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ABSTRACT. The concept of a free topological group over 
a pointed space was introduced by Graev in 1948 [3]. 
Later in Hewitt and Ross[4], this concept was expanded 
to consider the inclusion map i : (X, t) ---+ G where G 
is any group. We will follow the terminology of [2] and 
call the finest group topology on G making i continuous 
the "associated Graev topology". In this paper we will 
develop conditions that insure that a given extension of a 
subspace topology is in fact the associated Graev topol­
ogy. We will discover the associated Graev topology of 
various subspaces of locally compact groups. We will also 
discover subsets of groups for which every topology that 
can be extended to a group topology can be extended in 
only one way. 

The concept of a free topological group over a pointed space 
was introduced by Graev in 1948 [3]. Later in Hewitt and 
Ross[4] , this idea was expanded to consider a general inclu­
sion map i : (X, t) ----+ G where G is any group. We will follow 
the terminology of [2] and call the finest group topology on G 
making i continuous the "associated Graev topology". In this 

1991 Mathematics Subject Classification. 22A05, 22A99. 
!(ey 'words and phrases. Topological group, subspace, locally compact 

group, maximal torus. 
275 



276 KEVIN REEVES, BRADD CLARK, AND VIC SCHNEIDER 

paper we will develop conditions that insure that a given ex­
tension of a subspace topology is in fact the associated Graev 
topology. We will discover the associated Graev topology of 
various subspaces of locally compact groups. We will also dis­
cover subsets of groups for which every topology that can be 
extended to a group topology has in fact a unique group topol­
ogy extension. 

We define the following notations, if G is a group with S ~ G 
n 

and t is some topology on S, then let ,II S denote the Cartesian 
2=1 

product of n copies of S with the product topology generated 
n 

by placing t on each copy of S. Let m n : .II S ~ G denote 
2=1 

the map defined by m n (x1' X2,··· ,xn ) == X1X2··· Xn . If T is 
a topology on G and S ~ G, then SIT denotes the subset 
S endowed with the relative topology from (G, T). We will 
assume as additional hypothesis throughout the pet,per that if 
(S, t) is a subspace of G then there exists a group topology T on 
G such that SIT == (S, t). We note that if (G, t) is a topological 
group and S is a subset of G with nonempty interior in T then 
in fact T is the associated Graev topology for SIT. 

The following theorem is useful when deciding if a locally 
compact group topology is the associated Graev topology for 
some compact subspace. 

Theorem 1. If (G, T) is a locally compact Hausdorff group 
and S is a compact subspace of G that algebraically generates 
G) then T is the associated Graev topology for SIT) In addition 
there is no other locally compact group topology o'n G 1vhich 
induces the relative topology SIT. 

Proof: Since inversion and translations are homeomorphisms 
for any topological group we may without loss of generality 
assume that S is symmetric and contains the identity element 
of G. By the Baire category theorem we have that the interior 
of sn is nonempty for some natural number n, let T* denote 
the associated Graev topology for SIT. Clearly T* is Hausdorff. 
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n n 
Also since .Il S is compact, m n : .Il S ~ (G, T*) is a closed 

t=l t=l 

map. Therefore T and T* agree on sn ~ G. 

Corollary 2. For n a natural number, the Euclidean topology 
on R n+1 is the unique locally compact Hausdorff group topology 
that extends the usual topology on a standard n-sphere. 

Corollary 3. The Euclidean topology on the reals is the unique 
locally compact Hausdorff group topology that extends the usual 
topology on the standard Cantor set. 

Proof: If!{ is the standard Cantor set then !{ +!{ == [0,2]. 

Corollary 4. Let (G, T) be a compact connected Lie group and 
f a maximal torus. Then fiT has a unique exte'nsion to a 
locally compact group topology. 

Proof: Let T' be any extension of fiT to a group topology 
on G. If T' fails to be Hausdorff then we can find x E G with 
x =I- e, the identity element of G, and x E CIT'{ e}. But since 
the conjugates of f covers G[6], we can find ayE G such that 
x E yfy-l. Since fiT is Hausdorff we must conclude that T' is 
also Hausdorff. Now since fiT is compa<;:t and G can be written 
as a finite product of maximal tori, we have by the proof of 
Theorem 1 that T == T'. 

The importance of using a compact subspace in the above 
arguments is made clear by T. Christine Stevens[5]. She de­
mostrates the existence of a metric group topology on Rn for 
n 2 2 that agrees with the usual topology on every line. Yet 
her topology has an unbounded sequence that converges to the 
origin. Therefore by letting S be the union of the x and y axis 
in R 2 

, we can provide a counterexample to many attempts at 
weakening the hypothesis of Theorem 1. 
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Theorem 5. If H is a subgroup of G of index greater than 
2 and W is an open set in the topological group (G, T) such 
that W - H #- 0) then T is the associated Graev topology for 
(W - H)IT. 

Proof: As before we may assume that e E Wand that W is 
symmetric. If x E G -H where H is the closure of H in T, 
then the topology on W will determine the topology on the 
open set xW n (G - xH). Thus T is the associated Graev 
topology for Tlw-H. 

Now suppose that H is dense in G and let, T* denote the 
associated Graev topology for Tlw-H. Let y E V where V E 
T*. Since the index of H in G is greater than 2, we can find 
elements sand t of G such that sH, tH, and yH are pairwise 
disjoint. Since H is dense we may assume that s E yW n sH 
and t E yW ntH. Since T and T* agree on sW - sH and 
tW - tH, we can find sets Us and Ut in T such that 7.hs n (s W ­
sH) == V n (sW - sH) and Ut n (tW - tH) == V n (tW - tH). 
Thus y E Us n Ut n sW n tW and Us n Ut n sW n tW E T. 

Suppose that x E usnUtnsWntWn(G- V). Then x E usn 
swn(G- V) and heIlce since usn(sW -sH) == Vn(sW -sH) 
and x t/:. V, we have that x t/:. Us n (sW - sH). But this means 
that x t/:. sW - sHe Also since xEsW we must have that 
x E sHe In a similar fashion we can conclude x E tHo This is a 
contradiction since sH and tH are distinct cosets. Therefore 
Us n sW n Ut n tW ~ V and hence VET. 

Corollary 6. If T is a group topology for the real numbers) 
then T is the unique topology which extends the relative topology 
for T on the irrationals. 

Corollary 7. Let T be a group topology for G and let H be a 
subgroup of G that is of index greater than 2. Then T is the 
u'nique group topology that extends the relative topology for T 
o'n G - H. 
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