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THE CARDINALITY OF THE COARSEST
 
QUASI-PROXIMITY CLASS OF LOCALLY
 

COMPACT T2 SPACES
 

A. LOSONCZI 

ABSTRACT. In the class of the locally cornpact T 2 spaces we 
prove that the cardinality of the coarsest quasi-proximity 
class is equal to 1 if and only if either X is compact or 
X is non-Lindelof. If the space is non-compact, Lindelof 
then we show that this cardinality is at least 22No 

. A 
characterization of the elements of the coarsest compat­
ible quasi-uniformity is also given. 

1. INTRODUCTION 

In this paper we are going to continue the investigation of the 
problems arisen in [12], [13] and [8]. In [12] we partly answer 
the following question: what is the cardinality of the set of all 
compatible (transitive, non-transitive, totally bounded) quasi­
uniformities for a given topological space. We proved that the 
number of the transitive quasi-uniformities that a topological 
space admits is either 1 or at least 22No 

• In the T 2 case it was 

1991 Mathematics Subject Classification. 54E15; 54A25. 
](ey 'words and phrases. compatible quasi-proximity, quasi-proximity 

class, compatible quasi-uniformity, totally bounded quasi-uniformity, uni­
formly regular quasi-uniformity, uniform local compactness. 

Research partially supported by the Hungarian National Foundation 
of Scientific Research, Grant NO. 019476. 

245 



246 A. LOSONCZI 

shown that there are at least 22No compatible non-transitive 
quasi-uniformities if X is infinite. In [8] Kiinzi proved that 
there exists a space which admits exactly two compatible to­
tally bounded quasi-uniformities and he also showed that the 
number of compatible quasi-uniformities on X is less than or 

2nw(X) ( ) •equal to 2 where nw X denotes the network weIght of 
X. 

In [13] we generalized a theorem of [12] by showing that if 8 is 
a quasi-proximity such that V8 is transitive then the number of 
the (transitive) quasi-uniformities compatible with 8 are either 
1 or at least 22No 

• 

The following question remained open however: what can be 
said about this cardinality if V8 is not transitive. An important 
and interesting quasi-proximity of a topological space is the 
coarsest one if it exists and in most cases it is non-transitive. 
In this paper we examine the cardinality of the quasi-proximity 
class of the coarsest compatible quasi-proximity of locally com­
pact T 2 spaces. 

In the first section we give some basic results. For example 
we characterize in two distinct ways when a quasi-uniformity 
is in 7r(8°). We also verify that 7r(8°) is closed for sup hence it 
has a finest member. It is shown that if X is compact then the 
cardinality of the coarsest quasi-proximity class is equal to 1 
and in the next paragraph we prove that this is also true when 
X is non-Lindelof. To prove this we use a characterization of 
the elements of yO. We also prove that if V E 7r(8°), V 1 
VO then V is uniformly locally co'mpact. In the last section it 
is proved that the cardinality of 7r(8°) is at least 22No if X is 
non-compact and Lindelof. 

Now we shall mention some results and definitions which 
will be frequently used later; for elementary results on quasi­
uniform spaces the reader has to consult [3]. 

We call an entourage V in X open if intV = V where 
(intV)(x) = int(V(x)). 

If we say that 8 is a quasi-proximity we use· it in the sense 
of [3]1~22. If V is a quasi-uniformity, then 8(V) and r(V) will 
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always denote the quasi-proximity and the topology induced 
by V respectively, 7(8) will denote the topology induced by 8. 
Let 7r(8) ~ {V : 8(V) ~ 8}. We know from [3]1.33 that for 
every 8, 7r(8) i- 0 moreover there exists a coarsest element of 
7r(8); it is denoted by V8 and is totally bounded and the only 
totally bounded member of 7r(8). 

If a topological space X is given such that there exists the 
coarsest compatible quasi-proximity then it will be denoted by 
8~ or simply 8° if there is no danger of misllnderstanding. If 
there exists the coarsest compatible quasi-uniformity then we 
use the notation Va or V~ for this quasi-uniformity. 

If X is T2 then the condition that there is a coarsest compati­
ble quasi-uniformity is equivalent with X being locally compact 
(see [11]4.6 and [6]). It is easy to check that Va is transitive if 
and only if X is O-dimensional. 

If X is a space, A, B c X then we will use the notation 
Ul,B ~ UA,B ~ (A X B) U ((X - A) X X). It is known that a 
totally bounded quasi-uniformity has a subbase consisting of 
sets of the form UA,B where A8(V)(X - B). 

It is known from [3] 1.46 that if X is locally compact T2 then 
a subbase for VO is {U1<,G : !{ C G c X, !{ is compact and G 
is open}. 

We will need a basic definition. 

Definition 1.1. Let (X, 7) be a topological space. Then N(X) 
or N(7) (T(X) or T(7)) denotes the set of all compatible (tran­
sitive) quasi-uniformities on X respectively. 

We emphasize that in this paper each topological space con­
sidered is a locally compact T 2 space. 

2. THE TOOLS 

First we give characterizations for V E N(X) being in 7r(8°). 

Proposition 2.1. Let X be locally compact T2 , V E N(X). 
Then V E 7r(8°) if and only if V E V, V(A) i- X (A c X) 
implies cl(A) is compact and cl(A) C V(A). 
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Proof: To prove the necessity let V EVE 7r(50), A c 
X such that V(A) =I X. Then by [3]1.28 A5(V)(X - V(A)) 
hence UA,v(A) E V 6(V) = Va and there are I<i C G i C X such 

that ](i is compact, G i is open and nfUKi,Gi c UA,V(A). If 
x E A then let J(x) == {i : x E ]{i}. By assumption J(x) =I 0 
for every x E A. It is easy to check that 

A C U n I<j C V(A), 
xEA jEJ(x) 

but UXEA njEJ(x) ](j is obviously compact, so is cl(A) and 
cl(A) C V(A). 

To prove the converse we have to verify that V 6(V) eVa, 

Let UA,B E VS(V) such that B # X. Since A8(V)(X -B) then 

there is an open V E V such that V(A) C B so by assumption 
cl(A) is compact and cl(A) C V(A). One can easily show that 
Ucl(A),v(A) C UA,B which yields that UA,B EVa, D 

Corollary 2.2. If V E 7r(8°), VO, V E V such that ~2 C 
V, and V(B) =I X (B c X) then cl(VO(B)) is compact and 
cl(Vo(B)) C V(B). 

Proof: Let A :== VO(B), V :'== VO in 2.1. 0 

Corollary 2.3. If A c X, A # X, V(A) == A (V EVE 
7r(8°)) then A is compact. 0 

Corollary 2.4. If there exists a transitive V E 7r(5°) then X 
is O-dimensional. 0 

Recall that a quasi-uniformity V is called uniformly regular if 
for every V E V there is VO E V such that Vx E X cl(VO(x)) c 
V(x) (see [2]1.10, [1]). 2.2 yields that if V E 7r(8°) then V 
fulfills a much stronger condition. 

Definition 2.5. Let us call a quasi-uniformity V strongly uni­
formly regular if for every V E V there is VO E V such that 
cl(\!O(A)) c V(A) (VA eX). 
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Obviously every uniformity is strongly uniformly regular and 
the converse does not hold. A possible counterexample is VO of 
a O-dimensional, locally compact, non-compact T 2 space (see 
2.16). 

Remark 2.6. The two notions, uniform regularity and strong 
uniform regularity do not coincide. 

Proof: Let X == {a; ~ : n E IN} C IR with the standard 
topology and let V == filxxx{Vn : n E IN} where Vn(x) == {x} 
if x -# 0 and V~(O) == {a; I : k ~ n}. It is obvious that 
V E T(X). It is straightforward to check that V is uniformly 
regular. If A == X - {O} then V(A) == A and cl(V(A)) == X 
for every V E V which shows that it is not strongly uniformly 
regular. 0 

Proposition 2.7. If V E 1r(8°) then V is strongly uniformly 
regular, moreover each va E V is suitable which satisfies ~2 C 
V. 

Proof: 2.2. D 

Proposition 2.8. Let V EVE N(X), A eX. Then (V(A) =f 
X implies cl( A) c V (A)) is equivalent with the condition that 
for every x E X, V-I (x) is a neighbourhood of x ({=:::} V* == 
sup{V, V-I} E N(X)). 

Proof: Let us prove first the necessity. Suppose indirectly 
that there is a point x E X which does not satisfy the con­
dition. Let A == {y EX: x.~ V(y)}. Obviously x ~ 

V(A), x E cl(A) and V(A) =f X. By assumption we get 
cl(A) C V(A) hence x E V(A) which is a contradiction. 

To prove the opposite case suppose that there exists a subset 
A of X such that V(A) =f X and cl(A) ct V(A). Now there is 
x E cl(A) such that x tt V(A), and there is y E V-I (x) n A. 
Obviously x E V(y) and x ~ V(y). D 

Proposition 2.9. Let V E N(X) and V' be one of its sub­
bases. In this case V E 1r(8°) if and only if \Ix E X, \IV E V' 

1. V-I (x) is a neighbourhood of x and 
2. X - int(V-I(x)) == cl(X - V-I (x)) is compact. 
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Proof: First we prove the necessity. 2.8 implies 1, and let 
A == {y EX: x ~ V(y)}. Obviously V(A) =I X hence cl(A) is 
compact by 2.1 and A == X - V-I(x). 

If we want to prove the sufficiency then by 2.1 and 2.8 it 
is enough to show that V(A) =I X implies cl(A) is compact. 
Let nfVi c V where Vi E V'. Let x E X - V(A). Then A n 
V-I (x) == 0 therefore A c cl(X - V-I(x)) c U~cl(X -V:-I(x)) 
which is compact by assumption. D 

We emphasize a trivial but important consequence. 

Corollary 2.10. Let V E N(X). Then V E 7r(8°) if and only 
if\:lx E X, \:IV E V V-I (x) is a neighbourhood of x and cl(X ­
V-I (x )) is compact. 

Examining the second condition we may say that it means 
that V-I(x) is a huge set (V EVE 7r(8°), x E X) in the sense 
that its complement is contained in a compact set where we can 
think that com.pact sets are small (since the set of all compact 
sets is an ideal in the lattice of all closed sets). 

Proposition 2.11. Let V E N(X). In this case V E 7r(8°) if 
and only ifV-I E N (r') where r' == {N E r : X - N is co'mpact 
} U {0}. 

Proof: First observe that r' is a topology. 
Let V E 7r(8°) and x E X, V E V. By2.l0 x E intrV-I(x) c 

V-I (x) and intV-I(x) E r'. 
Let x E G E r'. Then ]{ == X - G is compact and x ~ ]{. It 

is known that there exists a compact set ]{I such that ]{ C 

intI{1 and x ~ ]{I. Obviously U/<,/<l E VO hence UK~{l == 
UX-/<l,X-/{ E (VO)-I C V-I. Now UX-Kl,G(x) == G which 
yields that r' C r(V- I 

). 

To prove the sufficiency let x E X, V E V. V-I (x) is a r'­
neighbourhood of x so it is a r-neighbourhood too and there 
is N E r' such that x ENe V-I (x). By 2.10, X - V-I (x) C 
X - N yields the required statement. 0 

Corollary 2.12. 7r(8°) is closed for sup. 
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Proof: Let Vi E 7r(8°) (i E I). By the previous proposition 
(2.11) ViI E N( 7') and so is (SUp{Vi : i E I} )-1. 0 

Corollary 2.13. 1r(8°) always has a finest member. 

The following fact is known in some ways (see e.g. [3] 1.45) 
but we give here a simple direct proof. 

Proposition 2.14. If X is compact T2 then there exists a 
unique compatible uniformity on X) moreover it equals to the 
coarsest compatible quasi-uniformity. 

Proof: Let V be a compatible uniformity and VO be the coars­
est compatible quasi-uniformity whose subbase is {U/<,G : !{ C 

G c X, !{ is compact and G is open}. Let V E V and VO E V 
be symmetric such that ~4 C V. By the compactness of X 
there are points Xl, ... ,Xn in X such that X == U,~ VO (Xi). Let 
!{i == cl(VO(xi)), Gi == int(VO(!{i)). ObviouslY!{i is compact, 
Gi is open and !{i C Gi . In the standard way one can easily 
prove that n~UI{i,Gi c V which yields that V E Vo. 0 

We are ready to prove the main theorem of this section. 

Theorem 2.15. If X is compact T2 then 17r(8°)1 == 1. 

Proof: By 2.10 it is straightforward that V* == sup{V, V-I} is 
a compatible uniformity if V E 7r(8°). But V C V* == VO by 
the previous observation (2.14). 0 

Proposition 2.16. For a locally compact T2 space X the fol­
lowings are equivalent: 1. X is compact 2. VO is a uni­
formity 3. :3V E 7r(8°) such that V-I E 7r(8°) 4. 3V E 
7r(8°) such that V-I E N(X) 5. 3V E 7r(8°) such that V* E 
7r(8°). 

Proof: 1~2: 2.14. The implications 2~3, 3~4, 2~5 are 
obvious. 5~2: IfVisauniformitythensoisVw == VS(Vr 4~1: 

Let X E !{ c X such that !{ is a compact neighbourhood of 
x. Then there is a V E V such that V-I (X) C !{. Therefore 
X == !{ U (X - int(V-1 (x))) but by 2.9 X - int(V-1 (x)) is 
compact. 0 
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Lemma 2.17. Let Y c X be closed, V E 7r(8~). Then Vly E 
7r(8~). 

Proof: If V E V then conditions 1 and 2 hold in 2.9. We 
have to show that Vly also satisfies these conditions for Y. 1 
is obvious, and cly(Y - Vly:l(y)) == clx(Y - Vly:l(y)) nYc 
clx(X - V- 1 (y)) n Y (y E Y) which is compact and we get 
condition 2 holds too. D 

3. NON-LINDELOF SPACES 

The aim of this section is proving the fact that 17r(8°) I == 1 
if X is non-Lindelof. 

Definition 3.1. If V is an entourage on X then let 

suppV == cl({x EX: V(x) i- X}). 

Proposition 3.2. Let YO, V EVE 7r(8°) such that ~3 C V. 
Then YO(suppV) c suppYO. (Hence suppV C int(suppYO).) 

Proof: Let x E suppV, Y E YO(x.). We have to prove that 
y E suppYO. By 2.9 there exists z E ~-l(X) n {x': V(x') i­
X} i- 0. Now YO(y) C ~2(x) C ~3(z) C V(z) i- X and we get 
YO(y) i- X. D 

Proposition 3.3. Let YO, V EVE 7r(8°) such that ~2 C V. 
If x E suppV then YO(x) =I- X. 

Proof: By 2.9 there is a z E ~-l(x) n {x' : V(x') =1= X} =1= 0. 
In the usual way we get YO (x) =I- X. D 

Lemma 3.4. Let V, YO EVE 7r(8°), ~4 c V. Then if x E 
suppV then cl(YO(x)) is compact. 

Proof: By 3.3 ~2(X) =I- X and then 2.2 gives the statement. 
D 

Theorem 3.5. Let V be a neighbournet in X. Then V E VO 
if and only if suppV is compact, there exists a neighbournet 
YO such that ~2 C V and ~-l(X) is a neighbourhood of x for 
every x E suppV. 
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Proof: If V E Va then there are !{i C Gi C X such that !{i 
is compact, Gi is open, and U == n~UI<i,G{ C V. If x ~ 

U~!{i then U(x) == X C V(x). By 2.9 VO-I(x) is a neigh­
bourhood of x if x E X whenever YO E VO. 

To prove the sufficiency let Lx == int(YO(~) n ~-I(X)) and 
!{x C Lx be a compact neighbourhood of x if x E !{ == suppV. 
Then !{ C UxEI< !{x and !{ being compact imply that !{ C 

Ui=I!{Xi' We show that U == n~UKXi,Lxi c V which yields 
that V E Va. If x ~ !{ then V(x) == X. If x E !{ then 
there is i such that x E !{xi.Then x E ~-I(Xi) and YO(Xi) C 

V(x) and LXi CYO(Xi) so that U(x) C U1<Xi,L xi (x) C V(x). 0 

We remark that cl(X - V-I (x)) is compact in the previ­
ous theorem (x E X); moreover all sets cl(X - V-I (x)) are 
contained in the same compact set (suppV). (Coplpare with 
2.9.) 

Corollary 3.6. Let V EVE 7r( 5°). Then V E VO if and only 
if suppV is compact. 

The following proposition generalizes the fact that cl(X ­
V-I (x)) is compact if V EVE 7r(5°). 

Proposition 3.7. If V EVE 7r(5°), !{ C X is compact then 
cl(X - nXEI< V-I (x)) == cl( {x EX: !{ ct V(x)}) is compact. 

Proof: Let YO E V such that ~2 C V. Then obviously there 
are Xi E X (i == 1, ... ,n) such that !{ C UfYO(Xi). We show 
that n~~-I(Xi) C nXEI<V-I(X). If y E !{ then there is i such 
that y E YO(Xi), hence Xi E ~-I(y), ~-I(Xi) C V-I(y) and 
we get nl~-l(Xj) c nXE KV- 1 (X). 

Now cl(X - nXEKltl-l(x)) c cl(X - nf~-I(Xi)) == Ufcl(X­
~-I(Xi)) which is compact (2.9). 0 

Proposition 3.8. Let V E 7r( 50), V, YO E V such that ~2 C 
V and suppose that there exists x E X such that X - Vo(x) is 
compact. In this case V E VO 

Proof: Let !{I == X - YO(x), !{2 == cl(X - ~-I(x)). We know 
that both sets are compact. By 3.7, there exists a compact set 
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!{3 such that if z ~ !{3 then !(l C V(z). If y ~ !(2 then y E 
~-l(x), and X - !(l C YO(x) C ~2(y) C V(y). We get that if 
y tt. !(2 U!{3 then V(y) = X. In other words suppV is compact 
and 3.6 is applicable. D 

Corollary 3.9. If YO, V EYE 7r(8°) such that ~2 C V and V ~ 

yO then supp YO == X. 

Proposition 3.10. Let YO, V EYE 7r(8°) such that ~8 C 

V and V ~ yo. In this case cl(YO(x)) is compact for every 
x EX. 

Proof: By 3.9 SUpp~4 == X and by 3.4 cl(YO(x)) is compact. 
D 

Recall ~hat a quasi-uniform space (X, Y) is uniformly lo­

cally compact provided that there is a V E Y such that \Ix E
 
X, cl(V(x)) is compact (see [9]2). Now we can prove the fol­

lowing:
 

Corollary 3.11. If X is locally compact T2 , Y E 7r(8°), Y =I 
yO then Y is uniformly locally compact. If X is non-compact 
then yO is not uniformly locally compact. 

Proof: There is V E Y - yO and 3.10 is applicable. 
To prove the second part indirectly observe that if cl(V(x)) 

is compact for every x E X then suppV == X. But by 3.6 
suppV must be compact as well - a contradiction. 0 

Now we can already prove the following: 

Theorem 3.12. If X is locally compact T2, non-Lindelof ( {:::::=} 

not a-compact) then 17r(8°) I = 1. 

Proof: Suppose the contrary, that there exists Y E 7r(8°), Y -=f 

yO. Then there is V E Y - yo. Let YO E Y such that ~8 C 
V and let YO be open. By 3.10 cl(YO(x)) is compact (x EX). 
Then we can find a sequence (Xi) such that Xn+l tt. UfYO(Xi). 
By X being non-Lindelof there exists y ,E X - UrYO(Xi) thus 
{Xi: i E IN} C X - ~-l (y) but the closure of this set is com­

,pact by 2.9so there is a cluster point z of (Xi). By 2.9 ~-l(Z) 
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is a neighbourhood of z so there is n E IN such that X n E 
~-I(Z), Z E VO(x n ). But obviously {Xi: i > n} C X - VO(x n ) 

which is closed. Hence z E X - VO(x n ) which is a contradiction. 
o 

4. THE LINDELOF, NON-COMPACT CASE 

In this section we partly answer the question: what can be 
said about 17r(8°) I if X is non-compact, Lindelof, by proving 

that 17r(8°) I 2: 22No in this case. 

Lemma 4.1. Let f : X ---..:: Y be a continuous surjective func­
tion such that ]{ being compact in Y implies that f- 1 

(]{) is 
compact. If V is a neighbournet in Y such that 2.9 1 and 2 
hold then (f x f) -1 (V) is also a neighbournet in X and satisfies 
these conditions. 

Proof: If X E X then (f x f)-I(V)(x) == f-l(V(f(x))) and 

similarly ((J x J)-1(V)f1(x) = f-l(V- 1(J(x))). Condition 
1 and (f x f)-1 (V) being a neighbournet are straightforward. 
If x E X,X - f-l(V- 1 (f(x))) == f-l(y - V- 1 (j'(x))); but 
cl(Y - V- 1 (f(x))) is compact. 0 

Lemma 4.2. Let f : X ~ Y be a surjective function) and 
VI, V2 be two distinct quasi-uniformities on Y. Then f- 1 (V 1 ) =1= 

f- 1 (V 2 ). 

Proof: Suppose that there is a V E VI - V2 and there is 
V2 E V2 such that (I x 1)-1 (V2) C (I X 1)-1 (V). Obviously 
f-l(V2(f(x))) C f-l(V(f(x))) (x E X). By the surjectivity 
of f, V2(f(x)) C V(f(x)) and again by the surjectivity V2 C 
V and V E V2 - a contradiction. 0 

Theorem 4.3. Let X and Y be locally compact) n.on-compact 
T2 spaces. Let I : X ~ Y be continuous) surjective and if 
]{ is a compact set then let 1-1 (]{) be compact. In this case 

17r (8~ )I ~ 17r (8~ ) I· 
Proof: Let VI, V2 E 7r(8~) such that VI -1 V2 . It is enough to 
prove that V; == filxxx{I-I (VI)' VOl -1 V~ == filxxx {I-I (V 2 ), vOl 
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since by 4.1 V~, V; E 1r(8~). Suppose that there exist V E 

VI - V2, V2 E V2 and U E VO such that U n (f x f)-l (V2) C 
(f x f)-l(V). Then for every x EX, U(x) n f-l(V2(f(x))) C 

f-l(V(f(x))). Let!< == suppU and x ~ !<. There exists 
such an x by 3.6 and the assumption. Hence V2(f(x)) C 

V(f(x)) "Ix E X -!< and we get V2(y) C V(y) Vy E Y - f(!<). 
Let YO E VI such that ~4 C V and YO is open. f(!<) C 

UXEf(K)(YO(X)n~-l(x)) and f(K) being compact implies that 

f(I{) C U~(YO(Xi) n ~-l(Xi))' Let W == n~UI<i,Gi where 
]{i == cl(YO(xi)) and Gi == ~2(Xi)' Since V ~ V2 then V ~ 

V~ and by 3.8 ~2(Xi) =I Y and 3.4 yields that cl(YO(xi)) 
is compact, and ]<i C Gi holds by 2.2. Hence W E V~, 
we want to prove that W(y) c V(y) Vy E f(!<). If y E 
f(]<) then there is i such that y E YO(Xi) n ~-l(Xi) and y E 
]<i. Thus Xi E YO(y) implies Vi(Xi) C ~3(y) C V(y). In other 
words UKi,Gi(y) C V(y) and W(y) C V(y). 

Now W n V2 c V but W E V~ C V2 • Therefore V E V2 

which is a contradiction. D 

Theorem 4.4. If X is non-compact) Lindelof and O-dimen­
22Nosional then 11r(8°) n (N(X) - T(X))I ~ • 

Proof: To prove the inequality it is enough to show that each 
quasi-uniformity Va constructed in [12]3.1 is in 1r(8°) if we set 
B == {compact-open sets} U {X,0} and let (Ni ) be a strictly 
increasing sequence of compact-open sets such that UrNi ==X. 
It is straightforward that VB == VO. Using the notation of [12], 
by 2.9 we have to check that each Vi and UA (i E IN, A E a) 
satisfy conditions 1 and 2. To prove condition 1 let x E N n ­

Nn - I . Then Nn - Nn - I C Vi-1(x) n UA1(x). Condition 2 is a 
consequence of X - N n C Vi-1(x) n UA"l(X). 0 

Corollary 4.5. Let X == IN be equipped with the discrete topol­
22No ogy. Then 11r(80) I == • 

Proof: Obviously 11r(8°)1 :::; IN(X)I :::; 22NO and apply 4.4. 0 

Theorem 4.6. If X == [0, +(0) C IR is equipped with the stan­
22Nodard topology then 17r( 80) I == • 
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22NoProof: We know that IN(X)I == (see [12]4.4 and [8] Corol­
lary 2) so we have to prove that 17r(8°) I 2 22No 

• 

Let A c exp(IN) be an almost d~sjoint system such that 
2NoIAI == and A E A implies IAI == No. (Almost disjoint 

means that if A, B E A then IA n BI is finite.) If A E A, t E 
IR+, 0 < t :::; 1 are given then we define f == fA,f.. If n E 
IN U {O} then let 

if n ~ A 
f(n) = {~ if n E A. 

If x EX, n < x < n + 1 for some n E IN then let f (x ) 
be the point on the line segment between (n, f (n )) and (n + 
1, f(n -1- 1)) which is above x. Obviously f is continuous. Let 
VA,f.(x) == VfA,€(X) == [0, x + fA,f.(X)). 

We prove that VlA € C VfA ,3€· Let f == fA,f.. Let x E X 
be fixed. If y E Vf(x) then 0 :::; y < x + f(x). If y < x 
then the absolute value of the slope of the segment between 
(y, f(y)) and (x, f(x)) is less than 1. Hence y+ f(y) < x+ f(x) 
in other words Vf(y) C Vf(x). If x < y < x + f(x) holds 
then we can say the same about the slope of that segment so 
f(y) :::; 2f(x). We get Y + f(y) < x + 3f(x) in other words 
Vf'(y) C VfA ,3€(X). 

Now let B c A. Let 

By the previous observation the set which generates VB is a 
quasi-uniform subbase. It is easy to check that VB E N(X). 
To prove that VB E 7r( 8°) we have to check conditions 1 and 
2 in 2.9 for the given subbase. Let f == fA,f.' X E X. Obvi­
ously [x, +(0) C Vf-

1 (x) so condition 2 holds. Suppose indi­
rectly that there is a sequence (Yn) such that Yn ---t x, Yn < 
x and x tJ- Vf (Yn) (n E IN). Then f (Yn) ---t 0 must hold and 
we would get that f (x) == 0 since f is continuous and this is a 
contradiction. 
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It remains to show that if B I =I B2 then VB =I VB ' Sup­
1 2 

pose for example that there exists B E BI - B2 • Let V == 
VIB,1 E VB1' If indirectly V E VB then there are E > 0, U E 

Vo
, A j E 8 2such that U n ni=l

2

VfAj .• C V. B tt. 8 2so it 
is easy to check that B - U;n A j is infinite. Thus there exists 
k E (IN - suppU) n (B - U;n A j ) such that t < E since by 3.6 
suppU is compact. Then U(k) nn~ VfAj,c (k) == X n [0, k +E) == 
[0, k + E) but VIB ,1 (k) == [0, k + t) which is a contradiction. 0 

Proposition 4.7. If X C [0, +(0) is closed, not bounded then 

17r(8~)1 ~ 2
2No 

• 

Proof: There are two cases to consider. 
1. There is a sequence (x n) such that Xn --+ +00 and Xn ~ 

X (n E IN). We can assume that Xn < Xn+l, inf X < Xl and 
(xn, Xn+l) n X =I 0 (n E IN). In this case let (Yn) C X be a 
sequence such that YI < Xl, Xi-l < Yi < Xi (i ~ 2). We define 
a function 9 : X --+ {Yi : i E IN}. If X E X then let 

g(x) == {YI ~f x < Xl, . 

Y'i If xi-l < X < X'i (1, ~ 2). 

Obviously by the choice of (xn) and (Yn), 9 is continuous, sur­
jective, ]{ C {Yi : i E IN} being compact implies that g-l (]{) 

22Nois also ·compact. By 4.3 and 4.5 we get 17r(8~) I ~ since 
{Yi : i E IN} is homeomorphic to IN. 

2. There exists no such sequence in other words there is 
Y E X such that [Y, +(0) C X. We define 9 : X --+ [Y, +(0). 
If X E X then let 

if X ~ Y,g(X)={~ 
if X 2: y. 

It is straightforward to check that 9 is continuous, surjective, 
]{ C [Y, +(0) being compact implies that g-l(]{) is compact 

too. So 17r(8~) I 2: 22NO by 4.3 and 4.6. 0 

Corollary 4.8. If X C [0, +(0) is closed, not bounded then 

17r(8~ )I == 2
2No 

• 
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Proof: 4.7 and [8] Corollary 2. D 

Lemma 4.9. If X is locally compact) non-compact T 2 ) Lin­
delof then there exists f : X ~ Y C [0, +(0) such that Y 
is closed, not bounded and f is continuous, surjective and ]{ 
being compact implies that f- 1(]{) is also compact. 

Proof: It is easy to construct a sequence of compact sets !{n C 

X (n E IN) such that ]{n C int]{n+1 and Ur ]{i == X. Then 
by induction we can assign to each r E [1,(0) n CQ a compact 
set !{r in X such that if r1 < r2 then !{rl C int!{r2. We have 
defined !{r if rEIN. Let n E IN be fixed and let (rm ) be a se­
quence such that {rm : m E IN} == [n,n+l]nCQ, rm -1 rk (k-1 
m) and r1 == n, r2 == n + 1. If ]{rl' ... ,]{rk-l are defined then 
there are l, m < k such that d(rz, rk) == min{ d(rj, rk) : rj < 
rk, j < k} and d(rk,rm ) == min{d(rk,rj) : rk < rj, j < k}. 
Let !{rk be choserl such that !{rz C int!{rk C !{rk C int!{rm 
and !{rk is compact. We do the same for all n E IN and we get 
the sequence !{r for r E [1,(0) n CQ. 

Now we define f. If x E X then let f(x) == inf{r E [1, (0) n 
CQ : x E ]{r}. We show that this f has all required properties. 

To prove that f is continuous let x E X and f(x) E (a, b). 
Let r1, r2 be chosen such that a < r1 < f (x) < r2 < b. Then 
x E int!{r2 - !{rl which is open and f(int!{r2 - !{rl) C (a,b). 

Let Y == f(X). Then Y is not bounded since if n E IN then 
there is x ~ !{n hence f( x) 2: n. . 

To show that Y is closed let (Yn) be a convergent sequence 
such that Yn E Y and Yn ~ Y E JR. Then there is a se­
quence (xn) in X such that f (xn) == Yn. There exists awE 
CQ such that Yn < w \In E IN, therefore X n E /{w which is com­
pact so there is a cluster point x of (x n ). Obviously y == f(x) 
because f is continuous. 

We show that !{ being compact implies that f- 1 (!{) is com­
pact. Suppose that ]{ C [1, n], for an n E IN. If x E 
f-1(/{) then x E !{n+1' So f- 1(!{) C !{n+1. But f being 
continuous implies that f-1(/{) is closed. 0 
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Theorem 4.10. If X is locally compact T 2, non-compact, Lin­
delof then 11r(8~) I 2: 22No 

• 

Proof: 4.9,4.7 and 4.3. 0 

Corollary 4.11. 11r(8°)1 == 1 if and only if X is either compact 
or non-Lindelof. 

Finally we present a counterexample to the following ques­
tion. For some time we believed that if X is non-compact and 

22NoLindelof then 11r(8°)1 == holds. Much evidence seemed to 
support such a conjecture, for example 2.15, 2.17, 2.9 and 3.10. 
But we are going to show now that it is not correct. 

Theorem 4.12. There exists a space X for which 171""(8°)1 > 
22No 

• 

Proof: Let Y be a discrete topological space with IYI == c 
2No •where c == Let us consider the Cech-Stone compactifica­

tion (3Y of Y. If A c Y, let us use the notation: A 7= {u : u is 
an ultrafilter on Y such that A E u}. 

Let X == U~l Xi where Xi is homeomorphic to (3Y (i E IN) 
and Xi n X j == 0 (i =I- j). Let U~Ti be a base for T, i.e. X is 
the topological sum of the Xi-so 

We assign for every A c Y a transitive neighbournet WA on 
X. If x E X n then let WA(x) = Uf:l1 Xi UUin(x) where Uin 

denotes the image of the neighbournet UA == UA,A C (3Y x (3Y 
by a fixed homeomorphism between (3Y and Xn0 It is easy to 
see that Wl == WA · 

If A is a filter on Y then let VA == filxxx{V~; WA : A E A}. 
We show that VA E 1r(8°). In order to prove this it is enough 
to check the two conditions of 2.9. Let x E X n and A E A. 
By the definition of WA , U~n+lXi C Wi1(x), hence condition 
2 holds. To establish condition 1 it is enough to verify that 
Wi 1 (x) n X n is open, which is equal to ut(x) and it is open. 

Now we prove that if A, B are filters on Y, A =I- B then 
V A =I- VB· This obviously implies trlat 11r(8°) I 2: 22c > 2C 

• 

We can assume that there is A E A-B. Then WA E 
V A and we show that WA tf. VB. Suppose indirectly that 
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WA E VB. Then there are U E V~, Bi E B such that U n 
n~ WBi c W A . By 3.6 suppU is compact hence there is a k E 
IN such that X k n suppU == 0. If we restrict the previous en­
tourages to X k we get n~uBi c UA' Let a be the lattice of sub­

sets of Xk which is generated by the sets 0, B1 , • .. ,En' f3Y, and 
let f3 == {0, A, f3Y}. By [11]2.6 we get that f3 C a since a and f3 
are I-interior preserving open covers and Ua == n~UBi' U{3 == 
UA' Hence A can be written as a union of finite intersections 

from B1 , .•. ,En. By the properties of the operator" , then A is 
a union of finite intersections from B1 , ... ,Bn but then A E B 
- a contradiction. 0 
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