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Abstract

Dana Scott introduced and characterized Injective
Topological Spaces as “exactly the continuous lat-
tices”. Our intention has been to obtain an anal-
ogous characterization of Injective Bitopological
Spaces.

1. Introduction

Injective T0 topological spaces were defined by Dana Scott in
[6] (Definition 1.1), where he gave two characterizations of such
spaces which we now recall:

External Characterization ([6] 1.6 Corollary; [1] 3.4 Lemma;
[4] Chapter VII, 4.7 Corollary):

A T0–topological space is injective if and only if it is a retract
of a power of the Sierpiński dyad.

Internal Characterization ([6] 2.12 Theorem; [1] Chapter II,
3.8 Theorem; [4] Chapter VII, 4.8 Proposition):
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The injective T0 topological spaces are precisely the spaces
(X,T ) such that (X,≤T ) is a continuous lattice, and the asso-
ciated Scott topology coincides with T , where ≤T denotes the
specialization order.

The purpose of this paper is to characterize injective bispaces
both externally and internally. The results are given in Section
3, and Section 4, respectively.

Firstly, we define, in a natural way, the concept of an injective
T0–bispace.

Definition 1.1. ([2]) A bitopological space (X,P,Q) is a T0–
bispace if P ∨Q is a T0–topology.

Definition 1.2. (I, L,R) will be called an injective bispace
if it has the following extension property with respect to embed-
dings:

If f : (X,P,Q) → (I, L,R), and e : (X,P,Q) → (X ′, P ′, Q′)
is an embedding, then there is F, called an extension of
f, such that F : (X ′, P ′, Q′)→ (I, L,R) and F ◦ e = f.

As an important example of an injective T0–bispace we have
the space (Q, U, L) introduced in [2], where Q = {α, β, γ, δ} and

U = {φ, {α, β} , {α, β, γ, δ}}
L = {φ, {β, γ} , {α, β, γ, δ}} .

In fact (see also [2]), every T0–bispace (X,P,Q) is homeomor-
phic to a subspace of the canonical product

(Q, U, L)C(X,Q).

We now recall some relevant definitions and notation. As
usual, f : (X,T ) → (X ′, T ′) will always denote a continuous
map;
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f : (X,P,Q)→ (X ′, P ′, Q′) will denote a map such that

f : (X,P ) → (X ′, P ′) and f : (X,Q)→ (X ′, Q′).

e : (X,P,Q) → (X ′, P ′, Q) is an embedding of (X,P,Q) into
(X ′, P ′, Q′) if e : (X,P ) → (X ′, P ′) and e : (X,Q) → (X ′, Q′)
are embeddings. We denote the set of maps f : (X,T ) →
(X ′, T ′) by C(X,X ′), we shall also denote the set of maps f :
(X,P,Q) → (X ′, P ′, Q′) by C(X,X ′); the context making it
clear whether it is spaces that are involved or alternatively, bis-
paces.

In what follows, R will denote the real line, I the unit in-
terval [0, 1] and D the two point space {0, 1} . The topology of
upper semicontinuity on R, I, D, with basic open sets of the
form (←, a), will be denoted by u. Thus (D, u) represents the
space D with topology u consisting of φ, {0} , {0, 1} .

Topologically, we could say that a point x is “above” y, if
every open neighbourhood of x contains y. This gives rise to
a partial order relation denoted by y ≤T x (so that y ≤T x if
and only if x ∈ clTy). We have x ≤T x ; x ≤T y and y ≤T

z ⇒ x ≤T z. For T0 topologies it is also true that: x ≤T y and
y ≤T x⇒ x = y.

In (R, u), the order relation induced by u is precisely the usual
order on R. This order relation, sometimes its dual, is referred
to as the specialization order induced by T on the set X and
will be written ≤T , or, simply≤ when the context makes it clear
that the topology involved is T.

2. Injective T0 Topological Spaces

Because our characterization of injective T0–bispaces is given in
terms of injective T0–spaces, we have thought that it would be
appropriate to present a characterization of this class of spaces
which, although essentially known, does not quite appear, in the
literature, in the form given below.
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Related to the concept of Monotone Convergence Space ([1],
Chapter II, 3.9 Definition) we have the following concept of a
monotone net.

Definition 2.1. Let D be a directed set and x : D → X a net
with values in a topological space (X,T ). The net will be said
to be monotonic decreasing if, for all d, d′ in D, we have
d ≤ d′ ⇒ xd′ ≤T xd.

Proposition 2.2. Let (X,T ) be an injective T0-space. Then
(X,≤T ) is a complete partially ordered set in which monotone
decreasing nets converge to their infima and every x0 is the in-
fimum of the monotone decreasing net x : Nx0 → X given by
xV = sup V , where V ∈ Nx0.

Proof. We shall only give a sketch of the proof. As is well
known, the canonical map e : (X,T ) → (D, u)C(X,D) provides
a topological and order embedding (x ≤T y ⇔ e(x) ≤P e(y),
where P refers to the product topology). It is also well known
and easily verified that ≤P coincides with the product of the ≤u

on the factors (the usual order on D = {0, 1}). Since (X,T ) is
injective, there is r : (D, u)C(X,D)→ (X,T ) such that r◦e = 1X .
The retraction map, being continuous, is necessarily monotone:

α ≤P β ⇒ r(α) ≤T r(β).

The mapping r will yield the properties given in the statement
of the proposition.

Firstly, given A ⊆ X, by order completeness of the product,
there are α, β such that β = inf e[A], α = sup e[A]. It is readily
verified that r(β) = inf A, r(α) = sup A.
For the second property, consider a monotone decreasing net
x : D → (X,≤T ). Then e ◦ x is a monotone decreasing net in
the product and, as such, converges to its infimum β, say. Then
r(β) = inf{xd | d ∈ D} and the net x converges to r(β).
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Finally, given x0 ∈ X, it is clear that x : V 7→ xV =
sup V , V ∈ Nx, yields a monotone decreasing net on the set
Nx directed by reverse inclusion. We show that inf xV = x.
It is clear that x ≤ xV for all V ∈ Nx, hence x ≤ inf xV .
Now, given V ∈ Nx, let V0 be a neighbourhood of e(x) of the
form uGi, where all Gi = D, except for one i, say i0, such that
x ∈ e←[V0] ⊆ V . It is clear that there is a point αV0 in V0 such
that β ≤ αV0 for all β in V0. In particular, e(z) ≤ αV0 for all z in
e←[V0]. Thus z ≤ r(αV0) for all z in e←[V0]. Hence xV0 ≤ r(αV0).
It is clear that, as W0 ranges through the (sub-)basic neighbour-
hoods of e(x), we have lim

W0

αW0 = inf
W0

αW0 = e(x). By continuity

of r, we get lim
W0

r(αW0) = r(e(x)) = x. Hence, there is one such

W0 for which r(αW0) ∈ V , so that xW0 ∈ V . Hence inf xV ∈ V ,
as required.

We shall express the property “x = inf
V ∈Nx

sup V ”, by saying

that the neighbourhoods of points have “small spread”.

Proposition 2.3. Let (X,T ) be a T0-space for which (X,≤T )
is a complete partially ordered set in which monotone decreas-
ing nets converge to their infima and points have small spreads.
Then (X,T ) is an injective space.

Proof. We shall show that a T0-space (X,T ) with the given
properties is a retract of its canonical product (D, u)C(X,D), hence
injective ([6], 1.4 Proposition; [4] Chapter VII, 4.7 Corollary; [1]
Chapter II, 3.2 Lemma). Following D. Scott, we shall use a “lim
approximation” expressed by the formula

r : (D, u)C(X,D)→ X, where r(α) = inf
V∈Nα

sup e←[V ]

(see Section 2 on Continuous Lattices in [6]; also [1], Chapter
II, Exercise 3.14), where e is the canonical embedding e : X →
DC(X,D). We shall use the convention that supφ = 0, where 0 is
the smallest element of (X,≤T ).
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We show that r is continuous at α: observe that if W ⊆ V ,
where V,W ∈ Nα, then e←[W ] ⊆ e←[V ], so that sup(e←[W ]) ≤
sup(e←[V ]). Thus x : Nα → (X,T ) is a monotone decreasing net
when Nα is directed by reverse inclusion and xV = sup(e←[V ]).
By the assumption concerning monotone decreasing nets, the
net converges to x0, say, where x0 = inf

V ∈Nα

xV . Define r(α)

to be x0. Consider V0, an open set which contains r(α) = x0.
Since x converges to x0, there is xU in V0, for some U ∈ Vα.
Consider β in U . Then r(β) ≤ xU , by definition of r. Now V0 is
≤T–decreasing, hence r(β) ∈ V0. Thus, r is continuous.

Finally, in terms of r, the condition that neighbourhoods have
small spreads is expressed by r(e(x)) = x. Hence X is a retract
of its canonical product, as required.

3. Injective T0-Bispaces

It may be useful to consider some examples.

Example 3.1. ([2]) As mentioned in the Introduction, let Q
denote the Quad: the set {α, β, γ, δ} with four points, and with
topologies U, L specified as follows:

U = {φ, {α, β}, {α, β, γ, δ}}

L = {φ, {β, γ}, {α, β, γ, δ}}.
It is readily verified that every T0–bispace (X,P,Q) is home-

omorphic to a subspace of the canonical product

(Q, U, L)C(X,Q),

and that (Q, U, L) is an injective bispace.

Example 3.2. The Triad (T, U, L) is the subspace of the Quad
which consists of the three points (α, β, γ). This space is not
injective, indeed, the identity map on T cannot be extended as
a bicontinuous map from (Q, U, L) to (T, U, L).
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It is natural to try to determine the relationship between in-
jective spaces and injective bispaces. We address some of the
immediate questions that arise. If (X,T ) is injective, does it
follow that (X,T, T ) is an injective bispace? The following ex-
ample answers the question negatively.

Example 3.3. Let 1D : (D, u, u) → (D, u, u). Consider e :
(D, u, u) → (T, U, L), where e(0) = β, e(1) = δ. Then, there
does not exist F : (T, U, L)→ (D, u, u), such that F ◦ e = 1D.

However, in the category of strongly–T0 bispaces — spaces
(X,P,Q) for which P ∧ Q is T0, we have the following.

Proposition 3.4. If (X,T ) is an injective T0–space, then
(X,T, T ) is an injective bispace in the category of strongly T0

bispaces.

Proof. Suppose (A,L,R)
e→ (A′, L′, R′) is an embedding, and

f : (A,L,R)→ (X,T, T ). Then e : (A,L ∧R) → (A′, L′ ∧R′) is
also an embedding and f : (A,L ∧ R) → (X,T ) is continuous.
Hence there is F : (A′, L′ ∧ R′) → (X,T ) such that F ◦ e = f .
Now 1A′ : (A′, L′) → (A′, L′ ∧ R′) and 1A′ : (A′, R′) → (A′, L′ ∧
R′) are both continuous, hence, so is F : (A′, L′, R′)→ (X,T, T ).
The proof is complete.

Proposition 3.5. If (X,P,Q) is injective, then so is
(X,P ∨Q).

Proof. Given an embedding e : (A,T ) → (A′, T ′) and
f : (A,T ) → (X,P ∨ Q), then e : (A,T, T ) → (A′, T ′, T ′) is
an embedding and f : (A,T, T ) → (X,P,Q). Hence, there is
G : (A′, T ′, T ′) → (X,P,Q) such that G ◦ f = g.
Observe that G : (A′, T ′) → (X,P ∨ Q) is continuous. The
proof is complete.

However, as may be expected, (X,P ∨ Q) may be injective
whilst (X,P,Q) is not, as the following example illustrates.
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Example 3.6. Consider (T′, U, L) the subspace of (Q, U, L),
where T′ = {δ, α, β}. The identity map from (T′, U, L) to it-
self cannot be extended to (Q, U, L). Thus (T′, U, L) is not an
injective bispace.
Note that (T′, U ∨ L) is an injective space (the 3–chain with
u–topology).

Proposition 3.7. If (X,P,Q) is an injective bispace, then (X,P )
and (X,Q) are injective spaces.

Proof. Consider an embedding (Y,L)
e→ (Y ′, L′) and

f : (Y,L) → (X,P ). Letting D and D′ denote the discrete
topologies on Y and Y ′, respectively, we have an embedding
e : (Y,L,D) → (Y ′, L′,D′) and f : (Y,L,D) → (X,P,Q).
Hence, there is F : (Y ′, L′,D′)→ (X,P,Q) such that F ◦ e = f .
Thus, G : (Y ′, L′)→ (X,P ) is such that F ◦e = f , showing that
(X,P ) is injective. By symmetry, (X,Q) is also injective. Note
that neither (X,P ) nor (X,Q) need be T0 topological spaces
when P ∨Q is a T0 topology.

The following simple example shows that injectivity for bis-
paces requires more than the injectivity of the component topolo-
gies.

Example 3.8. (D, u) and (D, `) are both injective T0-spaces,
where D = {0, 1} and u = {φ, {0}, {0, 1}}, ` = {φ, {1}, {0, 1}}.
However, (D, u, l) is not an injective bispace:

Let (T∗, U, L) denote the subspace of the Quad, determined
by T∗ = {γ, δ, α} . Let e : (D,u, l) → (T∗, U, L) be given by
e(0) = α, e(1) = γ. Then e is an embedding and there is no
map F, F : (T∗, U, L) → (D,u, l) such that F ◦ e = 1D. Thus
(D,u, l) is not an injective T0–bispace.

It is now appropriate to give the external characterization of
injective T0 bispaces, where (Q, U, L) plays the role of (D, u) for
injective T0 topological spaces.



ON INJECTIVE TOPOLOGICAL SPACES AND BISPACES 317

Proposition 3.9. (X,P,Q) is an injective bispace if and only
if it is a retract of a product of copies of (Q, U, L).

Proof. The argument is categorical, but will be sketched here
for the sake of completeness. Assume (X,P,Q) is injective, then
there is

r : (Q, U, L)C(X,Q) −→ (X,P,Q)

such that r ◦ eX = 1X , where eX is the canonical embedding of
(X,P,Q) in the product space (Q, U, L)C(X,Q).

Conversely, suppose (A,L,R)
e→ (A′, L′, R′) is an embedding

and g : (A,L,R)→ (X,P,Q). Then there is a naturally induced
map g∗ such that g∗ : (Q, U, L)C(A,Q) −→ (Q, U, L)C(X,Q) and
g∗ ◦ eA = eX ◦ g. Observe that (Q, U, L)C(A,Q) is injective, so
there is H : (A′, L′, R′)→ (Q, U, L)C(A,Q) such that H ◦ e = eA.
It is easy to check that if (X,P,Q) is a retract of a power of
(Q, U, L), then there is rX : (Q, U, L)C(X,Q) −→ (X,P,Q) such
that rX ◦ eX = 1X . Then, G = rX ◦ g∗ ◦ H : (A′, L′, R′) −→
(X,P,Q) is such that G ◦ e = g, as required.

The result above is simply a consequence of the observation
that (Q, U, L) is an injective cogenerator for T0 bispaces and the
fact that the injective hull of the singleton {(Q, U, L)} in 2Top

0
,

the category of T0–bispaces, consists of retracts of products of
(Q, U, L) (see, for example [5], Proposition 4).

4. Injective T0–Bispaces, an Internal Characterization

It would be of interest to formulate criteria that would enable
one to decide, fairly directly, whether or not a given bitoplogical
space is injective. This is what we shall attempt to do in this
section.

Because a T0 bispace (X,P,Q) is one where distinct points
are separated either by a P–open set or by a Q–open set, neither
P nor Q need be T0– topologies. We denote the T0–reflection of
(X,P ) by ([X]P , P0), and of (X,Q) by ([X]Q, Q0) : recall that



318 Sergio Salbany

the points of [X]P are equivalence classes [x]P which consist of
all x′ such that clP x′ = clP x ; similarly, the elements of [X]Q
are equivalence classes [y]Q, consisting of all y′ in X such that
clQ y′ = clQ y. Moreover (X,T ) is an injective in the category of
topological spaces Top if, and only if, ([X]T , T0) is an injective in
the category of T0 topological spaces Top

0
, as is easily verified.

It was observed in Proposition 3.7 that if (X,P,Q) is an in-
jective T0– bispace, then (X,P ) and (X,Q) are injective spaces,
hence ([X]P , P0), ([X]Q, Q0) are injective T0 topological spaces.
It was pointed out in Example 3.8 that injectivity of (X,P )
and of (X,Q) in Top

0
does not imply injectivity of (X,P,Q) in

2Top
0
, the category of T0–bispaces.

The internal characterization given below is formulated in
terms of an additional requirement which we have decided to
call intertwinement.

Definition 4.1. A bispace (X,P,Q) is intertwining if we have
[x]P

⋂
[x′]Q 6= φ for all x, x′ in X.

Examples 4.2. 1. (D, u, u) is not intertwining; (D, u, `) is not
intertwining

2. (D, u, i) is intertwining, where i denotes the indiscrete topol-
ogy on D.

3. (Q, U, L) is intertwining.

Observation: R. Börger (oral communication) has observed
that, when (X,P,Q) is intertwining and P ∨Q is T0, then [x]p∩
[x′]Q is always a singleton set.

We can now formulate the internal characterization promised
above: (X,P,Q) is an injective T0–bispace if both (X,P ) and
(X,Q) are injective in Top and (X,P,Q) is intertwining, equiv-
alently:

Proposition 4.3. (X,P,Q) is an injective T0–bispace if and
only if it is an intertwining bispace and both ([X]P , P0),
([X]Q, Q0) are injective T0–spaces.
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Proof. Assume (X,P,Q) is injective. It has been shown that
(X,P ) and (X,Q) are both injective spaces, hence both
([X]P , P0) and ([X]Q, Q0) are injective T0 topological spaces. It
remains to show that (X,P,Q) is intertwining. Consider the
embedding of (X,P,Q) into (X×X, P × I, I×Q) by the diag-
onal map 4, where 4(x) = (x, x) and I denotes the indiscrete
topology on X.

Observe that (X × X, P × I, I × Q) is a T0–bispace. By
injectivity of (X,P,Q), there is a bicontinuous

F : (X ×X, P × I, I ×Q)→ (X,P,Q)

such that F ◦4 = 1X , i.e. F (x, x) = x. Fix x, x′ in X. We show
that F (x, x′) ∈ [x]P

⋂
[x′]Q. To prove that F (x, x′) ∈ [x]P , let V

be a P–neighbourhood of x. Since F (x, x) = x, there is a P–
neighbourhood of x, W , such that W × X is mapped to V by
F . In particular F (x, x′) ∈ V . Since V is arbitrary, we conclude
that x ∈ clP F (x, x′). Consider now a P–neighbourhood U of
F (x, x). By continuity of F , there exists a P–neighbourhood of
x, W , such that W×X is mapped to U by F . Thus F (x, x) ∈ U .
But x = F (x, x), so x ∈ U . Since U is arbitrary, we have
F (x, x′) ∈ clP x. Hence F (x, x′) ∈ [x]P . Similarly, F (x, x′) ∈
[x′]Q. Thus (X,P,Q) is an intertwined bispace, as required.

Conversely, assume that (X,P ) and (X,Q) are injective topo-
logical spaces and that (X,P,Q) is intertwined. As might have
been expected from above, the intertwining property allows one
to define a continuous map

F : (X ×X, P × I, I ×Q)→ (X,P,Q) :

For each pair (x, y), let F (x, y) = z, where z ∈ [x]P
⋂

[y]Q . Note
that z need not be unique if (X,P,Q) is not a T0–bispace, but it
is unique when (X,P,Q) is a T0–bispace. Thus F (x, x) = x.To
prove that

F : (X×X, P × I)→ (X,P ) is continuous, let x, y be given.
Let V be a P–open set containing z = F (x, y). Since z ∈ [x]P ,
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we have x ∈ V . For any x′ in V , we have z′ = F (x′, y) ∈
[x′]P

⋂
[y]Q, hence z′ ∈ V . Thus F : (X ×X, P × I)→ (X,P )

is continuous. Similarly, F : (X × X, I × Q) → (X,Q) is
continuous, as required.

We conclude the proof by showing that (X,P,Q) is an injec-
tive bispace: Consider an embedding e : (Y,L,R)→ (Y ′, L′, R′),
and g : (Y,L,R) → (X,P,Q), then e : (Y,L) → (Y ′, L′) is an
embedding and g : (Y,L) → (X,P ), similarly, e : (Y,R) →
(Y ′, R′) is an embedding g : (Y,R) → (X,Q). By injectivity of
(X,P ) and (X,Q), there are maps G1 : (Y ′, L′) → (X,P ) and
G2 : (Y ′, R′) → (X,Q) such that G1 ◦ e = g, G2 ◦ e = g. Now
observe that

G1×G2 : (Y ′, L′, R′)→ (X×X, P×I, I×Q) is bicontinuous.
With F defined above, we have

F ◦ (G1 ×G2) : (Y ′, L′, R′)→ (X,P,Q).

It remains to verify that F ◦ (G1 ×G2) ◦ e = g.

(F ◦ (G1 ×G2) ◦ e)(x) = F (G1(e(x)), G2(e(x)))
= F (g(x), g(x))
= g(x). 2

We shall give two applications of the above, bearing in mind
Example 4.2.

Example 4.4. 1. (D, u, u) is not injective in 2Top
0
, since it is

not intertwined.

2. (Q, U, L) is injective in 2Top
0
, since ([Q]U, U0) = (D,u),

([Q]L, L0) = (D,u), and (Q, U, L) is intertwined.

It is, perhaps, worthwile to point out, once again, the extent
to which the separation of points by open sets influences injec-
tivity. This will be done by means of the following Corollary to
Proposition 4.3.
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Proposition 4.5. The injective T0–bispaces (X,P,Q) for which
both P and Q are T0 topologies cannot have more than one
point.

Thus, we see that, once again, (D, u, u) is not an injective T0

bispace. However, it is an injective bispace in the category of
bispaces (X,P,Q) for which P ∧Q is a T0–topology, as observed
in Proposition 3.4. These observations lead to the formulation
of the following Problem:

Problem 4.6. Characterize the injective objects in the cate-
gory of doubly T0 bispaces ((X,P,Q) such that both P and Q
are T0) and in the category of strongly T0 bispaces ((X,P,Q)
such that P ∧Q is T0).
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