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ABSTRACT. In [5], Dydak proved some theorems con-
cerning extensions of partitions of unity and extensions
of continuous maps with metric simplicial complex val-
ues. In his paper, a subspace A of a space X is said to
be P(locally-finite)-embedded in X if every locally finite
partition of unity on A can be extended to a locally fi-
nite partition of unity on X. And a problem was posed
there whether A x [0, 1] is P(locally-finite)-embedded in
X x[0,1] if A is P(locally-finite)-embedded in X. In this
paper, under a set-theoretic viewpoint, we prove that A
is P(locally-finite)-embedded in X if and only if every
locally finite cover of cozero-sets of A can be extended
to a locally finite cover of cozero-sets of X. This extends
Przymusinski and Wage’s theorem [13] in the case that X
is normal and A is its closed subspace. As an application,
we also give an affirmative answer to the problem above.
Moreover by using continuous maps with metric simpli-
cial complex values or partitions of unity we characterize
well-known z.,- or z-embedding.

1. INTRODUCTION

Throughout this paper, a space means a topological space.
And ~ denotes an infinite cardinal number. Let X be a space
and A its subspace. For a collection V = {V, : a € Q} of sub-

sets of X and a collection U = {U, : a € N} of subsets of A,
289
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V is said to be an extension of (or to extend) U if V,NA = U,
for every a € ). A is said to be P7-embedded in X if for every
normal open cover U of A with Card < «, there exists a normal
open cover V of X such that VAA <U (={VNA:V € V} re-
fines ZJ). A is said to be P-embedded in X if A is P7-embedded
in X for every 7. A is said to be z,-embedded in X if for ev-
ery normal open cover U of A with Card < +, there exist a
cozero-set G of X containing A and a normal open cover V
of G such that VA A < U [3]. If A is z,-embedded in X
for every v, A is said to be zy-embedded in X. Clearly, P7-
(resp. P-)embedding implies z,- (resp. z..-)embedding, and it
is known that z,-embedding or P“-embedding coincides with
z-embedding or C-embedding, respectively; where A is said to
be z-embedded in X if every zero-set in A is the intersection of
A with some zero-set in X and A is said to be C-embedded in X
if every real-valued continuous function on A can be extended
over X (See [1], [3]).

In [5], Dydak investigated an extension theory by contin-
uous functions with values in metric simplicial complexes or
CW-complexes. He proved some interesting theorems char-
acterizing several notions of embeddings defined in terms of
extensions of partitions of unity, and showed that these results
are closely related to P”-embedding. As one of such notions, it
is defined in [5] that A is P (locally-finite)-embedded in X if ev-
ery locally finite partition {f, : « € 2} of unity on A with Card
< v can be extended to a locally finite partition {g, : a € 0}
of unity on X, where “extended” means g,|A = f, for every
a € Q. If Ais PY(locally-finite)-embedded in X for every v, A
is said to be P(locally-finite)-embedded in X. It is also shown
in [5] that every closed subspace of a paracompact T3 space X
is P(locally-finite)-embedded in X.

From a set-theoretic viewpoint, we remind that the notion of
P(locally-finite)-embedding originally relates to Katétov [10]
and Przymusiiiski and Wage [13]. Katétov [10] proved that
every collectionwise normal and countably paracompact space
X satisfies the property that X is normal and this property was
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named functionally Katétov later by Przymusinski and Wage
[13]. It was also shown in [13] that a T}-space X is functionally
Katétov if and only if every locally finite partition of unity
on any closed subspace A of X can be extended to a locally
finite partition of unity on X, that is A is P(locally-finite)-
embedded in X for every cosed subspace A of X. In their
proof of the “only if” part of this result, the normality of X
and the closedness of A are essential. Also they proved that A
is P-embedded in X if and only if every locally finite partition
of unity on A can be extended to a (not necessarily locally
finite) partition of unity on X [13, Theorem 1*]. Thus, it is
natural to ask whether a subspace A of a space X is P(locally-
finite)-embedded in X if and only if every locally finite cover
of cozero-sets of A can be extended to a locally finite cover
of cozero-sets of X. In Section 3 of our paper, we prove this
equivalence, and apply it to answer affirmatively to a problem
posed by Dydak [5] concerning product spaces.

In Section 4, we are concerned to describe P?-, z.,-, C- or z-
embedding, in terms of maps with metric simplicial complexes
values. Since any continuous map on X with metric simpli-
cial complex values corresponds to a point finite partition of
unity on X(cf. [5]), extensions of maps with metric simpli-
cial complex values can be regarded as extensions of point fi-
nite partitions of unity. In [5], Dydak characterized P”(point-
finite)-embedding (see Section 2 for the definition) by using
maps with values in contractible metric simplicial complexes
(see Proposition 2.4). In [3], [4], [14] or [15], characterizations
of z,-embedding in terms of continuous functions with values
into the hedgehog with « spines were given. Relating to these
results, in Section 4 we first prove a key result including that
A is z,-embedded in X if and only if for every continuous map
f : A —Y into any finite dimensional metric simplicial com-
plex with weight < + there exist a cozero-set G of X containing
A and a continuous map g : X — Y such that carr(f(a)) =
carr(g(a)) for each a € A. Using this result, we give corre-
sponding results for P?- or C-embedding. Moreover, we give
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another type of characterizations of z- or z,-embedding by ap-
proximations of these continuous maps f : A — Y above;
they include the real-valued case (Blair and Hager [4]) or the
hedgehog-valued case ([14], [15]).

2. PRELIMINARIES

A collection {fo : @ € Q} of continuous functions from a
space X into [0,1] is said to be a partition of unity on X if
Y wen fo(z) = 1 for every z € X, where ) _ g fo(2) means
the least upper bound of all sums of finitely many f,(z)’ s. A
partition {f, : « € 0} of unity on X is said to be locally finite
(resp. point finite) if {f7'((0,1]) : @ € Q} is locally finite
(resp. point finite) in X.

A subspace A of a space X is said to be P(point-finite)-
embedded in X if every point finite partition of unuty on A
with Card < 7 can be extended to a point finite partition
of unity on X [5]. If A is PY(point-finite)-embedded in X
for every v, A is said to be P(point-finite)-embedded in X.
We note that P7(locally-finite)-embedding or P”(point-finite)-
embedding implies PY-embedding.

Let us recall the hedgehog with « spines. Let I, = [0, 1] x {¢}
for every £ € 7. We define the equivalence relation F on
Ueey e such as (z,&1)E(y,{z) whenever z =y =0 or (z =y
and & = &;). We denote J(7) the set of all equivalence classes
of £ and define a metric on J(y) as follows:

_ r — if 61 252
p((%{l%(%&)) = { |$ -|-z| if & #£6&

for every (z,&1), (y,&2) € J(v). 0 denotes the class of J(v)
consisting of (0,¢), £ € 4. We call this space with the metric
topology associated by p the hedgehog with v spines, and also
denote it by J(7).

The set of all vertices of a simplex often means itself a sim-
plex. Let Y be a simplicial complex. Then we denote by |Y|
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the polyhedron of Y and by A;(y) the barycentric s’th coordi-
nate of a point y of |Y|. The metric simplicial complez (Y, d)
is a pair of the simplicial complex Y and a metric defined by
d, where d(y,z) = 3,5 |As(y) — As(2)] for each y,z € |Y| and
A denotes the set of all vertices of Y. For a simplicial complex
Y and y € |Y|, the carrier of y is the smallest simplex of ¥
containing y, and is denoted by carr(y).

For a set S, let X5 is a set of all nonnegative functions v :
S — [0,1] such that ) .sv(s) = 1 equipped with the norm.
Then Ys is naturally a Banach space (see [5, Definition 5.1]).
For a simplicial complex Y, ¥ s is denoted by Xy, where S is
the set of all vertices of Y.

Especially, if we regard J(y) as a simplicial complex, we
denote J(y) with the simplicial complex metric d defined above
by (J(7),d). Note that (J(v),p) and (J(7v),d) have the same
topology, in fact, p < d < 2p.

N denotes the set of all natural numbers. Other terminology
are refered to [1], [6], [7] or [8].

Let us recall two examples.

Example 2.1. (1) ([13, Example 3]) There exists a space
containing a P-embedded but not P¥(locally-finite)-embedded
closed subspace.

(2) ([5, Theorem 12.13 and Remark 12.14]) There exists a
space containing a P(locally-finite)-embedded but not P*(point-
finite)-embedded closed subspace.

The following propositions will be used in Section 3 or 4.
(1) & (2) is in [3, Theorem 3.8], (1) < (3) is in [15, Lemma
2.2] and (1) & (4) is in [14] or [15, Theorem 4.9].

Proposition 2.2. Let X be a space and A its subspace. Then
the following statements are equivalent:
(1) A is zy-embedded in X;
(2) for every continuous map f : A — J(y), there exists
a continuous map g : X — J(v) such that g7'((0,1] x

{f}) NA=f1 ((0, 1] x {f}) for every £ € 7;
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(3) for every disjoint collection {G.|a € Q} of cozero-sets of
A with Card Q < v satisfying | J{Ga|a € Q} is a cozero-
set of A, there ezists a disjoint collection {H,|a € Q} of
cozero-sets of X such that | J{H,|a € Q} is a cozero-set
of X and H,N A =G, for each o € (1,

(4) for every continuous map f : A — J(vy) and any € > 0,
there ezist a cozero-set G of X containing A and a contin-
wous function g : G — J(y) such that p(g(a), f(a)) < €
for every a € A.

A subspace A of a space X is said to be well-embedded in X if
A is completely separated from any zero-set of X disjoint from
A. Tt is known that A is P”-embedded in X if and only if A is
z,- and well-embedded in X [3]. The following also describes
P-embedding; (1) < (2) is in [11, Corollary 10], (1) < (3) is
in [12, Theorem 2|, (1) < (4) is in [15, Theorem 4.7], (1) < (5)
isin [13, Theorem 1*] and [5, Proposition 12.8], (1) < (6) easily
follows from the definition of P”-embedding using [7, Theorems
1.2]. Concerning (2) or (3), similar characterizations are seen

in [1], [6] or [12].

Proposition 2.3. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A is P7-embedded in X,

(2) every continuous map f: A — 'Y into any Cech complete
AR (=AR for metrizable spaces) with weight < 4 can be
extended over X; :

(3) every continuous map f : A — J(vy) can be extended over
X

(4) for every continuous map f : A — J(v) and any € > 0,
there exists a continuous map g : X — J(v) such that
p(9(a), f(a)) <€ for every a € A;

(5) every partition (or locally finite partition, point finite par-
tition) of unity on A with Card <~ can be extended to a
partition of unity on X;

(6) for every partition (or locally finite partition, point finite
partition) {f, : @ € Q} of unity on A with Card < 7,
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there exists a partition {g, : @ € Q} of unity on X such
that g, 1((0,1]) N A C f71((0,1]) for every o € Q.

The following due to Dydak [5] characterizes P (point-finite)-
embedding.

Theorem 2.4. [5, Theorem 9.1] A subspace A of a space X is
P (point-finite)-embedded in X if and only if every continuous
map from A into any contractible metric simplicial complez Y
with weight < v can be extended over X.

3. EXTENSIONS OF LOCALLY FINITE PARTITIONS OF UNITY

As is stated in the introduction, we now prove the following
theorem:

Theorem 3.1. Let X be a space and A its subspace. Then A
is PY(locally-finite)-embedded in X if and only if every locally
finite cover of cozero-sets of A with Card <~ can be extended
to a locally finite cover of cozero-sets of X.

For the proof of Theorem 3.1, we need a lemma. By Ishii
and Ohta [9], a subspace A of a space X is said to be Cj-
embedded in X if any zero-set Z; of X and any zero-set Z, of
A disjoint from Z; are completely separated in X. Note that A
is C-embedded in X if and only if A is C*- and C}-embedded
in X [9].

Lemma 3.2. Let X be a space and A its subspace. Then, A is
C-embedded in X if and only if for every continuous function
f:A—0,1] and any cozero-set U of X satisfying U N A =
f71((0,1]), there exists a continuous function g : X — [0,1]
such that g|A = f and g7((0,1]) C U.

Proof: It is not hard to see that the assumption of the if part
implies C*- and Ci-embedding of A over X. To see the only
if part, assume A is C-embedded in X. Let f: A — [0,1] be
a continuous function and U be a cozero-set of X satisfying
UnA= f1((o, 1]). By induction, we construct a continuous
real-valued function h,, on X for each n € N which satisfies the
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following three conditions:

1
D hn] < o
. 1 1
(2)71 h'n, ([_ 2n_130) U (07 271—_1]) C U;

B |f =D (RilA)| < 2%

Since f~1([1/2,1]) is a zero-set of A contained U and A is

Ci-embedded in X, f~'([1/2,1]) and X — U are completely
separated in X. Take a zero-set Z; of X such that

1
fﬁl([i,l]) C Z; and Z; C U.
There exists a continuous function ¢; : X — [0, 1] such that

97 ({1})) =71 and g7'({0}) =X - U.

Since A is C*-embedded in X, there exists a continuous func-
tion f; : X — [0,1] such that f;|A = f. Define a continuous
function h; : X — [0,1] by hy = f1 - g1. Then, the conditions
(1)1, (2); and (3); follow immediately.

Next assume continuous functions hq, ..., h, satisfying (1);,
(2); and (3); are defined for each : = 1,...,n. We put ¢ =
f=>" (hi]A). Then, by (3)s, ¢ : A — [=1/2",1/2"] is

continuous. Put

_ 1 1 1 1
Z=¢"([= o=zl Y g 5]

Then, we have that Z C U. Thus, Z C U. Since A is Cy-
embedded in X, there exists a zero-set Z* of X such that
Z C Z* and Z* C U. Hence there exists a continuous function
g : X — [0,1] such that ¢’ '({1}) = Z* and ¢’ '({0}) =
X —U. Since A is C*-embedded in X, there exists a continuous
function f': X — [—1/2",1/2"] such that f'|A = ¢. Define a
continuous function hy4y by k1 = f'-¢'. Then (1)nt1, (2)n41
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and (3),4+1 follow immediately, it completes the proof of the
induction.
Put

g=((Xhm)nt)vo.

€N

Then g is continuous and g|A = f. By the way, for z ¢ U, it
follows from (2), that h,(z) = 0 for every n € N, which imply
g(z) = 0. This proves g"l((O, 1]) C U. It completes the proof.
U

Proof of Theorem 3.1: Since the “only if” part is easy to
show, we only prove the “if” part. Let the assumption of the if
part be satisfied. Let {f, : @ € Q} be a locally finite partition
of unity on A with Card <. Since {f;1((0,1]) : ¢ € Q} is
a locally finite cover of cozero-sets of A, by the assumption of
the theorem, there exists a locally finite cover {U, : o € Q} of
cozero-sets of X such that

U, NA= f1((0,1])

for each o € Q. Since A is C-embedded in X, from Lemma

3.2, for every a € () there exists a continuous function A, :
X — [0, 1] such that

halA = fa and ho ™' ((0,1]) C U..
Then {he™'((0,1]) : a € 0} is a locally finite collection of
cozero-sets of X and covers A. Since A is well-embedded in X

and J{ha""((0,1]) : @ € Q} is a cozero-set of X, there exists
a continuous function hg : X — [0, 1] such that

A C hy'({0}) C | J{haT((0,1)) : @ € Q).

Since {ha""((0,1]) : @ € QU{0}} is a locally finite cover of X,
Eﬁeﬂu{o} hg is continuous. Fix an a. € §) arbitrarily. Define a
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continuous function g, : X — [0,1] for each o € Q) as follows:

(haw + ko) [ Spcqupoy hs i @ = an

ha/ZﬁeQu{o} hg otherwise.

Then, {go : a € Q} is the desired locally finite partition of
unity on X that extends {f, : « € Q}. The proof of the
theorem is completed. O

Corollary 3.3. Let X be a space and A its subspace. Then
A s P(locally-finite)-embedded in X if and only if every locally
finite cover of cozero-sets of A can be extended to a locally finite
cover of cozero-sets of X.

Theorem 3.4. Let X be a space, A its subspace and C a
non-empty compact To-space with weight < . Then, A x C
is PY(locally-finite)-embedded in X x C if and only if A is
P7(locally-finite)-embedded in X.

Proof: The “only if” part follows immediately. To prove the
“if” part, we assume A is P”(locally-finite)-embedded in X.
Then A x C' is C-embedded in X x C (see [7]). Let U = {U, :
a € O} be a locally finite cover of cozero-sets of A x C' with
Card Q < #. Since C' is compact, {ps(U,) : « € Q} is a locally
finite cover of cozero-sets of A, where py : AXx C — A is
the projection. From the assumption and Theorem 3.1, there
exists a locally finite cover {V, : a € Q} of cozero-sets of X
such that V, N A = pu(U,) for each a € . Since A x C' is
z-embedded in X x C, there exists a cozero-set U} of X x C
such that U N (A x C) = U, for each a € . Since A x C
is well-embedded in X x C, there exists a cozero-set W of X
such that AN W = and

{(VaxC)NUZ:aeQ}UW =X x C.
If we fix an o € §) arbitrarily,

(Vax C)NUZ s € Q= {ao}} U{((Vay x C)NUZ) UW}
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is a locally finite cover of cozero-sets of X x C and extends
U. Hence A x C is P?(locally-finite)-embedded in X x C by
Theorem 3.1. It completes the proof. O

The following corollary contains an affirmative answer to 5,
Problem 13.16] posed by Dydak when we put C = [0, 1].

Corollary 3.5. Let X be a space, A its subspace and C a
non-empty compact Ty-space. Then, A x C is P(locally-finite)-
embedded in X x C if and only if A is P(locally-finite)-embedded
in X.

Remark 3.6. In view of (1) and (5) of Proposition 2.3 and
Theorem 3.1, one can ask the following: Is it true that A is P7-
embedded in X (=every partition (or locally finite partition,
point finite partition) of unity on A with Card < 7 can be
extended to a partition of unity on X) if and only if every
cover (or locally finite cover, point finite cover) of cozero-sets
of A with Card < 4 can be extended to a cover of cozero-sets of
X 7 On the case v = w, this is affirmatively answered easily.
However on the case of v > w, this is negative. Indeed, in
Bing’s space H ([2, Example H]), there exists a closed subset
A which is not P"-embedded in H. We have that UU(H — A) is
a cozero-set of H for every cozero-set U of A. Therefore every
cover (or locally finite cover, point finite cover) of cozero-sets
can be extended to a cover of cozero-sets of H.

Here, we call a subspace A of a space X L"7-embedded in
X if every locally finite collection {U, : a € Q} of cozero-
sets of A with Card < 4 there exists a locally finite collection
{Va: a € Q} of cozero-sets of X such that U, C V, for each
a € . Then, it is easily shown that A is P7- and L"-embedded
(more generally, C- and L7-embedded) in X if and only if A
is P7(locally-finite)-embedded in X. However the author does
not know whether every P7- and L“-embedded subspace A of
X is PY(locally-finite)-embedded in X or not.
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4. EXTENSIONS OF CONTINUOUS MAPS WITH METRIC
SIMPLICIAL COMPLEX VALUES

In this section, we study extensions of a continuous map with
metric simplicial complex values. P?(point-finite)-embedding
was characterized by using these functions with contractible
metric simplicial complex values (see Theorem 2.4). And P”-
embedding was also characterized by extensions of point finite
partitions of unity (see Proposition 2.3(5)). This is naturally
regarded to the following: Any continuous map f : A — Y
into any metric simplicial complex with weight < 4 can be ex-
tended to a continuous map g : X — Yy. From these points
of view, at first, in the following theorem we obtain several
equivalent conditions to z,-embedding; (2) is by partitions of
unity which seems intermediate between extensions of parti-
tions of unity and extensions of covers of cozero-sets, (3) or (4)
is by maps with (finite dimensional) metric simplicial complex
values which are based on approximations, and (5) or (6) is
related to Blair [3] (see Proposition 2.2(2)).

Theorem 4.1. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A is zy-embedded in X;

(2) for every point finite partition {f, : o € Q} of unity
on A with Card Q < v, there exist a cozero-set G of X
containing A and a partition {go : @ € Q} of unity on G
such that g;*((0,1]) N A = f71((0,1]) for each o € Q;

(3) for every continuous map f : A — Y into any metric
simplicial complex with weight < v, there exist a cozero-
set G of X containing A and a continuous map g : G —
Yy such that carr(f(a)) :carr(g(a)) for each a € A;

(4) for every continuous map f : A — Y into any finite
dimensional metric simplicial complex with weight < =,
there exist a cozero-set G of X containing A and a con-
tinuous map g : G — Y such that carr(f(a)) =carr(g(a))
for each a € A;
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(5) for every continuous map f : A — J(y), there ezist a
cozero-set G of X containing A and a continuous map g :
G —J(y) such that g71((0,1) x {(}) N A = F71((0,1) x
{€}) and g7 ({1} x {€}) N A = f7 ({1} x {¢}) for every
£ €

(6) for every continuous map f : A — J(v), there exist a
cozero-set G of X containing A and a continuous map
g: G — J(v) such that g7 ((0,1]x {¢})NA = f~1((0,1]x
{€}) for every £ € 7.

Proof: Note that (2) < (3) is obvious (see [5, Theorem 6.5]).
To prove (1) = (3), assume A is z,-embedded in X. Let Y be
a metric simplicial complex with weight < v and f: A - Y
a continuous map. S denotes the set of all vertices of Y. For
every k < w, we define

Ak={5EY:Card5=k+1}.

Build a barycentric subdivision to Y and denote by A; its §’th
barycentric coordinate for every simplex § € Y. Define, for
every k < w and 6 € Ay,

Us={y €|Y]|: N(y)>0}.

It is easy to show that Us is open in |Y|, and we have

Us = {y €NY]:A(y) >0 and A (y) > Ai(y)
for every s € 6, t € 5—5}

and intéd C Us for every 6 € Y.

Since cardinality of each member of Ag is just & + 1, it is
easy to show that {Us : § € Ay} is a disjoint for each k < w.
Hence we have that {f~1(Us) : § € Ag} is a disjoint collection
of cozero-sets of A, |J{f™'(Us) : 6 € Ax} is a cozero-set of
A and Card Ay < 4. From Proposition 2.2(3), there exists a
disjoint collection {Vs : § € Ar} of cozero-sets of X such that

Vs N A= f"1(Us)
for each § € Ay and |J{Vs : 6 € Ax} is a cozero-set of X.
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For each k < w, there exists a continuous function g : X —

[0,1/2%+1] such that
U Ve =g:"((0,1/25]).

€A
Put

¢=U U
k<w 6€A
Then G is a cozero-set of X and A C G.
Next define a function ¢§ : G — [0,1/2%*1] by

gr(z) .
— if Vs : 6,6 € A
gi(e)= | k1 TrEUiechic

0 otherwise

for every k < w and s € S. To show the continuity of g3,
let £ € G and € > 0 arbitrarily. It suffices to show the case
z ¢ U{Vs : s € 66 € Ay}, Itz & Usen, Vs, then z €
97 ([0,€)) NG C g5~ ([0,¢)). Hence assume z € Usea, Vs —
U{Vs : s € 6,6 € Ax}. Then there exists ' € Ay such that
s ¢ 6" and z € V. Since {V5: 6 € Ay} is a disjoint collection,
we have

Vs N (U{Vg 1S € 0,6 € Ak}) = {.
Hence it follows that g3 (Vs) = 0, it shows the continuity of g;.
For every s € S, put
he =>4k

k<w

Then hy is a continuous function from G into [0, 1], because
g5 < gr < 1/2%+1 is satisfied for every k < w. By the same way,
Y i<, 9 1s continuous and positive on G. Define a continuous
function ¢, : G — [0, 1] by

es = hs/2i<w 9:

for every s € S.
Here we shall show that {{, : s € S} is a partition of unity
on (G. To see this, pick ¢ € G arbitrarily. First let us show that
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> ses 9i(z) = gi(z) for every k < w. Fix k < w arbitrarily. At
first, assume that there exists 6 € Ay such that z € V5. Then
we have g3 (z) = gx(z)/(k + 1) for each s € §. Note that

v | J{Voted, 8 en)

for every t ¢ 6. Indeed, for 6,6 € Ay satisfying ¢t ¢ 6 and
t € &', we have § # ¢&'; it shows that Vi N Vs = 0. Tt follows
that gi(z) = 0 for every t € S — §. Hence it follows that

S aie) = Y 2 =y 248 gy
sES SES )

On the other hand, assume @ ¢ (Jsca, V- Since gi(z) = 0 for
every s € S, we have

S gi(x) = 0 = gi(a),

SES

it completes the proof of 3 ¢ gi(z) = gr(z). Since ), gi(z) =
hs(z), the set 3 o> .., gi(z) can be defined and is equal to

Y k<w 2oses 9i(z). Hence we have

Yoo Y D g DD gia)

1 = k<w _ k<w s€S _ SES k<w
D@ Doei@) D aiw)
i<w 1<w i<w

> hy(z)
— €5 _ 4
> gi=) ; Zz<w gi(x ;

i<w
It completes the proof that {/, : s € S} is a partition of unity
on G.

Define a function g : G — Xy by A;0g9 = ¢, for every s € 5,
where A\; 0o v = v(s) for every v € Ly. By [5, Proposition 5.4],
g is continuous.

Finally it suffices to show that carr(f(a)) =carr(g(a)) for
each a € A. Pick a € A arbitrarily. Let § € Y satisfying that
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carr(f(a)) = 6. It suffices to show that \; 0 g(a) = 0 for every
t € S—6and A;0g(a) > 0 for every s € §. First assume
t € S — § arbitrarily. Since t ¢ §, it follows that A, o f(a) = 0.
For every 8’ € Y satisfying ¢t € &', it follows from the definition
of Us that f(a) ¢ Us. Hence it is true that f(a) & (J,eq Us-
Thus

ad | J{Ve:ted 8 e

for every k < w. So we have gi(a) = 0 for every k£ < w, it
follows that

hl(@)  _ Diew 9h(®)
S (@) Tug, 6:(a)

Next, let s € ¢ arbitrarily. Since f(a) € Us, we have a € V.
Put £k = Cardé — 1. Then we have § € A;. The fact

Ao g(a) =4(a) = = 0.

bufa) 2 gi(a) = 249 5 ¢

implies that
hs(a)
Zi(w gi(a)

It completes the proof that carr(f(a)) =carr(g(a)) for each
a € A. The proof of (1) = (3) is completed.

To prove (3) = (4), we assume (3) to be satisfied. Let Y be
a finite dimensional metric simplicial complex with weight < v
and f: A — Y be a continuous map. From the assumption,
there exists a cozero-set G of X containing A and a continuous
map ¢ : G — Zy such that carr(f(a)) =carr(g(a)) for each
a € A. SinceY is ANR and is closed in Xy, there exist an open
subset W of Ly containing Y and a retraction r : W — Y.
Since g~} (W) is a cozero-set of G and G is a cozero-set of X,
g Y (W) is a cozero-set of X. Hencerog : g7 (W) — Y is
the required continuous map such that carr(f(a)) = carr((r o
g9)(a)) for every a € A.

The proofs of (4) = (5) and (5) = (6) follow immediately.

Aso0g(a) =45(a) = > 0.
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To prove (6) = (1), assume (6) to be satisfied. Let f :
A — J(v) be a continuous map. Let us show Proposition
2.2(2). Since (6) is assumed, there exist a cozero-set G of
X containing A and a continuous map ¢’ : G — J(y) such
that ¢’ ((0,1] x {¢}) N A = f~1((0,1] x {£}) for every ¢ €
7. Then, as was essentially proved by Blair [3, Theorem 3.8],
we can get a continuous map g : X — J(vy) satisfying that
7 ((0,1] x {6)) N A = FH((0,1] x {€}) for every € € 7.
Let us give its proof for the completeness. Take a continuous
function h: X — [0,1] satisfying G = h~'((0,1]) and define a
continuous map g : X — J(v) by

| (h(2),(od)(z) ifzeq
g9(z) =

0 otherwise

for every x € X, where j : (J(v) — {6}) — 7 is the natural
projection. It is the required map. Hence, it follows from
Proposition 2.2(2) that A is z,-embedded in X. The proof of
the theorem is completed. O

Corollary 4.2. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A is z-embedded in X;

(2) for every countable point finite partition {f; : i < w} of
unity on A, there exist a cozero-set G of X containing
A and a partition {g; : © < w} of unity on G such that
g7 ((0,1)) N A = f71((0,1]) for each i < w;

(3) for every continuous map f : A — Y into any separable
metric simplicial complez, there exist a cozero-set G of X
containing A and a continuous map g : G — Xy such
that carr(f(a)) = carr(g(a)) for each a € A;

(4) for every continuous map f : A — Y into any finite di-
menstonal separable metric sstmplicial complex with weight
< 7, there ezist a cozero-set G of X containing A and
a continuous map g : G — Y such that carr(f(a)) =

carr(g(a)) for each a € A;
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(5) for every continuous map f : A — J(w), there ezist a
cozero-set G of X containing A and a continuous map g :
G — J(w) such that g71((0,1) x {¢}) N A= f~1((0,1) x
(6) and o™ ({1} N0 A = /({1 x6)) for cor

€ w;

(6) for every continuous map f : A — J(w), there ezist a
cozero-set G of X containing A and a continuous map
g: G — J(w) such that g7 ((0,1]x{¢})NA = f~1((0,1]x
{€}) for every ¢ € w.

Corollary 4.3. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A is zoo-embedded in X;

(2) for every point finite partition { f, : @ € Q} of unity on A,
there exist a cozero-set G of X containing A and a parti-
tion {gs : & € Q} of unity on G such that g3 ((0,1])NA =
f31((0,1]) for each o € Q;

(3) for every continuous map f : A — Y into any metric
simplicial complez, there exist a cozero-set G of X con-
taining A and a continuous map g : G — Xy such that
carr(f(a)) = carr(g(a)) for each a € A;

(4) for every continuous map f : A — Y into any finite di-
mensional metric simplicial complez, there exist a cozero-
set G of X containing A and a continuous mapg : G —Y
such that carr(f(a)) = carr(g(a)) for each a € A;

(5) for every v and any continuous map f : A — J(v), there
exist a cozero-set G of X containing A and a continuous
map g : G — J(v) such that g7'((0,1) x {¢}) N A =
F71(0,1)x {€}) and g7 ({1} x {€})NA = f7H ({1} x {&})
for every € € ;

(6) for every v and any continuous map f: A — J(v), there
exist a cozero-set G of X containing A and a continuous
map g : ‘G — J(v) such that g7'((0,1] x {¢)nA =

f! ((0,1] X {f}) for every £ € ~.
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Remark 4.4. In Theorem 4.1(5), “G” can not be strengthen
to “X”. In other words, g in Proposition 2.2(2) can not be re-
quired to have further property ¢ ' ({1} x {¢})NA = f~1 ({1} x
{&}) for every € € 4. (See the next theorem.)

From Theorem 4.1, we have the following characteriza-
tions of P7-embedding; (1) < (2) is contained in Proposition
2.3.

Theorem 4.5. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A s P7-embedded in X;

(2) for every point finite partition {f, : a € Q} of unity on
A with Card Q < v, there ezists a partition {g, : @ € Q}
of unity on X such that g7'((0,1]) N A = f;1((0,1]) for
each o € Q;

(3) for every continuous map f : A — Y into any finite
dimensional contractible metric simplicial complex with
weight < ~, there ezists a continuous map g : X — Y
such that carr(f(a)) = carr(g(a)) for each a € A;

(4) for every continuous map f : A — J(v), there exists a
continuous map g : X — J(v) such that g7'((0,1) X

{€})NA=f1(0,1) x {¢€}) and g ({1} x {E}) N A =
71} x {€}) for every £ € .

Proof of the following lemma is essentially in [15, Lemma
4.3] and omitted.

Lemma 4.6. Let X be a space and A its subspace. Assume
that for every continuous map f : A — J(w), there ezxists a
continuous map g : X — J(w) such that g7 ((0,1)x {£})NA =
FH(0,1) x {

zi}) and g7 ({1} x {E})NA = f71({1} x {€}) for every & € w.
Then, A is well-embedded in X.

Proof of Theorem 4.5: To prove (1) = (3), we assume
(1) to be satisfied. Let Y be a finite dimensional contractible
metric simplicial complex with weight <+ and f: A - Y be
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a continuous map. By Theorem 4.1(4) and well-embeddedness
of A, there exist a cozero-set G of X, a zero-set Z of X and
a continuous map A : G — Y such that A C Z C G and
carr(f(a)) = carr(h(a)) for each a € A. As was proved by
Dydak [5, Section 8], there exists a continuous map g : X — Y
such that carr(f(a)) = carr(g(a)) for each a € A.

(3) = (4) is obvious. (4) = (1) follows from Theorem 4.1(5)
and Lemma 4.6. It completes the proof. O

Corollary 4.7. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A is C-embedded in X;

(2) for every continuous map f : A — Y into any finite
dimensional separable contractible metric simplicial com-
plezx, there exists a continuous map g : X — Y such that
carr(f(a)) =carr(g(a)) for each a € A;

(3) for every continuous map f : A — J(w), there exists a
continuous map g : X — J(w) such that g7'((0,1) x
{)nA=f7(0,1) x {£}) and g7 ({1} x {€}) N A =
STHE1} x {€}) for every £ € w.

Corollary 4.8. Let X be a space and A its subspace. Then
the following statements are equivalent:

(1) A is P-embedded in X;

(2) for every continuous map f : A — Y into any finite
dimensional contractible metric simplicial complez, there
erists a continuous map g :-X — Y such that carr(f(a))
= carr(g(a)) for each a € A,

(3) for every v and every continuous map f : A — J(v),
there ezists a continuous map g : X — J(v) such that
g7 (0,1) x {€}) N A= F1((0,1) x {€}) and g ({1} x
[N A = ({1} x {€}) for every € €.

Remark 4.9. (i) In Theorem 4.5(2), a partition {g, : o € 1}
of unity can not be replaced by a cover of cozero-sets (see Re-
mark 3.6). (ii) In [15], (P*)7-embedding was introduced so as
to be coincide with z,- plus C*-embedding and characterized by
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using hedgehog-valued functions. Related to (P*)"-embedding,
we can show the following: If A is a (P*)”-embedded subspace
of a space X, then for every continuous map f: A — Y into
any finite dimensional metric simplicial complex with weight
< 4 and every finite number simplices o4, ..., 0, of |Y|, there
exist a cozero-set G of X containing A and a continuous map
g : G — Y such that carr(f(a)) =carr(g(a)) for each a € A
and f(a) = g(a) for every a € f~* (U, o). Its proof is com-
plicated and but uses a similar technique to that of the proof
of “(1) = (3)” of Theorem 4.1 that we omit it.

Next, we study another type of characterization of z,-
embedding by approximations. In [4, Theorem 2.2], Blair and
Hager proved the following: A subspace A of a space X is z-
embedded in X if and only if for every continuous real-valued
(or bounded real-valued) function f on A and any € > 0, there
exist a cozero-set G of X containing A and a continuous func-
tion g on G such that |g(a) — f(a)| < € for each a € A. Propo-
sition 2.2(4) extends this result to the case of z,-embedding.
Theorem 4.10 or Corollary 4.11 below extends these results
to the case of maps with values into finite dimensional metric
simplicial complexes.

Theorem 4.10. Let X be a space and A its subspace. Then

the following statements are equivalent:

(1) A is zy,-embedded in X

(2) for every continuous map f : A — (Y,d) into any finite
dimensional metric simplicial complez with weight < ~
and any € > 0, there exist a cozero-set G of X con-

taining A and a continuous map g : G — Y such that
d(g(a), f(a)) < € for each a € A.

Proof: To prove (1) = (2), we assume A is z,-embedded in
X. Let (Y, d) be a finite dimensional metric simplicial complex
with weight < v, f: A — Y be a continuous map and € > 0.
Let Y’ be a finitely many fold iterated barycentric subdivision
of Y such that mesh Y’ < € with respect to d. We denote by d’
the metric of simplicial complex Y’. We note that (Y, d) and
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(Y’,d’') are homeomorphic under the usual identity continuous
map. From Theorem 4.1(2), there exist a cozero-set G' of X
containing A and a continuous map ¢ : G — (Y, d’) such that
carr(f(a)) =carr(g(a)) (in Y’) for each a € A. Since every
diameter of simplex of Y’ is less than ¢ with respect to d, we
have d(g(a), f(a)) < € for every a € A.

To prove (2) = (1), we assume (2) to be satisfied. Let
f:A— (J(y),p) be a continuous map and ¢ > 0. It suffices
to show that there exist a cozero-set G' of X containing A and
a continuous map g : G — J(v) such that p(g(a), f(a)) <
¢ for every a € A because of Proposition 2.2(4). From the
assumption, there exist a cozero-set G of X containing A and a
continuous map g : G — (J(7),d) such that d(g(a), f(a)) <.
Since p < d, we have that p(g(a), f(a)) < € for each a € A; the
proof is completed. O

Corollary 4.11. A subspace A of a space X is z-embedded in
X if and only if for every continuous map f : A — (Y, d) into
any finite dimensional separable metric simplicial complex and
any € > 0, there exist a cozero-set G of X containing A and
a continuous map g : G — Y such that d(g(a), f(a)) < € for
each a € A.

Corollary 4.12. A subspace A of a space X is z.-embedded
in X if and only if for every continuous map f : A — (Y,d)
into any finite dimensional metric simplicial complex and any
e > 0, there exist a cozero-set G of X containing A and a
continuous map g : G — Y such that d(g(a), f(a)) < € for
each a € A.

Here is a problem whether J(y) in Proposition 2.2(4) can be
changed into any Cech-complete AR or not; this was asked in
[14] or [15, Problem 4.10]. Theorem 4.10 is a partial answer to
this problem; more generally we pose the following:

Problem 4.13. Let A be a z,-embedded subspace of a space X.
Is it true that for every continuous map from A into any Cech-
complete ANR'Y with weight < v, any (or some) metric p’ on
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Y and any e > 0, there exist a cozero-set G of X containing A
and a continuous map g : G — Y such that p’(g(a),f(a)) <e€
for every a € A?

Related to Theorem 4.10, we also have the folowing result:
A subspace A of a space X is P"-embedded in X if and only
if for every continuous map f : A — (Y,d) into any finite
dimensional contractible metric simplicial complex and any
e > 0, there exists a continuous map g : X — Y such that
d(g(a), f(a)) < ¢ for every a € A. However, if we consider (2)
with (4) in Proposition 2.3, then we can conclude more general
results as follows:

Proposition 4.14. Let C and C' be subclasses of the class of
all finite dimensional metric simplicial complexes with weight
< « satisfying J(v) € C,C'. Let X be a space and A its sub-
space. Then the following statements are equivalent:

(1) A is zy-embedded in X;

(2) for any Y € C and any continuous map f: A — Y, there
exist a cozero-set G of X containing A and a continuous
map g : G — Y such that carr(f(a)) :carr(g(a)) for
each a € A;

(3) for any (Y,d) € C', any continuous map f : A — Y
and any € > 0, there exist a cozero-set G of X con-
taining A and a continuous map g : G — Y such that

d(g(a), f(a)) < € for each a € A.

Proposition 4.15. Let C be a subclass of the class of all com-
plete AR metric simplicial complezes with weight < ~ satis-
fying J(v) € C and C' be a subclass of the class of all Cech-
complete AR spaces with weight < ~ satisfying J(v) € C'. Then
the following statements are equivalent:

(1) A is PY-embedded in X

(2) forany Y € C and any continuous map f: A — Y, there
ezists a continuous map g : X — Y such that carr(f(a))
= carr(g(a)) for each a € A;
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(3) for any (Y,d) € C', any continuous map f : A — Y and
any e > 0, there exists a continuous map g : X — Y such

that d(g(a), f(a)) < € for each a € A.

Added in proof. Recently, Professor V. Gutev kindly sent
the author an e-mail showing that Problem 4.13 is affirmative.

REFERENCES

[1] Alo, R. A. and H. L. Shapiro, Normal Topological Spaces, Cambridge
University Press, Cambridge, 1974.

[2] R. H. Bing, Meirization of topological spaces, Canad. J. Math., 3
(1951), 175-186.

[3] R. L. Blair, A cardinal generalization of z-embedding, Rings of con-
tinuous functions, Lecture Notes in Pure and Applied Math., 95,
Marcel Dekker Inc. (1985), 7-78.

[4] R. L. Blair and A. W. Hager, Eztensions of zero-sets and of real-
valued functions, Math. Z., 136 (1974), 41-52.

- [6] J. Dydak, Eztension Theory : the interface between set-theoretic and
algebraic topology, Topology Appl., 74 (1996), 225-258.

[6] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

[7] T. Hoshina, Eztensions of mappings, I, in: Topics in Gen. Top., K.
Morita and J. Nagata, eds., North-Holland (1989), 41-80.

(8] S. T. Hu, Theory of Retracts, Wayne State University Press, 1965.

[9] T. Ishii and H. Ohta, Generalizations of C-embedding and their ap-
plications, Math. Japon., 23 (1978), 349-368.

[10] M. Katétov, Eztension of locally finite covers, Colloq. Math., 6
(1958), 145-151. (in Russian.)

[11] K. Morita, On generalizations of Borsuk’s homotopy extension theo-
rem, Fund. Math. 88 (1975), 1-6.

[12] T. Przymusinski, Collectionwise normality and eztensions of contin-
wous functions, Fund. Math., 98 (1978), 75-81.

[13] T. C. Przymusinski and M. L. Wage, Collectionwise normality and
extensions of locally finite coverings, Fund. Math., 109 (1980), 175—
187.

[14] K. Tsukada, zc-embedding and approzimations of continuous func-
tions, MSc thesis, Univ. of Tsukuba, 1989 (in Japanese).

- [15] K. Yamazaki, A cardinal generalization of C*-embedding and its ap-

plications, Topology Appl. (to appear).



EXTENSIONS OF PARTITIONS OF UNITY 313

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA-
SHI, IBARAKI 3056-8571 JAPAN
FE-mail address: kaori@math.tsukuba.ac. jp





