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EXTENSIONS OF PARTITIONS OF UNITY 

KAORI YAMAZAKI 

ABSTRACT. In [5], Dydak proved some theorems con­
cerning extensions of partitions of unity and extensions 
of continuous maps with metric simplicial complex val­
ues. In his paper, a subspace A of a space X is said to 
be P(locally-finite)-embedded in X if every locally finite 
partition of unity on A can be extended to a locally fi­
nite partition of unity on X. And a problem was posed 
there whether A x [0, 1] is P (locally-finite)-embedded in 
X x [0, 1] if A is P(locally-finite)-embedded in X. In this 
paper, under a set-theoretic viewpoint, we prove that A 
is P(locally-finite)-embedded in X if and only if every 
locally finite cover of cozero-sets of A can be extended 
to a locally finite cover of cozero-sets of X. This extends 
Przymusinski and Wage's theorem [13] in the case that X 
is normal and A is its closed subspace. As an application, 
we also give an affirmative answer to the problem above. 
Moreover by using continuous maps with metric simpli­
cial complex values or partitions of unity we characterize 
well-known z-y- or z-embedding. 

1. INTRODUCTION 

Throughout this paper, a space means a topological space. 
And I denotes an infinite cardinal number. Let X be a space 
and A its subspace. For a collection V = {Va: Q E n} of sub­
sets of X and a collection U = {Va: Q E n} of subsets of A, 
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V is said to be an extension of (or to extend) U if Va n A == Ua 

for every Q' E O. A is said to be P'Y-embedded in X if for every 
normal open cover U of A with Card:::; " there exists a normal 
open cover V of X such that V I\A < U ( == {VnA : V E V} re­
fines U). A is said to be P- embedded in X if A is p'Y-embedded 
in X for every,. A is said to be Z'Y- embedded in X if for ev­
ery normal open cover U of A with Card :::; " there exist a 
cozero-set G of X containing A and a normal open cover V 
of G such that V 1\ A < U [3]. If A is z'Y-embedded in X 
for every" A is said to be Zoo- embedded in X. Clearly, p'Y_ 
(resp. P- )embedding implies Z'Y- (resp. Zoo- )embedding, and it 
is known that zw-embedding or PW-embedding coincides with 
z-embedding or C-embedding, respectively; where A is said to 
be z- embedded in X if every zero-set in A is the intersection of 
A with some zero-set in X and A is said to be C-embedded in X 
if every real-valued continuous function on A can be extended 
over X (See [1], [3]). 

In [5], Dydak investigated an extension theory by contin­
uous functions with values in metric simplicial complexes or 
CW-complexes. He proved some interesting theorems char­
acterizing several notions of embeddings defined in terms of 
extensions of partitions of unity, and showed that these results 
are closely related to p'Y-embedding. As one of such notions, it 
is defined in [5] that A is p'Y (locally-finite)- embedded in X if ev­
ery locally finite partition {JOt: Q' EO} of unity on A with Card 
:::; , can be extended to a locally finite partition {gOt : Q' En} 
of unity on X, where "extended" means gOt IA == JOt for every 
Q' E O. If A is p'Y (locally-finite)-embedded in X for every" A 
is said to be P(locally-finite)-embedded in X. It is also shown 
in [5] that every closed subspace of a paracompact T2 space X 
is P(locally-finite)~embedded in X. 

From a set-theoretic viewpoint, we remind that the notion of 
P(locally-finite)-embedding originally relates to Katetov [10] 
and Przymusinski and Wage [13]. Katetov [10] proved that 
every collectionwise normal and countably paracompact space 
X satisfies the property that X is normal and this property was 
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named functionally [(atltov later by Przymusinski and Wage 
[13]. It was also shown in [13] that a T1-space X is functionally 
Katetov if and only if every locally finite partition of unity 
Ofl any closed subspace A of X can be extended to a locally 
finite partition of unity on X, that is A is P(locally-finite)­
embedded in X for every cosed subspace A of X. In their 
proof of the "only if" part of this result, the normality of X 
and the closedness of A are essential. Also they proved that A 
is P-embedded in X if and only if every locally finite partition 
of unity on A can be extended to a (not necessarily locally 
finite) partition of unity on X [13, Theorem 1*]. Thus, it is 
natural to ask whether a subspace A of a space X is P(locally­
finite )-errlbedded in X if and only if every locally finite cover 
of cozero-sets of A can be extended to a locally finite cover 
of cozero-sets of X. In Section 3 of our paper, we prove this 
equivalence, and apply it to answer affirmatively to a problem 
posed by Dydak [5] concerning product spaces. 

In Section 4, we are c.oncerned to describe p--y -, Z--y-, C - or z­
embedding, in terms of maps with metric simplicial complexes 
values. Since any continuous map on X with metric simpli­
cial complex values corresponds to a point finite partition of 
unity on X( cf. [5]), extensions of maps with metric simpli­
cial complex values can be regarded as extensions of point fi­
nite partitions of unity. In [5], Dydak characterized p--y (point­
finite )-embedding (see Section 2 for the definition) by using 
maps with values in contractible metric simplicial c~mplexes 
(see Proposition 2.4). In [3], [4], [14] or [15], characterizations 
of z--y-embedding in terms of continuous functions with values 
into the hedgehog with, spines were given. Relating to these 
results, in Section 4 we first prove a key result including that 
A is z,),-embedded in X if and only if for every continuous map 
f : A ----t Y into any finite dimensional metric simplicial com­
plex with weight ~ , there exist a cozero-set G of X containing 
A and a continuous map 9 : X ----t Y such that carr (I (a)) = 

carr(g(a)) for each a E A. Using this result, we give corre­
sponding results for p--y- or C-embedding. Moreover, we give 
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another type of characterizations of z- or z,,-embedding by ap­
proximations of these continuous maps f : A ----+ Y above; 
they include the real-valued case (Blair and Hager [4]) or the· 
hedgehog-valued case ([14], [15]). 

2. PRELIMINARIES 

A collection {fot : a E f!} of continuous functions from a 
space X into [0, 1] is said to be a partition of unity on X if 
2:otEO fot(x) = 1 for every x E X, where 2:otEO fot(x) means 
the least upper bOllnd of all sums of finitely many fot(x)' s. A 
partition {fot : a E f!} of unity on X is said to be locally finite, 
(resp. point finite) if {f~l ((0,1]) : a E O} is locally finite 
(resp. point finite) in X. 

A subspace A of a space X is said to be P"(point-jinite)­
embedded inX if every point finite partition of unuty on A 
with Card :::; 1 can be extended to a point finite partition 
of unity on X [5]. If A is P"(point-finite)-embedded in X 
for every " A is said to be P(point-jinite)- embedded inX. 
We note that P" (locally-finite )-embedding or P" (point-finite)­
embedding implies P" -embedding. 

Let us recall the hedgehog with I spines. Let Ie = [0,1] x {~} 

for every ~ E I. We define the equivalence relation E on 
UeE" Ie such as (x, ~l)E(y, ~2) whenever x = y = °or (x = y 
and el = e2). We denote J(1) the set of all equivalence classes 
of E and define a metric on J(1) as follows: 

for every (x, ~l)' (y, ~2) E J (I). f) denotes the class of J (,) 
consisting of (0, ~), eE 1. We call this space with t11e metric 
topology associated by p the hedgehog with, spines, and also 
denote it by J(1). 

The set of all vertices of a simplex often means itself a sim­
plex. Let Y be a simplicial complex. Then we denote by IYI 
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the polyhedron of Y and by As (y) the barycentric s'th coordi­
nate of a point y of IY I. The metric simplicial cornplex (Y, d) 
is a pair of the simplicial complex Y and a metric defined by 
d, where d(y, z) == L:sEA IAs(y) - As(z)1 for each y, z E IYI and 
A denotes the set of all vertices of Y. For a simplicial complex 
Y and y E IYI, the carrier of y is the smallest simplex of Y 
containing y, and is denoted by carr(y). 

For a set S, let ~s is a set of all nonnegative functions v : 
S ---+ [0,1] such that L:sEsv(s) == 1 equipped with the norm. 
Then ~s is naturally a Banach space (see [5, Definition 5.1]). 
For a simplicial complex Y, ~s is denoted by ~y, where S is 
the set of all vertices of Y. 

Especially, if we regard J(,) as a simplicial complex, we 
denote J (,) with the simplicial complex metric d defined above 
by (J(,),d). Note that (J(,),p) and (J(,),d) have the same 
topology, in fact, p :::; d :::; 2p. 

N denotes the set of all natural numbers. Other terminology 
are refered to [1], [6], [7] or [8]. 

Let us recall two examples. 

Example 2.1. (1) ([13, Example 3]) There exists a space 
containing a P-embedded but not pW(locally-finite)-embedded 
closed subspace. 

(2) ([5, Theorem 12.13 and Remark 12.14]) There exists a 
space containing a P(locally-finite)-embedded but not PW(point­
finite )-embedded closed subspace. 0 

The following propositions will be used in Section 3 or 4. 
(1) {:} (2) is in [3, Theorem 3.8], (1) {:} (3) is in [15, Lemma 
2.2] and (1) {:} (4) is in [14] or [15, Theorem 4.9]. 

Proposition 2.2. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z'"Y-embedded in X; 
(2)	 for every continuous map / : A ---+ J(,)) there exists 

a contiTl:uous map g: X ---+ J(,) such that g-l((O,l] x 
{~}) n A == /-1((0,1] x {~}) for every ~ E,; 
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(3)	 for every disjoint collection {Gala E O} of cozero-sets of 
A with Card 0 ~ , satisfying U{Gal a EO} is a cozero­
set of A) there exists a disjoint collection {Hala E O} of 
cozero-sets of X such that U{Hala E O} is a cozero-set 
of X and Ha n A == Ga for each a E 0; 

(4)	 for every continuous map f : A -t J(,) and any c > 0) 
there exist a cozero-set G of X containing A and a contin­
uous function 9 : G -t J(,) such that p(g(a), f(a)) < c 
for every a E A. 

A subspace A of a space X is said to be well-embedded in X if 
A is completely separated from any zero-set of X disjoint from 
A. It is known that A is Pr-embedded in X if and only if A is 
Zr- and well-embedded in X [3]. The following also describes 
pr-embedding; (1) {:} (2) is in [11, Corollary 10], (1) {:} (3) is 
in [12, Theorem 2], (1) {:} (4) is in [15, Theorem 4.7], (1) {::} (5) 
is in [13, Theorem 1*] and [5, Proposition 12.8], (1) {:} .(6) easily 
follows from the definition of pr-embedding using [7, Theorems 
1.2]. Concerning (2) or (3), similar characterizations are seen 
in [1], [6] or [12]. 

Proposition 2.3. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is Pr-embedded in X; 
(2)	 every continuous map f : A -t Y into any Cech complete 

AR (~AR for metrizable spaces) with weight ~ , can be 
extended over X; 

(3)	 every continuous map f : A -t J (,) can be extended over 
X; 

(4)	 for every continuous map f : A -t J(,) and any c > 0) 
there exists a continuous map 9 : X -t J (,) such that 
p(g(a), f(a)) < c for every a E A; 

(5)	 every partition (or locally finite partition) point finite par­
tition) of unity on A with Card :s; , can be extended to a 
partition of unity on X; 

(6)	 for every partition (or locally finite partition) point finite 
partition) {fa: a E O} of unity on A with Card :S;,) 
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there exists a partition {ga : a En} of unity on X such 
that ga -1 ((0,1]) n A c /~1 ((0,1]) for every a E n. 

The following due to Dydak [5] characterizes p'Y(point-finite)­
embedding. 

Theorem 2.4. [5, Theorem 9.1] A subspace A of a space X is 
p'Y(point-finite)-embedded in X if and only if every continuous 
map from A into any contractible metric simplicial complex Y 
with weight :::; , can be extended over X. 

3. EXTENSIONS OF LOCALLY FINITE PARTITIONS OF UNITY 

As is stated in the introduction, we now prove the following 
theorem: 

Theorem 3.1. Let X be a space and A its subspace. Then A 
is p'Y (locally-finite) -embedded in X if and only if every locally 
finite cover of cozero-sets of A with Card:::; , can be extended 
to a locally finite cover of cozero-sets of X. 

For the proof of Theorem 3.1, we need a lemma. By Ishii 
and Ohta [9], a subspace A of a space X is said to be C1­

embedded in X if any zero-set ZI of X and any zero-set Z2 of 
A disjoint from ZI are completely separated in X. Note that A 
is C-embedded in X if and only if A is C*- and C1-embedded 
in X [~]. 

Lemma 3.2. Let X be a space and A its subspace. Then, A is 
C -embedded in X if and only if for every continuous function 
f : A ~ [0,1] and any cozero-set U of X satisfying UnA == 
/-1((0,1]), there exists a continuous function g: X ~ [0,1] 
such that glA == / and g-1 ((0,1]) C U. 

Proof: It is not hard to see that the assumption of the if part 
implies C*- and C1-embedding of A over X. To see the only 
if part, assume A is C-embedded in X. Let f : A ~ [0,1] be 
a COIltinuous function and U be a cozero-set of X satisfying 
UnA == /-1 ((0,1]). By induction, we construct a continuous 
real-valued function hn on X for each n E N which satisfies the 
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following three conditions: 

Ihnl :::; 2n

1
­ 1 ; 

h;;l ([ - 2n1_1 ,0) U (0, 2n1_1 ]) C Vi 

(3)n If - Ln 

(hilA) I < 2
1 

n' 
i=l 

Since f- 1 ([1/2, 1]) is a zero-set of A contained U and A is 
C1-embedded in X, f- 1 ([1/2,1]) and X - U are completely 
separated in X. Take a zero-set Zl of X such that 

There exists a continuous function gl : X ----t [0,1] such that 

Since A is C*-embedded in X, there exists a continuous func­
tion f1 : X ----t [0,1] such that fIlA == f. Define a continuous 
function hI : X ----t [0, 1] by hI == f1 . gl. Then, the conditions 
(1)1, (2)1 and (3)1 follow immediately. 

Next assume continuous functions hI, , hn satisfying (l)i' 
(2)i and (3)i are defined for each i == 1, , n. We put cp == 
f - 2:7=1 (hilA). Then, by (3)n' 'P : A ----t [-1/2n 

, 1/2n 
] IS 

continuous. Put 

-1 ( 1 1 1 1)
Z = 'P [ - 2n' - 2n+1] U [2n+1'2J · 

Then, we have that Z C U. Thus, Z c U. Since A is C1 ­

embedded in X, there exists a zero-set Z* of X such that 
Z C Z* and Z* cU. Hence there exists a continuous function 
g' : X ----t [0,1] such that g,-l({l}) == Z* and g,-l({O}) == 
X - U. Since A is C*-embedded in X, there exists a continuous 
function f' :X ----t [-1/2n, 1/2n] such that f'IA == cp. Define a 
continuous function hn+1 by hn+1 == f'·g'. Then (1)n+1' (2)n+1 
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and (3)n+1 follow immediately, it completes the proof of the 
induction. 

Put 

9 = (( L hi) Id) V O. 
iEN 

Then 9 is continuous and glA == f. By the way, for x ~ V, it 
follows from (2)n that hn(x) == °for every n E N, which imply 
g(x) == 0. This proves g-l((O, 1]) C V. It completes the proof. 
D 

Proof of Theorem 3.1: Since the "o11ly if" part is easy to 
show, we only prove the "if" part. Let the assumption of the if 
part be satisfied. Let {fa: a E n} be a locally finite partition 
of unity on A with Card n ~ I' Since {f~l ((0, 1]) : a E n} is 
a locally finite cover of cozero-sets of A, by the assumption of 
the theorem, there exists a locally finite cover {Va: a En} of 
cozero-sets of X such that 

for each a E n. Since A is C-embedded in X, from Lemma 
3.2, for every a E n there exists a continuous function hex : 
X ~ [0,1] such that 

Then {h a -1((0,1]) : a E n} is a locally finite collection of 
cozero-sets of X and covers A. Since A is well-embedded in X 
and U{h a -1 ((0,1]) : a E n} is a cozero-set of X, there exists 
a continuous function ho : X ~ [0, 1] such that 

Since {hex -1 ((0,1]) : a E nU {O}} is a locally finite cover of X, 
2:,sEOU{O} h,s is continuous. Fix an a* E n arbitrarily. Define a 
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continuous function ga : X ---t [0, 1] for each a E n as follows:
 

(ha • +ho) / L:iJEflU{O} hiJ if a = a* 

9a == 

ha / L:iJEflU{O} hiJ otherwise. 

Then, {ga : a En} is the desired locally finite partition of 
unity on X that extends {fa : a EO}. The proof of the 
theorem is completed. 0 

Corollary 3.3. Let X be a space and A its subspace. Then 
A is P(locally-finite)-embedded in X if and only if every locally 
finite cover of cozero-sets of A can be extended to a locally finite 
cover of cozero-sets of X. 

Theorem 3.4. Let X be a space) A its subspace and C a 
non-empty compact T2-space with weight :S I. Then) A X C 
is P~(locally-finite)-embedded in X x C if and only if A is 
P~( locally-finite)-embedded in X. 

Proof: The "only if" part follows immediately. To prove the 
"if" part, we assume A is P~(locally-finite)-embedded in X. 
Then A x C is C-embedded in X x C (see [7]). Let U == {Ua : 
a E n} be a locally finite cover of cozero-sets of Ax C with 
Card n :S I. Since C is compact, {PA(Ua ) : a E O} is a locally 
finite cover of cozero-sets of A, where PA : A x C ---t A is 
the projection. From the assumption and Theorem 3.1, there 
exists a locally finite cover {Va : a EO} of cozero-sets of X 
such that Va n A == PA(Ua) for each a E n. Since A x C is 
z-embedded in X xC, there exists a cozero-set U~ of X x C 
such that U~ n (A x C) == Uex for each a E n. Since A x C 
is well-embedded in X xC, there exists a cozero-set W of X 
such that A n w == 0 and 

UHVa X C) n U: : a E !1} U W = X x C. 

If we fix an ao E 0 arbitrarily, 

{(Va X C) n U~ : a E n- {ao}} U {((Vexo x C) n U~o) u W} 
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is a locally finite cover of cozero-sets of X x C and extends 
U. Hence A x C is p'Y(locally-finite)-embedded in X X C by 
Theorem 3.1. It completes the proof. 0 

The following corollary contains an affirmative answer to [5, 
Problem 13.16] posed by Dydak when we put C == [0,1]. 

Corollary 3.5. Let X be a space) A its subspace and C a 
non-empty compact T2 -space. Then) A X C is P(locally-finite)­
embedded in X X C if and only if A is P( locally-finite )-embedded 
in X. 

Remark 3.6. In view of (1) and (5) of Proposition 2.3 and 
Theorem 3.1, one can ask the following: Is it true that A is p'Y_ 
embedded in X (==every partition (or locally finite partition, 
point finite partition) of unity on A with Card ~ I can be 
extended to a partition of unity on X) if and only if every 
cover (or locally finite cover, point finite cover) of cozero-sets 
of A with Card ~ I can be extended to a cover of cozero-sets of 
X ? On the case I == w, this is affirm,atively answered easily. 
However on the case of I > w, this is negative. Indeed, in 
Bing's space H ([2, Example H]), there exists a closed subset 
A which is not P'Y-embedded in H. We have that UU(H -A) is 
a cozero-set of H for every cozero-set U of A. Therefore every 
cover (or locally finite cover, point finite cover) of cozero-sets 
can be extended to a cover of cozero-sets of H. 

Here, we call a subspace A of a space X L'Y-embedded in 
X if every locally fi11ite collection {Ua : a En} of cozero­
sets of A with Card ~ I there exists a locally finite collection 
{Va : a En} of cozero-sets of X such that Ua C Va for each 
a E O. Then, it is easily shown that A is p'Y_ and L'Y-embedded 
(more generally, C- and L'Y-embedded) in X if and only if A 
is p'Y (locally-finite)-embedded in X. However the author does 
not know whether every p'Y_ and LW-embedded subspace A of 
X is p'Y(locally-finite)-embedded in X or not. 
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4.	 EXTENSIONS OF CONTINUOUS MAPS WITH METRIC 

SIMPLICIAL COMPLEX VALUES 

In this section, we study extensions of a continuous map with 
metric simplicial complex values. p'Y(point-finite)-embedding 
was characterized by using these functions with contractible 
metric simplicial complex values (see Theorem 2.4). And p'Y_ 
embedding was also characterized by extensions of point finite 
partitions of unity (see Proposition 2.3(5)). This is naturally 
regarded to the following: Any continuous map f : A ---+ Y 
into any metric simplicial complex with weight ~ , can be ex­
tended to a continuous map 9 : X ---+ ~y. From these points 
of view, at first, in the following theorem we obtain several 
equivalent conditions to z'Y-embedding; (2) is by partitions of 
unity which seems intermediate between extensions of parti ­
tions of unity and extensions of covers of cozero-sets, (3) or (4) 
is by maps with (finite dimensional) metric simplicial complex 
values which are based on approximations, and (5) or (6) is 
related to Blair [3] (see Proposition 2.2(2)) . 

.Theorem 4.1. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z'Y-embedded in X; 
(2)	 for every point finite partition {fa : a En} of unity 

on A with Card n :s " there exist a cozero-set G of X 
containing A and a partition {ga : a E f!} of unity on G 
such that g~l ((0,1]) n A == f~l ((0,1]) for each a E n; 

(3)	 for every continuous map f : A ---+ Y into any metric 
simplicial complex with weight :S ,) there exist a cozero­
set G of X containing A and a continuous map 9 : G ---+ 

~y such that carr(f(a)) ==carr(g(a)) for each a E A; 
(4) for every	 continuous map f : A ---+ Y into any finite 

.dimensional metric simplicial complex with weight S; " 
there exist a cozero-set G of X containing A and a con­
tinuous map 9 : G ---+ Y such that carr(f(a)) ==carr(g(a)) 
for each a E A; 
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(5)	 for every continuous map I : A ~ JC,), there exist a 
cozero-set G of X containing A and a continuous map 9 : 
G ~ 'J(,) such that g-1 ((0,1) x {e}) n A == 1-1 ((0, 1) x 
{e}) and g-1 ({I} x {e}) n A == 1-1 ({I} x- {e}) for every 

eE,; 
(6)	 for every continuous map f : A ~ J(')J there exist a 

cozero-set G of X containing A and a continuous map 
9 : G ~ J(,) such that g-1 ((0,1] x {e}) nA == f- 1((0,1] x 
{e}) for every eE ,. 

Proof: Note that (2) {:} (3) is obvious (see [5, Theorem 6.5]). 
To prove (1) =? (3), assume A is z,,-embedded in X. Let Y be 
a metric simplicial complex with weight :::; , and I : A ~ Y 
a continuous map. S denotes the set of all vertices of Y. For 
every k < w, we define 

~k == {8 E Y : Card 8 == k + 1} . 

Build a barycentric subdivision to Y and denote by A~ its 8'th 
barycentric coordinate for every simplex 8 E Y. Define, for 
every k < wand 8 E ~k, 

Us == {y E IYI : A~(Y) > O}. 
It is easy to show that Us is open in IYI, and we have 

U5 = {Y E IYI : As(Y) > 0 and As(Y) > At(Y) 

for	 every s E 0, t E S - 0} 

and	 int8 c Us for every 8 E Y. 
Since cardinality of each member of D.k is just k + 1, it is 

easy to show that {Us: 8 E ~k} is a disjoint for each k < w. 
Hence we have that {/- 1 (US) : 8 E ~k} is a disjoint collection 
of cozero-sets of A, U{/- 1 (US), : 8 E ~k} is a cozero-set of 
A and Card ~k :::; ,. From Proposition 2.2(3), there exists a 
disjoint collection {lIS : 8 E D.k} of cozero-sets of X such that 

V8 n A == 1-1 (Us) 

for	 each 8 E ~k and U{V8 : 8 E ~k} is a cozero-set of X. 
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For each k < w, there exists a continuous function 9k : X --+ 

[0, 1/2k+1 
] such that 

U V5 = 9;;1 ((0, 1/2k+1 
]). 

8EDt.k 

Put 

G= U UV5. 
k<w 8EDt.k 

Then G is a cozero-set of X and A c G. 
Next define a function 9% : G --+ [0, 1/2k+1

] by 

~klxi if xE U{V5 : sE 8,8 E ~d 

°
 otherwise
 

for every k < wand s E S. To show the continuity of 9%, 
let x E G and c > °arbitrarily. It suffices to show the case 
x ttU{V5 : s E 8,8 E ~k}. If x tt U8EDt.k V5, then x E 

9k1([0,C)) n G c 9%-1([0,c)). Hence assume x E U8EDt.k V5­
U{V5 : s E 8,8 E ~k}. Then there exists 8' E ~k such that 
8 ~ 8' and x E V5,. Since {V5 : 8 E ~k} is a disjoint collection, 
we have 

VSI n (U{V5 : s E 8,8 E ~d) = 0. 
Hence it follows that 9%(V5,) == 0, it shows the continuity of 9%. 

For every s E S, put 

Then hs is a continuous function from G into [0, 1], because 
9% ~ 9k ~ 1/2k+1 is satisfied for every k < w. By the same way, 
2:i<w 9i is continuous and positive on G. Define a continuous 
function is : G --+ [0, 1] by 

Rs == hs 12:i<w 9i 

for every s E S. 
Here we shall show that {Rs : s E S} is a partition of unity 

on G. To see this, pick x E G arbitrarily. First let us show that 
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LSES9k(X) = 9k(X) for every k < w. Fix k < w arbitrarily. At 
first, assume that there exists 8 E ~k such that x E V8. Then 
we have 9k(x) = 9k(X)/(k + 1) for each s E 8. Note that 

x ¢:. U{V8' : t E 8', 8' E ~d 

for every t ~ 8. Indeed, for 8, 8' E ~k satisfying t ~ 8 and 
t E 8', we have 8 i- 8'; it shows that V8, n V8 = 0. It follows 
that 9k (x) = 0 for every t E S - 8. Hence it follows that 

Lgk(x) = L ~klxi = (k +1) · ~klxi = gk(X). 
sES sE8' 

On the other hand, assume x ~ U8E~k V8. Since 9k (x) = 0 for 
every s E S, we have 

Lgk(x) = 0 = gk(X), 
sES 

it completes the proof of LsES 9k (x) = 9k (x). Since Lk<w 9k (x) = 
hs(x), the set LsES Lk<w9k(X) can be defined and is equal to 
Lk<w LSES9k(X). Hence we have 

Lgk(X) 

1 k<w 

Lgi(X) 
i<w 

L hs(x) 

sESL gi(X) 
= L >(x) x 

sES L.<w g.() 
= LRs(x). 

sES 

i<w 
It completes the proof that {is: s E S} is a partition of unity 
on G. 

Define a function 9: G ~ ~y by As 0 9 = is for every s E S, 
where As 0 v = v(s) for every v E ~y. By [5, Proposition 5.4], 
9 is continuous. 

Finally it suffices to show that carr(f(a)) =carr(9(a)) for 
each a E A. Pick a E A arbitrarily. Let 8 E Y satisfying that 

i<wi<w 
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carr (f (a)) == 8. It suffices to show that At 0 9 (a) == 0 for every 
t E S - 8 and As 0 g( a) > 0 for every s E 8. First assume 
t E S - 8 arbitrarily. Since t ~ 8, it follows that At 0 f(a) == O. 
For every 8' E Y satisfying t E 8', it follows from the definition 
of USI that f(a) ~ US'. Hence it is true that f(a) ~ UtESI US'. 
Thus 

a fI. UrVs1 : t E i)',i)' E ~d 

for every k < w. So we have gl(a) == 0 for every k < w, it 
follows that 

ht(a) ~k<wgk(a) 
At 0 9()a = it ()a = ~ .() = ~ .() = O.i<w g", a i<w g", a 

Next, let s E 8 arbitrarily. Since f(a) E Us, we have a E \18. 
Put k == Card8 - 1. Then we have 8 E ~k. The fact 

h (a) > gS(a) = gk(a) > 0 
S - k k+l 

implies that 

hs ( a)
As 0 g(a) = is(a) = ~ .() > O.

i<w gt a 

It completes the proof that carr(f(a)) ==carr(g(a)) for each 
a E A. The proof of (1) => (3) is completed. 

To prove (3) => (4), we assume (3) to be satisfied. Let Y be 
a finite dimensional metr~c simplicial complex with weight:::; , 
and f : A ---+ Y be a continuous map. From the assumption, 
there exists a cozero-set G of X containing A and a continuous 
map 9 : G ---+ ~y such that carr(f(a)) ==carr(g(a)) for each 
a E A. Since Y is ANR and is closed in ~y, there exist an open 
subset W of ~y containing Y and a retraction r : W ---+ Y. 
Since g-1 (W) is a cozero-set of G and G is a cozero-set of X, 
g-1(W) is a cozero-setof X. Hence r 0 9 : g-1(W) ---+ Y is 
the required continuous map such that carr(f(a)) == carr((r 0 

g)(a)) for every a E A. 
The proofs of (4) => (5) and (5) :::} (6) follow immediately. 
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To prove (6) =} (1), assume (6) to be satisfied. Let f : 
A ~ J (,) be a continuous map. Let us show Proposition 
2.2'(2). Since (6) is assumed, there exist a cozero-set G of 
X containing A and a' continuous map g' : G ~ J (,) such 
that g,-l((O,l] x {e}) n A == /-1((0,1] x {e}) for every eE 
,. Then, as was essentially proved by Blair [3, Theorem 3.8], 
we can get a continuous map 9 : X ~ J (,) satisfying that 
g-l ((0,1] x {~}) n A == /-1 ((0,1] x {~}) for every ~ E ,. 
Let us give its proof for the completeness. Take a continuous 
function h: X ~ [0,1] satisfying G == h-1 ((0, 1]) and define a 
continuous map 9 : X ~ J (,) by 

(h (x ), (j 0 g') (x )) if x E G 
g(x) == { o otherwise 

for every x E X, where j : (J(,) - {O}) ~ , is the natural 
projection. It is the required map. Hence, it follows from 
Proposition 2.2(2) that A is z-y-embedded in X. The proof of 
the theorem is completed. 0 

Corollary 4.2. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z-embedded in X; 
(2)	 for every countable point finite partition {Ii : i < w} of 

unity on A, there exist a cozero-set G of X containing 
A and a partition {gi : ·i < w} of unity on G such that 
g;l ((0,1]) n A == fi- 1 ((0,1]) for each i < W; 

(3)	 for every continuous map f : A ~ Y into any separable 
metric simplicial complex, there exist a cozero-set G of X 
containing A and a continuous map 9 : G ~ ~y such 
that carr(f(a)) == carr(g(a)) for each a E A; 

(4)	 for every continuous map / : A ~ Y into any finite di­
mensional separable metric simplicial complex with weight 
:::; " there exist a cozero-set G of X containing A and 
a continuous map 9 : G ~ Y such that carr(f(a)) == 
carr(g(a)) for each a E A; 
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(5)	 for every continuous map f : A ~ J(w), there exist a 
cozero-set G of X containing A and a continuous map 9 : 
G ~ J(w) such that g-I((O, 1) x {~}) n A = f- 1((0, 1) x 
{~}) and g-I({l} X {~}) n A = f-l({l} x {~}) for every 

~ E w; 
(6)	 for every continuous map f : A ~ J(w), there exist a 

cozero-set G of X containing A and a continuous map 
9 : G ~ J(w) such that g-1 ((0,1] x {~} )nA = f- 1((0,1] x 
{~}) for every ~E w. 

Corollary 4.3. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is zoo-embedded in X; 
(2)	 for every point finite partition {fa: a E !1} of unity on A, 

there exist a cozero-set G of X containing A and a parti­
tion {ga : a E !1} of unity on G such that g~1 ((0,1]) nA = 
f;1 ((0,1]) for each a E !1; 

(3)	 for every continuous map f : A ~ Y into any metric 
simplicial complex, there exist a cozero-set G of X con­
taining A and a continuous map 9 : G ~ ~y such that 
carr(f(a)) = carr(g(a)) for each a E A; 

(4)	 for every continuous map f : A ~ Y into any finite di­
mensional metric simplicial cornplex, there exist a cozero­
set G of X containing A and a continuous map 9 : G ~ y 
such that carr(f(a)) = carr(g(a)) for each a E A; 

(5)	 for every, and any continuous map f : A ~ J(,), there 
exist a cozero-set G of X containing A and a continuous 
map 9 : G ~ J(,) such that g-1 ((0,1) x {~}) n A = 

f- 1((0, 1) x {~}) andg-1({1} X {~})nA = f-l({l} X {~}) 
for every ~ E',; 

(6)	 for every, and any continuous map f : A ~ J (,), there 
exist a cozero-set G of X containing A and a continuous 
map g:'G ~ J(,) such that g-I((O,l] X {~}) n A 

f- 1((0,1] X {~}) for every~ E,. 
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Remark 4.4. In Theorem 4.1(5), "G" can not be strengthen 
to "X". In other words, 9 in Proposition 2.2(2) can not be re­
quired to have further property g-1 ({I} x {~} )nA == f- I 

( {I} x 
{~}) for every eE,. (See the next theorem.) 

From Theorem 4.1, we have the following characteriza­
tions of p~ -embedding; (1) {:} (2) is contained in Proposition 
2.3. 

Theorem 4.5. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is P~-embedded in X; 
(2)	 for every point finite partition {fa: CY E n} of unity on 

A with Card n ~ ,) there exists a partition {ga : CY En} 
of unity on X such that g~1 ((0,1]) n A == f~1 ((0,1]) for 
each CY E n; 

(3)	 for every continuous map f : A -+ Y into any finite 
dimensional contractible metric simplicial co'mplex with 
weight ~ ,) there exists a continuous map 9 : ~Y' -+ Y 
such that carr(f(a)) == carr(g(a)) for each a E A; 

(4)	 for every continuous map f : A -+ J (,)) there exists a 
continuous map g: X -+ J(,) such that g-I((O,I) x 
{~}) n A == f- 1((0,1) X {e}) and g-l({I} x {~}) n A == 
f-l( {I} x {e}) for every eE ,. 

Proof of the following lemma is essentially in [15, Lemma 
4.3] and omitted. 

Lemma 4.6. Let X be a space and A its subspace. Assume
 
that for every continuous map f : A -+ J(w)) there exists a
 
continuous mapg: X -+ J(w) such thatg-l((O,l)x{~})nA==
 

f- 1 ((0,1) X {
 

xi}) and g-1 ({I} x {e} )n A == j-l ({I} x {e} ) for every eE w.
 
Then) A is well-embedded in X.
 

Proof of Theorem 4.5: To prove (1) =* (3), we assume 
(1) to be satisfied. Let Y be a finite dimensional contractible 
metric simplicial complex with weight ~ , and f : A -+ Y be 
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a continuous map. By Theorem 4.1(4) and well-embeddedness 
of A, there exist a cozero-set G of X, a zero-set Z of X and 
a continuous map h : G --t Y such that A c Z c G and 
carr (f( a)) == carr(h(a)) for each a E A. As was proved by 
Dydak [5, Section 8], there exists a continuous map 9 : X --t Y 
such that carr(f(a)) == carr(g(a)) for each a E A. 

(3) =* (4) is obvious. (4) =* (1) follows from Theorem 4.1(5) 
and Lemma 4.6. It completes the proof. 0 

Corollary 4.7. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is C-embedded in X; 
(2)	 for every continuous map f : A --t Y into any finite 

dimensional separable contractible metric simplicial com­
plex, there exists a continuous map 9 : X --t Y such that 
carr(f(a)) ==carr(g(a)) for each a E A; 

(3)	 for every continuous map f : A --t J (w ), ther:e exists a 
continuous map 9 : X --t J(w) such that g-l ((0,1) X 

{e}) nA == f- 1((0,1) X {e}) andg-1({1} X {e}) nA == 
f-1({1} X {e}) for everYe E w. 

Corollary 4.8. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is P-embedded in X; 
(2)	 for every continuous map f : A --t Y into any finite 

dimensional contractible metric simplicial complex, there 
exists a continuous map 9 :·X --t Y such that carr(f(a)) 
== carr(g(a)) for each a E A; 

(3)	 for every f and every continuous map f : A --t J C,), 
there exists a continuous map 9 : X --t J( f) such that 
g-l((O,l) X {e}) nA==f-1((0,1) X {e}) andg-1({1} X 

{e})n A == f-1({1} x {e}) for every e E f. 

Remark 4.9. (i) In Theorem 4.5(2), a partition {ga : a E n} 
of unity can not be replaced by a cover of cozero-sets (see Re­
mark 3.6). (ii) In [15], (P*)"-embedding was introduced so as 
to be coincide with z,,- plus C*-embedding and characterized by 
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using hedgehog-valued functions. Related to (P*)'Y-embedding, 
we can show the following: If A is a (P*)'Y-embedded subspace 
of a space X, then for every continuous map f : A ---4 Y into 
any finite dimensional metric simplicial complex with weight 
:S , and every finite number simplices O"I, ... , O"n of IYI, there 
exist a cozero-set G of X containing A and a continuous map 
9 : G ---4 Y such that carr(f(a)) ==carr(g(a)) for each a E A 
and f(a) == g(a) for every a E f-I(U:I O"i). Its proof is com­
plicated and but uses a similar technique to that of the proof 
of "(1) =} (3)" of Theorem 4.1 that we omit it. 

Next, we study another type of characterization of Z'Y­
embedding by approximations. In [4, Theorem 2.2], Blair and 
Hager proved the following: A subspace A of a space X is z­

embedded in X if and only if for every continuous real-valued 
(or bounded real-valued) function f on A and any c > 0, there 
exist a cozero-set G of X containing A and a continuous func­
tion 9 on G such that Ig(a) - f( a) I< c for each a E A. Propo­
sition 2.2(4) extends this result to the case of z'Y-embedding. 
Theorem 4.10 or Corollary 4.11 below extends these results 
to the case of maps with values into finite dimensional metric 
simplicial complexes. 

Theorem 4.10. Let X be a space and A its subspace. Then 
the following statements are equivalent: 

(1)	 A is z'Y-embedded in X; 
(2)	 for every continuous map f : A ---4 (Y, d) into 'any finite 

dimensional metric simplicial complex with weight ~ , 
and any c > 0, there exist a cozero-set G of X con­
taining A and a continuous map 9 : G ---4 Y such that 
d(g(a), f(a)) < c for each a E A. 

Proof: To prove (1) =} (2), we assume A is z'Y-embedded in 
X. Let (Y, d) be a finite dimensional metric simplicial complex 
with weight :S " f : A ---4 Y be a continuous map and c > O. 
Let Y' be a finitely many fold iterated barycentric subdivision 
of Y such that mesh Y' < c with respect to d. We denote by d' 
the metric of simplicial complex Y'. We note that (Y, d) and 



310 KAORI YAMAZAKI 

(y l 
, d' ) are homeomorphic under the usual identity continuous 

map. From Theorem 4.1(2), there exist a cozero-set G of X 
containing A and a continuous map 9 : G --t (y', d' ) such that 
carr(f(a)) ==carr(g(a)) (in V') for each a E A. Since every 
diameter of simplex of y' is less than c with respect to d, we 
have d(g(a), f(a)) < c for every a E A. 

To prove (2) =} (1), we assume (2) to be satisfied. Let 
f: A --t (J(,),p) be a continuous map and c > o. It suffices 
to show that there exist a cozero-set G of X contailling A and 
a continuous map 9 : G --t J(,) such that p(g(a), f(a)) < 
c for every a E A because of Proposition 2.2(4). From the 
assumption, there exist a cozero-set G of X containing A and a 
continuous map g: G --t (J(,),d) such trlat d(g(a),f(a)) < c. 
Since p :::; d, we have that p(g(a), f( a)) < c for each a E A; the 
proof is completed. 0 

Corollary 4.11. A subspace A of a space X is z-e'mbedded in 
X if and only if for every continuous map f : A --t {V, d) into 
any finite dimensional separable metric simplicial complex and 
any c > 0) there exist a cozero-set G of X containing A and 
a continuous map 9 : G --t Y such that d(g(a),f(a)) < c for 
each a E A. 

Corollary 4.12. A subspace A of a space X is zoo-embedded 
in X if and only if for every continuous map f : A --t (Y, d) 
into any finite dimensional metric simplicial complex and any 
c > 0, there exist a cozero-set G of X containing A and a 
continuous map 9 : G --t Y such that d(g(a),J(a)) < c for 
each a E A. 

Here is a problem whether J(,) in Proposition 2.2(4) can be 
changed into any tech-complete AR or not; this ·was asked in 
[14] or [15, Problem 4.10]. Theorem 4.10 is a partial answer to 
this problem; more generally we pose the following: 

Problem 4.13. Let A be a z'Y-embedded subspace of a space X. 
Is it true that for every continuous map from A into any Cech­
complete ANR Y with weight:::; " any (or some) metric p' on 
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Y and any c > 0, there exist a cozero-set G of X containing A 
and a continuous map 9 : G ~ Y such that p'(g(a), J(a)) < c 
for every a E A ? 

Related to Theorem 4.10, we also have the folowing result: 
A subspace A of a space X is P')'-embedded in X if and only 
if for every continuous map J : A ~ (Y, d) into any finite 
dimensional contractible metric simplicial complex and any 
c > 0, there exists a continuous map 9 : X ~ Y such that 
d(g(a),J(a)) < c for every a E A. However, if we consider (2) 
with (4) in Proposition 2.3, then we can conclude more general 
results as follows: 

Proposition 4.14. Let C and C' be subclasses of the class of 
all finite dimensional metric simplicial complexes 1vith lveight 
:s 1 satisfying J (1) E C, C'. Let X be a space and A its sub­
space. Then the following statements are equivalent: 

(1)	 A is z,),-embedded in X; 
(2)	 for any Y E C and any continuous map f : A ~ Y, there 

exist a cozero-set G of X containing A and a continuous 
map 9 : G ~ Y such that carr (J(a)) ==carr (g( a )) for 
each a E A; 

(3)	 for any (Y, d) E C', any continuous map J : A ~ Y 
and any c > 0, there exist a cozero-set G of X con­
taining A and a continuous map 9 : G ~ Y such that 
d(g(a), J(a)) < c for each a E A. 

Proposition 4.15. Let C be a subclass of the class of all com­
plete AR metric simplicial complexes with weight :s 1 satis­
fying J (1) E C and C' be a subclass of the class of all Cech­
cornplete AR spaces with weight :s 1 satisfying J (1) E C'. Then 
the following statements are equivalent: 

(1)	 A is .P')' -embedded in X; 
(2)	 for any Y E C and any continuous map f : A ---+ Y, there 

exists a continuous map 9 : X ---+ Y such that carr(f(a)) 
== carr(g(a)) for each a E A; 
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(3)	 for any (Y, d) E C', any continuous map f : A --+ Y and 
any c > 0, there exists a continuous map 9 : X --+ Y such 
that d(g(a), f(a)) < c for each a E A. 

Added in proof. Recently, Professor V. Gutev kindly sent 
the author an e-mail showing that Problem 4.13 is affirmative. 
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