\mathcal{B}_1} \neq \mathcal{V}_{\mathcal{B}_2}$. Suppose for example that there exists $B \in \mathcal{B}_1 - \mathcal{B}_2$. Let $V = V_{f_{B,1}} \in \mathcal{V}_{\mathcal{B}_1}$. If indirectly $V \in \mathcal{V}_{\mathcal{B}_2}$ then there are $\epsilon > 0$, $U \in \mathcal{V}^0$, $A_j \in \mathcal{B}_2$ such that $U \cap \bigcap_{j=1}^m V_{f_{A_j,\epsilon}} \subset V$. $B \notin \mathcal{B}_2$ so it is easy to check that $B - \bigcup_1^m A_j$ is infinite. Thus there exists $k \in (\mathbb{IN} - \operatorname{supp} U) \cap (B - \bigcup_1^m A_j)$ such that $\frac{1}{k} < \epsilon$ since by 3.6 supp U is compact. Then $U(k) \cap \bigcap_1^m V_{f_{A_j,\epsilon}}(k) = X \cap [0, k+\epsilon) = [0, k+\epsilon)$ but $V_{f_{B,1}}(k) = [0, k+\frac{1}{k})$ which is a contradiction. \Box **Proposition 4.7.** If $X \subset [0, +\infty)$ is closed, not bounded then $|\pi(\delta_X^0)| \geq 2^{2^{\aleph_0}}$.

Proof: There are two cases to consider.

1. There is a sequence (x_n) such that $x_n \to +\infty$ and $x_n \notin X$ $(n \in \mathbb{N})$. We can assume that $x_n < x_{n+1}$, $\inf X < x_1$ and $(x_n, x_{n+1}) \cap X \neq \emptyset$ $(n \in \mathbb{N})$. In this case let $(y_n) \subset X$ be a sequence such that $y_1 < x_1$, $x_{i-1} < y_i < x_i$ $(i \ge 2)$. We define a function $g: X \to \{y_i : i \in \mathbb{N}\}$. If $x \in X$ then let

$$g(x) = \begin{cases} y_1 & \text{if } x < x_1, \\ y_i & \text{if } x_{i-1} < x < x_i \ (i \ge 2). \end{cases}$$

Obviously by the choice of (x_n) and (y_n) , g is continuous, surjective, $K \subset \{y_i : i \in \mathbb{N}\}$ being compact implies that $g^{-1}(K)$ is also compact. By 4.3 and 4.5 we get $|\pi(\delta_X^0)| \geq 2^{2^{\aleph_0}}$ since $\{y_i : i \in \mathbb{N}\}$ is homeomorphic to \mathbb{N} .

2. There exists no such sequence in other words there is $y \in X$ such that $[y, +\infty) \subset X$. We define $g: X \to [y, +\infty)$. If $x \in X$ then let

$$g(x) = \begin{cases} y & \text{if } x \leq y, \\ x & \text{if } x \geq y. \end{cases}$$

It is straightforward to check that g is continuous, surjective, $K \subset [y, +\infty)$ being compact implies that $g^{-1}(K)$ is compact too. So $|\pi(\delta_X^0)| \ge 2^{2^{\aleph_0}}$ by 4.3 and 4.6. \Box

Corollary 4.8. If $X \subset [0, +\infty)$ is closed, not bounded then $|\pi(\delta_X^0)| = 2^{2^{\aleph_0}}$.

Proof: 4.7 and [8] Corollary 2. \Box

Lemma 4.9. If X is locally compact, non-compact T_2 , Lindelöf then there exists $f : X \to Y \subset [0, +\infty)$ such that Y is closed, not bounded and f is continuous, surjective and K being compact implies that $f^{-1}(K)$ is also compact.

Proof: It is easy to construct a sequence of compact sets $K_n \subset X$ $(n \in \mathbb{N})$ such that $K_n \subset \operatorname{int} K_{n+1}$ and $\bigcup_1^{\infty} K_i = X$. Then by induction we can assign to each $r \in [1, \infty) \cap \mathbb{Q}$ a compact set K_r in X such that if $r_1 < r_2$ then $K_{r_1} \subset \operatorname{int} K_{r_2}$. We have defined K_r if $r \in \mathbb{N}$. Let $n \in \mathbb{N}$ be fixed and let (r_m) be a sequence such that $\{r_m : m \in \mathbb{N}\} = [n, n+1] \cap \mathbb{Q}, r_m \neq r_k \ (k \neq m)$ and $r_1 = n, r_2 = n + 1$. If $K_{r_1}, \ldots, K_{r_{k-1}}$ are defined then there are l, m < k such that $d(r_l, r_k) = \min\{d(r_j, r_k) : r_j < r_k, j < k\}$ and $d(r_k, r_m) = \min\{d(r_k, r_j) : r_k < r_j, j < k\}$. Let K_{r_k} be chosen such that $K_{r_l} \subset \operatorname{int} K_{r_k} \subset K_{r_k} \subset \operatorname{int} K_{r_m}$ and K_{r_k} is compact. We do the same for all $n \in \mathbb{N}$ and we get the sequence K_r for $r \in [1, \infty) \cap \mathbb{Q}$.

Now we define f. If $x \in X$ then let $f(x) = \inf\{r \in [1, \infty) \cap \mathbf{Q} : x \in K_r\}$. We show that this f has all required properties.

To prove that f is continuous let $x \in X$ and $f(x) \in (a, b)$. Let r_1, r_2 be chosen such that $a < r_1 < f(x) < r_2 < b$. Then $x \in \operatorname{int} K_{r_2} - K_{r_1}$ which is open and $f(\operatorname{int} K_{r_2} - K_{r_1}) \subset (a, b)$. Let Y = f(X). Then Y is not bounded since if $n \in \mathbb{N}$ then

there is $x \notin K_n$ hence $f(x) \ge n$.

To show that Y is closed let (y_n) be a convergent sequence such that $y_n \in Y$ and $y_n \to y \in \mathbb{R}$. Then there is a sequence (x_n) in X such that $f(x_n) = y_n$. There exists a $w \in$ \mathbb{Q} such that $y_n < w \ \forall n \in \mathbb{N}$, therefore $x_n \in K_w$ which is compact so there is a cluster point x of (x_n) . Obviously y = f(x)because f is continuous.

We show that K being compact implies that $f^{-1}(K)$ is compact. Suppose that $K \subset [1,n]$, for an $n \in \mathbb{N}$. If $x \in f^{-1}(K)$ then $x \in K_{n+1}$. So $f^{-1}(K) \subset K_{n+1}$. But f being continuous implies that $f^{-1}(K)$ is closed. \Box **Theorem 4.10.** If X is locally compact T_2 , non-compact, Lindelöf then $|\pi(\delta_X^0)| \ge 2^{2^{\aleph_0}}$.

Proof: 4.9,4.7 and 4.3. \Box

Corollary 4.11. $|\pi(\delta^0)| = 1$ if and only if X is either compact or non-Lindelöf.

Finally we present a counterexample to the following question. For some time we believed that if X is non-compact and Lindelöf then $|\pi(\delta^0)| = 2^{2^{\aleph_0}}$ holds. Much evidence seemed to support such a conjecture, for example 2.15, 2.17, 2.9 and 3.10. But we are going to show now that it is not correct.

Theorem 4.12. There exists a space X for which $|\pi(\delta^0)| > 2^{2^{\aleph_0}}$.

Proof: Let Y be a discrete topological space with |Y| = c where $c = 2^{\aleph_0}$. Let us consider the Čech-Stone compactification βY of Y. If $A \subset Y$, let us use the notation: $\hat{A} = \{\tilde{u} : \tilde{u} \text{ is an ultrafilter on } Y \text{ such that } A \in \tilde{u}\}.$

Let $X = \bigcup_{i=1}^{\infty} X_i$ where X_i is homeomorphic to βY $(i \in \mathbb{N})$ and $X_i \cap X_j = \emptyset$ $(i \neq j)$. Let $\bigcup_{1}^{\infty} \tau_i$ be a base for τ , i.e. X is the topological sum of the X_i -s.

We assign for every $A \subset Y$ a transitive neighbournet W_A on X. If $x \in X_n$ then let $W_A(x) = \bigcup_{i=1}^{n-1} X_i \cup U_{\hat{A}}^{X_n}(x)$ where $U_{\hat{A}}^{X_n}$ denotes the image of the neighbournet $U_{\hat{A}} = U_{\hat{A},\hat{A}} \subset \beta Y \times \beta Y$ by a fixed homeomorphism between βY and X_n . It is easy to see that $W_A^2 = W_A$.

If \mathcal{A} is a filter on Y then let $\mathcal{V}_{\mathcal{A}} = \operatorname{fil}_{X \times X} \{ \mathcal{V}_X^0; W_A : A \in \mathcal{A} \}$. We show that $\mathcal{V}_{\mathcal{A}} \in \pi(\delta^0)$. In order to prove this it is enough to check the two conditions of 2.9. Let $x \in X_n$ and $A \in \mathcal{A}$. By the definition of W_A , $\bigcup_{i=n+1}^{\infty} X_i \subset W_A^{-1}(x)$, hence condition 2 holds. To establish condition 1 it is enough to verify that $W_A^{-1}(x) \cap X_n$ is open, which is equal to $U_{\hat{A}}^{-1}(x)$ and it is open.

Now we prove that if \mathcal{A}, \mathcal{B} are filters on $Y, \mathcal{A} \neq \mathcal{B}$ then $\mathcal{V}_{\mathcal{A}} \neq \mathcal{V}_{\mathcal{B}}$. This obviously implies that $|\pi(\delta^0)| \geq 2^{2^c} > 2^c$.

We can assume that there is $A \in \mathcal{A} - \mathcal{B}$. Then $W_A \in \mathcal{V}_{\mathcal{A}}$ and we show that $W_A \notin \mathcal{V}_{\mathcal{B}}$. Suppose indirectly that

 $W_A \in \mathcal{V}_{\mathcal{B}}$. Then there are $U \in \mathcal{V}_X^0$, $B_i \in \mathcal{B}$ such that $U \cap \bigcap_1^n W_{B_i} \subset W_A$. By 3.6 suppU is compact hence there is a $k \in \mathbb{IN}$ such that $X_k \cap \operatorname{supp} U = \emptyset$. If we restrict the previous entourages to X_k we get $\bigcap_1^n U_{\hat{B}_i} \subset U_{\hat{A}}$. Let α be the lattice of subsets of X_k which is generated by the sets \emptyset , $\hat{B}_1, \ldots, \hat{B}_n, \beta Y$, and let $\beta = \{\emptyset, \hat{A}, \beta Y\}$. By [11]2.6 we get that $\beta \subset \alpha$ since α and β are l-interior preserving open covers and $U_\alpha = \bigcap_1^n U_{\hat{B}_i}, U_\beta = U_{\hat{A}}$. Hence \hat{A} can be written as a union of finite intersections from $\hat{B}_1, \ldots, \hat{B}_n$. By the properties of the operator \hat{A} , then $A \in \mathcal{B}$ – a contradiction. \Box

References

- A. Császár, Regular extensions of quasi-uniformities, Studia Sci. Math. Hungar., 14 (1979), 15-26.
- [2] J. Deák, Survey of compatible extensions, Topology theory and applications II., Colloq. Math. Soc. J. Bolyai, 55 (1993), 127-175.
- [3] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure Appl. Math., 77 Dekker, New York (1982)
- [4] H.-P. A. Künzi, Topological spaces with a unique compatible quasiproximity, Arch. Math., 43 (1984), 559-561.
- [5] H.-P. A. Künzi, Topological spaces with a unique compatible quasiuniformity, Canad. Math. Bull., 29 (1986), 40-43.
- [6] H.-P. A. Künzi, Topological spaces with a coarsest compatible quasiproximity, Quaestiones Mathematicae, 10 (1986), 179-196.
- [7] H.-P. A. Künzi, Quasi-uniform spaces Eleven years later, Topology Proceedings, 18 (1993), 143-171.
- [8] H.-P. A. Künzi, Nontransitive quasi-uniformities, preprint
- [9] H.-P. A. Künzi and S. Romaguera, Quasi-metric spaces, quasi-metric hyperspaces and uniform local compactness, preprint
- [10] H.-P.A. Künzi and S. Watson, A nontrivial T₁-space admitting a unique quasi-proximity, Glasgow Math. J., 38 (1996), 207-213.
- [11] A. Losonczi, Topological spaces with coarsest compatible quasiuniformity, preprint
- [12] A. Losonczi, On the cardinality of compatible quasi-uniformities, preprint
- [13] A. Losonczi, On the cardinality of $\pi(\delta)$, preprint

MÉZESKALÁCS TÉR 2.V.11. BUDAPEST 1155 HUNGARY *E-mail address:* losonczi@cs.elte.hu