Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

TOPOLOGIES OF QUASI-UNIFORM CONVERGENCE ON GROUPS OF HOMEOMORPHISMS

Kathryn F. Porter

Abstract

In 1997, we proved that a topology of Pervin-type quasi-uniform convergence on a subgroup, G, of the collection of all self-homeomorphisms, H(X), is equivalent to a certain type set-open topology on G. We describe the topologies of two other kinds of quasi-uniform convergence on G using analogies of well-known function space topologies. The paper ends with a discussion of properties of these function spaces.

1. Introduction

In 1965, Murdeshwar and Naimpally [8] defined quasi-uniform convergence as a generalization of uniform convergence and discussed the topology of quasi-uniform convergence on function spaces. The many interesting results that followed, often involving groups of homeomorphisms, unfortunately involved the tedious and cumbersome notation needed when discussing the topology of quasi-uniform convergence.

Mathematics Subject Classification: Primary: 54C35, 57S05; Secondary: 54H99

Key words: quasi-uniformity, self-homeomorphism, Pervin quasiuniformity, topology of quasi-uniform convergence, open-open topology, covering quasi-uniformity, lower semi-continuous quasi-uniformity, strong Γ -open-cover topology, \mathcal{E} -graph topology

Kathryn F. Porter

Porter, in 1993 [12], proved that given a topological space, (X, T), the topology of Pervin quasi-uniform convergence on H(X) is equivalent to the open-open topology, T_{oo} , on H(X), which has as its subbasic open sets those that are in the form

$$(U,V) = \{h \in H(X) : h(U) \subset V\}$$

where the sets U and V are open in (X, T). Using the simple notation that the open-open topology affords, the theorems and proofs involving quasi-uniform convergence on groups of homeomorphisms are simpler and more concise.

In 1997, Porter [13] also observed that any topology of Pervintype quasi-uniform convergence on any subset of H(X) is equivalent to some set-open topology under some conditions on X, once again simplifying notation and proofs.

We shall show that the topologies of quasi-uniform convergence induced on $G \subset H(X)$ by either the covering or lowersemicontinuous type quasi-uniformities on (X, T) may also be classified as function space topologies that are familiar to us.

Throughout this paper we shall assume that (X, T) is a topological space.

2. Preliminaries

Let X be a non-empty set and let \mathcal{Q} be a collection of subsets of $X \times X$ which satisfy the following four conditions:

- (1) for all $U \in \mathcal{Q}$, $\triangle = \{(x, x) \in X \times X : x \in X\} \subset U$
- (2) for all $U \in \mathcal{Q}$, if $U \subset V$ then $V \in \mathcal{Q}$
- (3) for all $U, V \in \mathcal{Q}, U \cap V \in \mathcal{Q}$
- (4) for all $U \in \mathcal{Q}$, there exists some $W \in \mathcal{Q}$ such that $W \circ W \subset U$ where $W \circ W = \{(p,q) \in X \times X : \exists r \in X \ni (p,r), (r,q) \in W\}.$

Then \mathcal{Q} is a quasi-uniformity on X.

A quasi-uniformity, \mathcal{Q} , on X induces a topology, $T_{\mathcal{Q}}$, on X, such that for each $x \in X$, the set $\{U(x) : U \in \mathcal{Q}\}$ is a neighborhood system at x, where $U(x) = \{y \in X : (x, y) \in U\}$.

Let \mathcal{B} be a family of subsets of $X \times X$ which satisfies properties (1) and (4) in the definition of quasi-uniformity, and also (3'): for all $B_1, B_2 \in \mathcal{B}$, there exists some $B_3 \in \mathcal{B}$ such that $B_3 \subset B_1 \cap B_2$. Then \mathcal{B} is a *basis* for a quasi-uniformity, \mathcal{Q} , on X. The basis, \mathcal{B} , generates the quasi-uniformity $\mathcal{Q} = \{U \subset X \times X : \hat{B} \subset U \text{ for some } \hat{B} \in \mathcal{B}\}.$

A family, S, of subsets of $X \times X$ which satisfies properties (1) and (4) in the definition of quasi-uniformity is a *subbasis* for a quasi-uniformity, Q, on X. This subbasis S generates a *basis*, \mathcal{B} , for the quasi-uniformity, Q, where \mathcal{B} is the collection of all finite intersections of elements of S.

Every topological space (X, T) is quasi-uniformizable which means that given a topological space (X, T) there exists a quasiuniformity, \mathcal{Q} , which induces a topology $T_{\mathcal{Q}}$ on X which is equivalent to the original topology, i.e., $T = T_{\mathcal{Q}}$. Krishnan [6] was the first to prove that every topological space is quasiuniformizable, however, Pervin [11] actually constructed a specific quasi-uniformity which induces an equivalent topology for a given topological space. His construction is as follows: Let (X, T) be a topological space. For $O \in T$ define

$$S_O = (O \times O) \cup ((X \setminus O) \times X).$$

One can show that for $O \in T, S_O \circ S_O = S_O$ and $\Delta \subset S_O$, hence, the collection $\{S_O : O \in T\}$ is a subbasis for a quasiuniformity, P, on X, called the *Pervin quasi-uniformity*. Note that for $x \in X$, the neighborhoods of x in T_Q are

$$S_O(x) = \begin{cases} X & \text{if } x \notin O \\ O & \text{if } x \in O. \end{cases}$$

Let \mathcal{Q} be a compatible quasi-uniformity for (X, T) and let G be a subgroup of H(X). For $U \in \mathcal{Q}$, define the set

$$W(U) = \{ (f,g) \in G \times G : (f(x),g(x)) \in U \text{ for all } x \in X \}.$$

Then the collection $\mathcal{B} = \{W(U) : U \in \mathcal{Q}\}$ is a basis for a quasi-uniformity, \mathcal{Q}^* , on G, called the quasi-uniformity of quasiuniform convergence w. r. t. \mathcal{Q} . The topology, $T_{\mathcal{Q}^*}$ on G, induced by \mathcal{Q}^* on G, is called the topology of quasi-uniform convergence w.r.t. \mathcal{Q} [9].

In the following sections we shall examine the topology of quasi-uniform convergence on subsets of H(X) when the quasiuniformity, Q, on X is (i) a Pervin-type quasi-uniformity, (ii) a covering quasi-uniformity, or (iii) a lower semi-continuous quasiuniformity.

3. Pervin-Type Quasi-Uniformities

To generalize the idea of the Pervin quasi-uniformity, let \mathcal{A} be any collection of open sets in (X,T), not necessarily all of Tas in Pervin's definition. For each $O \in \mathcal{A}$, define, as before, $S_O = (O \times O) \cup ((X \setminus O) \times X)$. Then, again, we have that for all $O \in \mathcal{A}$, $S_O \circ S_O = S_O$ and $\Delta \subset S_O$, and thus, the collection $\{S_O : O \in \mathcal{A}\}$ is a subbasis for a *Pervin-type quasi-uniformity*, $\mathcal{Q}_{\mathcal{A}}$, on X. The topology induced on X by $\mathcal{Q}_{\mathcal{A}}$ will be denoted by $T_{\mathcal{A}}$.

Let $G \subset H(X)$, then a collection $\mathcal{A} \subset P(X) = \{F : F \subset X\}$ is called a *G-invariant collection of sets* provided that for all $A \in \mathcal{A}$ and for all $g \in G$, $g(A) \in \mathcal{A}$. If a *G*-invariant collection, \mathcal{A} , is also a basis for (X, T), then \mathcal{A} will be called a *G-invariant basis*.

In 1997, Porter [13] proved that the topology, $T_{\mathcal{A}}$, induced on X by the Pervin-type quasi-uniformity $\mathcal{Q}_{\mathcal{A}}$, when \mathcal{A} is a Ginvariant basis for (X, T), is equivalent to the original topology, T, on X.

Now suppose that G is a collection of self-homeomorphisms on X and that \mathcal{A} is a G-invariant basis for (X, T). The Pervintype quasi-uniformity, $\mathcal{Q}_{\mathcal{A}}$, induces a quasi-uniformity, $\mathcal{Q}_{\mathcal{A}}^*$, on G. The topology then induced on G by $\mathcal{Q}_{\mathcal{A}}^*$ will be called a topology of Pervin-type quasi-uniform convergence on G and will be denoted by $T_{\mathcal{Q}_{\mathcal{A}}^*}$. Porter [13] proved that each of these topologies of Pervin-type quasi-uniform convergence is, in fact, equivalent to a set-open topology which is defined as follows. Let \mathcal{A} be a collection of subsets of X. For $A \in \mathcal{A}$, and $O \in T$, define the set

$$(A,O) = \{ f \in G : f(A) \subset O \}.$$

Set $S_{AO} = \{(A, O) : A \in \mathcal{A} \text{ and } O \in T\}$, then if S_{AO} is a subbasis for a topology on G, we call this topology a *set-open* topology and denote it by T_{AO} .

Note that if \mathcal{A} is a G-invariant basis, then $S_{\mathcal{A}O}$ is a subbasis for a topology. The finest of this type set-open topology is the *open-open topology* [12] where $\mathcal{A} = T$, and we have:

Theorem 1. [13] Let (X,T) be a topological space and let G be a subgroup of H(X). Assume \mathcal{A} is a G-invariant basis for (X,T) and let $\mathcal{Q}_{\mathcal{A}}$ be the Pervin-type quasi-uniformity induced on X. Then, the set-open topology, $T_{\mathcal{A}O}$, on G is equivalent to the topology of Pervin-type quasi-uniform convergence, $T_{\mathcal{Q}_{\mathcal{A}}^*}$, on G.

4. Covering-Type Quasi-Uniformities

Fletcher [2], in 1971 introduced the covering-type quasi-uniformities. The following definitions all appear in the same paper. Let (X, T) be a topological space and let \mathcal{V} be an open cover of X. For each $x \in X$, define the set

$$A_x^{\mathcal{V}} = \bigcap \{ V \in \mathcal{V} : x \in V \}.$$

We say \mathcal{V} is a *Q*-cover of X provided that for all $x \in X$, $A_x^{\mathcal{V}}$ is open in X. Let $O \in T$ then \mathcal{V} is a fundamental cover of X

about O provided $O \in \mathcal{V}$ and if $W \in \mathcal{V}$ such that $O \cap W \neq \phi$ then $O \subset W$. Note that this implies that $\forall x \in O, A_x^{\mathcal{V}} = O$.

Theorem 2. [2] Let (X, T) be a topological space and let Γ be a collection of Q-covers of X such that for each $O \in T$, Γ contains a fundamental cover of X about O. Let $S_{\Gamma} = \{\mathcal{U}_{\mathcal{V}} : \mathcal{V} \in \Gamma\}$ where

$$\mathcal{U}_{\mathcal{V}} = \bigcup_{x \in X} \{x\} \times A_x^{\mathcal{V}}$$

Then S_{Γ} is a subbasis for a quasi-uniformity, Q_{Γ} , for X. In addition, the topology, $T_{Q_{\Gamma}}$, induced by Q_{Γ} on X is equivalent to T.

We will call this quasi-uniformity, \mathcal{Q}_{Γ} , the Γ -covering quasiuniformity for X. Theorem 2 follows from the following three facts: (i) $\Delta \subset \mathcal{U}_{\mathcal{V}}$, (ii) $\mathcal{U}_{\mathcal{V}} \circ \mathcal{U}_{\mathcal{V}} \subset \mathcal{U}_{\mathcal{V}}$, and (iii) $\mathcal{U}_{\mathcal{V}}(x) = A_x^{\mathcal{V}} \in T$.

Fletcher proved that for every Γ -covering quasi-uniformity, \mathcal{Q}_{Γ} , on (X,T), $P \subset \mathcal{Q}_{\Gamma}$ where P is the Pervin quasi-uniformity for X, and, if Γ is the collection of all finite open covers, then $\mathcal{Q}_{\Gamma} = P$. Thus, it follows that the Pervin quasi-uniformity is the coarsest covering quasi-uniformity for (X,T).

Now, what does the topology of quasi-uniform convergence that is induced on a group of homeomorphisms look like when the underlying quasi-uniformity on X is a Γ -covering quasiuniformity? The motivation for the definition of the function space topologies which are equivalent to these topologies of quasiuniform convergence are the cover-close topologies and the opencover topology which were studied by Irudayanathan [5] and McCoy [7] respectively. The definitions of these topologies are given below for completeness.

Let (X, T) and (Y, T') be topological spaces and let C(X, Y)denote the collection of all continuous functions from X into Y. Let $\Gamma(Y)$ be the set of all open covers of Y. For each $\mathcal{V} \in \Gamma(Y)$ and each $f \in C(X, Y)$, let

$$\mathcal{V}^*(f) = \{g \in C(X, Y) : \forall x \in X, \exists V \in \mathcal{V} \ni (f(x), g(x)) \in V \times V\}.$$

Then $S_{\gamma} = \{\mathcal{V}^*(f) : \mathcal{V} \in \Gamma(Y) \text{ and } f \in C(X, Y)\}$ is a subbasis for a topology, T_{γ} , called the *open-cover topology* [7], on C(X, Y).

Let (X, T) and (Y, T') be topological spaces. Let $\Gamma(Y)$ be a collection of open covers of Y such that $\{St(p, \mathcal{V}) : \mathcal{V} \in \Gamma(Y)\}$ is a neighborhood base at p for each $p \in Y$, where $St(p, \mathcal{V}) =$

 $\bigcup_{p \in V \in \mathcal{V}} V. \text{ For each } \mathcal{V} \in \Gamma(Y) \text{ and each } f \in C(X,Y), \text{ let}$

$$W(f, \mathcal{V}) = \{g \in C(X, Y) : \forall x \in X, g(x) \in St(f(x), \mathcal{V})\}$$

Then $S = \{W(f, \mathcal{V}) : \mathcal{V} \in \Gamma(Y) \text{ and } f \in C(X, Y)\}$ is a subbasis for a topology, T_{γ} , called the Γ -close topology [5], on C(X, Y).

These topologies are not quite what we need; in fact it is true that the open-cover topology is contained in all the topologies of quasi-uniform convergence which are induced by a Γ -covering type quasi-uniformity, and the Γ -close topology is contained in the topology of quasi-uniform convergence induced by Γ .

However, adaptations of the definitions will work.

Let (X, T) and (Y, T') be topological spaces. Let $\Gamma(Y)$ be a collection of open covers of Y. For each $\mathcal{V} \in \Gamma(Y)$ and each $f \in C(X, Y)$, define

$$\mathcal{V}(f) = \{ g \in C(X, Y) : \forall x \in X, f(x) \in V \in \mathcal{V} \Rightarrow g(x) \in V \}.$$

Then $S_{\Gamma} = \{\mathcal{V}(f) : \mathcal{V} \in \Gamma(Y) \text{ and } f \in C(X, Y)\}$ is a subbasis for a topology, T_{Γ} , called the *strong* Γ -open-cover topology, on C(X, Y).

It is this topology, with certain conditions on Γ which will describe the topologies of covering quasi-uniform convergence on subsets G of H(X).

Theorem 3. Let (X,T) be a topological space and let $G \subset H(X)$. Assume Γ is a collection of Q-covers of X such that for each $O \in T$, the collection Γ contains a fundamental cover of X about O. Then the topology of Γ -covering quasi-uniform

convergence, $T_{\mathcal{Q}_{\Gamma}^*}$, is equivalent to the strong Γ -open-cover topology, T_{Γ} , on G.

Proof: Let (X, T), G, and Γ be as defined above. Let $\mathcal{V} \in \Gamma$ and $f \in G$. Note that $\mathcal{V}(f) = \{g \in G : \forall x \in X, g(x) \in A_{f(x)}^{\mathcal{V}}\}$.

Recall that the basis elements for the topology of quasi-uniform convergence w.r.t. Q, T_{Q^*} , on G, look like

$$W(Q)(f) = \{g \in G : g(x) \in Q(f(x)), \ \forall x \in X\},\$$

where $f \in G$ and $Q \in \mathcal{Q}$. Since the quasi-uniformity, \mathcal{Q} , for (X,T) is the Γ -covering quasi-uniformity, note that

$$W(\mathcal{U}_{\mathcal{V}})(f) = \{ g \in G : g(x) \in \mathcal{U}_{\mathcal{V}}(f(x)), \ \forall x \in X \} \\ = \{ g \in G : g(x) \in A_{f(x)}^{\mathcal{V}}, \ \forall x \in X \}.$$

This means that $W(\mathcal{U}_{\mathcal{V}})(f)$ consists of all homeomorphisms, $g \in G$, such that if $f(x) \in V \in \mathcal{V}$ then g(x) is also in V. Hence,

$$W(\mathcal{U}_{\mathcal{V}})(f) = \mathcal{V}(f).$$

5. Lower Semi-Continuous Quasi-Uniformities

Let (X,T) be a topological space and let f be a real-valued function on X. Then for $\epsilon > 0$, we define

$$U_{(\epsilon,f)} = \{(x,y) \in X \times X : f(x) - f(y) < \epsilon\}.$$

Let (X, T) be a topological space and let f be a real-valued function on X. We say that f is *lower semi-continuous* on Xprovided that for all $a \in \mathbf{R}$, $f^{-1}((a, +\infty))$ is open in X.

A collection \mathcal{E} of lower semi-continuous functions is called admissible [2] provided that for each $O \in T$ and $x \in O$ there exists $f \in \mathcal{E}$ such that f(x) = 1 and $f(X \setminus O) = 0$.

Theorem 4. [4] Let (X, T) be a topological space and let \mathcal{E} be an admissible collection of lower semi-continuous functions on

X. Then the collection

$$\mathcal{S} = \{ U_{(\epsilon, f)} : f \in \mathcal{E} \text{ and } \epsilon > 0 \}$$

is a subbasis for a quasi-uniformity, $\mathcal{Q}_{\mathcal{E}}$, which is compatible with T.

This quasi-uniformity in Theorem 4 is called the \mathcal{E} -semicontinuous quasi-uniformity for (X, T) and we denote it by \mathcal{E} -SC. The proof of this theorem follows from the following facts: (a) $\Delta \subset U_{(\epsilon,f)}$, (b) $U_{(\frac{\epsilon}{2},f)} \circ U_{(\frac{\epsilon}{2},f)} \subset U_{(\epsilon,f)}$, and (c) $U_{(\epsilon,f)}(x) = f^{-1}(f(x) - \epsilon, +\infty) \in T$.

Again we seek to classify the topologies of quasi-uniform convergence induced on G this time by the \mathcal{E} -SC quasiuniformities on X. To this end let us look at the following well-known topology for function spaces.

Let (X, T) and (Y, T') be topological spaces. For any function $f \in Y^X$, the graph of f, denoted by Gr(f), is the set

$$Gr(f) = \{ (x, f(x)) \in X \times Y : x \in X \}.$$

Give $X \times Y$ the product topology, T_P . For each open set O in $X \times Y$, define

$$F_O = \{ f \in Y^X : Gr(f) \subset O \}.$$

Then the set $\mathcal{B} = \{F_O : O \in T_P\}$ is a basis for a topology, T_{Gr} , on Y^X called the graph topology [10].

The graph topology introduced by Naimpally in 1966 is the motivation for the definition of the \mathcal{E} -graph topology we define below.

A collection \mathcal{E} of lower semi-continuous functions will be called *G-closed* provided that for each $f \in \mathcal{E}$ and each $h \in G \subset H(X)$, $f \circ h \in \mathcal{E}$. Kathryn F. Porter

Now let \mathcal{E} be a *G*-closed collection of lower semi-continuous functions on *X* where $G \subset H(X)$. For $f \in \mathcal{E}$, $\epsilon > 0$ and $h \in G$ define

$$(h, U_{(\epsilon, f)}) = \{g \in G : Gr(h^{-1} \circ g) \subset U_{(\epsilon, f \circ h)}\}.$$

Then $\mathcal{S} = \{(h, U_{(\epsilon, f)}) : f \in \mathcal{E}, \epsilon > 0, \text{ and } h \in G\}$ is a subbasis for a topology, $T(\mathcal{E})$, on G, which we will call the \mathcal{E} -graph topology. We claim the following.

Theorem 5. Let (X,T) be a topological space and let \mathcal{E} be an admissible G-closed collection of lower semi-continuous functions on X where $G \subset H(X)$. Then the topology of \mathcal{E} -SC quasi-uniform convergence, $T_{\mathcal{Q}_{\mathcal{E}}^*}$, is equivalent to the \mathcal{E} -graph topology, $T(\mathcal{E})$, on G.

Proof. Recall that the basis elements for the topology, $T_{\mathcal{Q}^*}$, of quasi-uniform convergence w.r.t. \mathcal{Q} on $G \subset H(X)$, look like

$$W(Q)(f) = \{g \in G : g(x) \in Q(f(x)), \ \forall x \in X\},\$$

where $f \in G$ and $Q \in Q$. Since the quasi-uniformity here, Q, for (X, T) is the \mathcal{E} -SC quasi-uniformity, note that

$$W(U_{(\epsilon,f)})(h) = \{g \in G : g(x) \in U_{(\epsilon,f)}(h(x)), \forall x \in X\}$$

= $\{g \in G : g(x) \in \{y \in X : f \circ h(x) - f(y) < \epsilon\}, \forall x \in X\}$
= $\{g \in G : f \circ h(x) - f(g(x)) < \epsilon, \forall x \in X\}$
= $\{g \in G : f \circ h(x) - f \circ h(h^{-1} \circ g(x)) < \epsilon, \forall x \in X\}.$

This means that $W(U_{(\epsilon,f)})(h)$ consists of all homeomorphisms, $g \in G$, such that $(x, h^{-1} \circ g(x)) \in U_{(\epsilon,f \circ h)} \forall x \in X$, which implies that the graph of $h^{-1} \circ g$ is contained in $U_{(\epsilon,f \circ h)}$. Hence,

$$W(U_{(\epsilon,f)})(h) = (h, U_{(\epsilon,f)}).$$

Therefore the theorem is true.

6. Some Properties

Let (X, \mathcal{U}) and (Y, \mathcal{Q}) be quasi-uniform spaces. A function $f : X \to Y$ is quasi-uniformly continuous iff for each $Q \in \mathcal{Q}$ there exists some $U \in \mathcal{U}$ such that if $(x, y) \in U$ then $(f(x), f(y)) \in Q$.

In 1997, Porter [13] proved that if G is a subgroup of H(X)with the topology of quasi-uniform convergence induced by the compatible Pervin-type quasi-uniformity on (X, T), then each $g \in G$ is quasi-uniformly continuous. Under suitable hypotheses, Fletcher [3] obtained the same conclusion for G when endowed with one of the two other types of quasi-uniform convergence.

Let Γ be a collection of Q-covers of X such that for each $O \in T$, Γ contains a fundamental cover about O. Let G be a subgroup of H(X). Then Γ is called a *G*-invariant class of Q-covers of X provided that if $\mathcal{V} \in \Gamma$ and $h \in G$ then $\{h(V) : V \in \mathcal{V}\} \in \Gamma$.

Theorem 6. Let (X,T) be a topological space and let G be a subgroup of H(X). Under any one of the following hypotheses, each $g \in G$ is quasi-uniformly continuous:

- (i) Give G the topology of quasi-uniform convergence induced by a compatible Pervin-type quasi-uniformity on (X,T). [13]
- (ii) Let Γ be a G-invariant class of Q-covers of X and give G the topology of Γ -covering quasi-uniform convergence. [3]
- (iii) Let \mathcal{E} be an admissible G-closed collection of lower semicontinuous functions and give G the topology of \mathcal{E} -SC quasiuniform convergence. [3]

Theorem 7. Let (X,T) be a topological space and let G be a subgroup of H(X) Under any one of the following hypotheses, if (X,T) is T_i , i = 0, 1, 2, then (G, \hat{T}) is T_i , i = 0, 1, 2, respectively:

Kathryn F. Porter

- (i) Let $T = T_{\mathcal{Q}^*_{\mathcal{A}}}$ the topology of quasi-uniform convergence induced by a compatible Pervin-type quasi-uniformity, $\mathcal{Q}^*_{\mathcal{A}}$, on (X, T). [13]
- (ii) Let Γ be a G-invariant class of Q-covers of X and let Î = T_Γ, the topology of Γ-covering quasi-uniform convergence.
 [3]
- (iii) Let \mathcal{E} be an admissible G-closed collection of lower semicontinuous functions and let $\hat{T} = T(\mathcal{E})$, the topology of \mathcal{E} -SC quasi-uniform convergence. [3]

Let G be a group with group operation \cdot and topology T^+ . Then G is a *paratopological group* (or quasi-topological group) provided that the map $m : (G, T^+) \times (G, T^+) \to (G, T^+)$ with $m(f, g) = f \cdot g$ is continuous.

In 1971, Fletcher [3] showed that for any subgroup, G, of H(X), in which all members are quasi-uniformly continuous with respect to a compatible quasi-uniformity Q, and which has been given the topology of quasi-uniform convergence w.r.t. Q, (G, T_Q^*) is a paratopological group. Hence, from Theorem 6 we have:

Corollary 1. Let (X,T) be a topological space and let G be a subgroup of H(X). Under any one of the following hypotheses, (G,\hat{T}) is a paratopological group:

- (i) Let $\hat{T} = T_{\mathcal{Q}^*_{\mathcal{A}}}$ the topology of quasi-uniform convergence induced by a compatible Pervin-type quasi-uniformity, $\mathcal{Q}^*_{\mathcal{A}}$, on (X, T). [13]
- (ii) Let Γ be a G-invariant class of Q-covers of X and let Î = T_Γ, the topology of Γ-covering quasi-uniform convergence.
 [3]
- (iii) Let \mathcal{E} be an admissible G-closed collection of lower semicontinuous functions and let $\hat{T} = T(\mathcal{E})$, the topology of \mathcal{E} -SC quasi-uniform convergence. [3]

Let (X, T) and (Y, T') be topological spaces and let F be a collection of functions from X into Y. Suppose \hat{T} is a topology on F, then \hat{T} is admissible or jointly continuous on F provided the evaluation map, $E: (F, \hat{T}) \times (X, T) \longrightarrow (Y, T')$, defined by E(f, x) = f(x) is continuous.

Theorem 8. Let (X,T) be a topological space and let G be a subgroup of H(X). Under any one of the following hypotheses, \hat{T} is admissible for G.

- (i) Let $\hat{T} = T_{\mathcal{Q}_{\mathcal{A}}^*}$ the topology of quasi-uniform convergence induced by a compatible Pervin-type quasi-uniformity, $\mathcal{Q}_{\mathcal{A}}^*$, on (X, T). [13]
- (ii) Let Γ be a G-invariant class of Q-covers of X and let $\hat{T} = T_{\Gamma}$, the topology of Γ -covering quasi-uniform convergence.
- (iii) Let \mathcal{E} be an admissible G-closed collection of lower semicontinuous functions and let $\hat{T} = T(\mathcal{E})$, the topology of \mathcal{E} -SC quasi-uniform convergence.

Proof: (i) See [13].

(ii) Let O be open in X and let $(g, x) \in E^{-1}(O)$. Thus there exists a cover $\mathcal{V} \in \Gamma$ which is a fundamental Q-cover about O. Then $(g, x) \in \mathcal{V}(g) \times g^{-1}(O)$. If $(h, y) \in \mathcal{V}(g) \times g^{-1}(O)$ then $h(z) \in V \in \mathcal{V}$ whenever $g(z) \in V$. And $y \in g^{-1}(O)$ implies that $g(y) \in O$. But since \mathcal{V} is a fundamental Q-cover about O, it is true that $O = A_{g(y)}^{\mathcal{V}}$. Hence, $h(y) \in O$. Therefore, $\mathcal{V}(g) \times g^{-1}(O) \subseteq E^{-1}(O)$ and we are done.

(iii) Let O be open in X and let $(g, x) \in E^{-1}(O)$. Then $g(x) \in O$ and so there exists a basis element $B = \bigcap_{i=1}^{n} U_{(\frac{\epsilon_i}{2}, f_i)}(g(x))$ such that $g(x) \in B \subseteq \bigcap_{i=1}^{n} U_{(\epsilon_i, f_i)}(g(x)) \subseteq O$. Then $g \in \bigcap_{i=1}^{n} (g, U_{(\frac{\epsilon_i}{2}, f_i)})$ for all $i = 1, 2, \ldots, n$ and $x \in g^{-1}(B) \subseteq g^{-1}(O)$. Suppose $(h, y) \in \bigcap_{i=1}^{n} (g, U_{(\frac{\epsilon_i}{2}, f_i)}) \times g^{-1}(B)$. Then $h \in (g, U_{(\frac{\epsilon_i}{2}, f_i)})$ for all $i = 1, 2, \ldots, n$ which means that $Gr(g^{-1} \circ h) \subseteq U_{(\frac{\epsilon_i}{2}, f_i)}$ for each i = 1, 2, ..., n. Therefore, $f \circ g(z) - f \circ h(z) < \frac{e_i}{2}$ for any $z \in X$ and any $i \in \{1, 2, ..., n\}$. Now $y \in g^{-1}(B)$ so that $g(y) \in B$. Hence, $(g(x), g(y)) \in U_{(\frac{\epsilon_i}{2}, f_i)}$ for all i = 1, 2, ..., n, which implies that $f_i \circ g(x) - f_i \circ g(y) < \frac{\epsilon_i}{2}$ for each i. Thus, $f_i \circ g(x) - f_i \circ h(y) = f_i \circ g(x) - f_i \circ g(y) + f_i \circ g(y) - f_i \circ h(y) < \epsilon_i$ for all i = 1, 2, ..., n. So $h(y) \in \bigcap_{i=1}^n U_{(\epsilon_i, f_i)}(g(x)) \subseteq O$. Whence, $\bigcap_{i=1}^n (g, U_{(\frac{\epsilon_i}{2}, f_i)}) \times g^{-1}(B) \subseteq E^{-1}(O)$ and thus, $T(\mathcal{E})$ is admissible for G.

Arens [1] showed that for any collection, F, of continuous functions from (X, T) into (Y, T'), if T_F is an admissible topology for F then T_F contains the compact-open topology, T_{co} , which has as its subbasis all sets of the form

$$(C,O) = \{f \in F : f(C) \subset O\}$$

where C is a compact subset of X and O is open in Y. This gives us our last theorem.

Theorem 9. Let (X,T) be a topological space and let G be a subgroup of H(X). Under any one of the following hypotheses, $T_{co} \subset \hat{T}$ on G.

- (i) Let $\hat{T} = T_{\mathcal{Q}^*_{\mathcal{A}}}$ the topology of quasi-uniform convergence induced by a compatible Pervin-type quasi-uniformity, $\mathcal{Q}^*_{\mathcal{A}}$, on (X,T). [13]
- (ii) Let Γ be a G-invariant class of Q-covers of X and let $\hat{T} = T_{\Gamma}$, the topology of Γ -covering quasi-uniform convergence.
- (iii) Let \mathcal{E} be an admissible G-closed collection of lower semicontinuous functions and let $\hat{T} = T(\mathcal{E})$, the topology of \mathcal{E} -SC quasi-uniform convergence.

References

- R. F. Arens, A Topology for Spaces of Transformations, Ann. of Math. 47, no. 3 (1946) 480-495.
- [2] P. Fletcher, On Completeness of Quasi-uniform Spaces, Arch. Math., 22 (1971), 200-204.
- [3] P. Fletcher, Homeomorphism Groups with the Topology of Quasi-uniform Convergence, Arch. Math., 22 (1971), 88-92.
- [4] P. Fletcher and W. Lindgren, Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 77, 1982.
- [5] A. Irudayanathan, Cover-Close Topologies for Function Spaces, Gen. Top. and its Appl. 10 (1979), 275-289.
- [6] V. S. Krishnan, A Note on Semi-Uniform Spaces, J. Madras Univ. Sect. B 25 (1955), 123-124.
- [7] R. McCoy, The Open-Cover Topology on Function Spaces, Fund. Math. CIV (1979) 69-73.
- [8] M. G. Murdeshwar and S. A. Naimpally, Quasi-Uniform Topological Spaces, Noordoff, (1966).
- [9] S. A. Naimpally, Function Spaces of Quasi-Uniform Spaces, Indag. Math. 68 (1965), 768-771.
- [10] S. A. Naimpally, Graph Topology for Function Spaces, Trans. Amer. Math. Soc. 123 (1966), 267-272.
- [11] W. Pervin, Quasi-Uniformization of Topological Spaces, Math. Ann., 147 (1962), 316-317.
- [12] K. Porter, The Open-Open Topology for Function Spaces, Inter. J. Math. and Math. Sci., v. 16 no. 1 (1993), 111-116.
- [13] K. Porter, Some Equivalent Topologies on Homeomorphism Groups, Top. Proc. 22, Summer (1997), 373-383.

Department of Mathematics and Computer Science, Saint Mary's College of California, Moraga, CA. 94575 USA

E-mail address: kporter@stmarys-ca.edu