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Abstract

Let S be a fixed topological space. The contravari-
ant Hom functor given by C(X) =
HomTop(X,S) has an adjoint specified, on sets,

by P (A) = SA and the composite, M = C ◦ P ,
is a Monad on the category of sets. In this paper
we characterize the category of Eilenberg–Moore
Algebras associated with M in the special case
where S is a linearly ordered space in its special-
ization order. The characterization is presented in
terms of the notion of a dual frame which admits
a C(S)–action.

1. Introduction. The Monad MS

Let S = (S, T ) be a given topological space. Let MS be the
induced monad on the category of sets specified on objects by

MS(A) = HomTop(S
A, S) = C(SA)

Mathematics Subject Classification: Primary: 18C15, 54B30; Sec-
ondary: 06D20, 08A99, 54F05

Key words: C(S)–action, complete dual frame, C(S)–consistent com-
plete dual frame, Eilenberg–Moore Algebra
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The problem of identifying explicitly the Eilenberg–Moore
category of MS–algebras has not been solved for a general topo-
logical space S, as far as we know, though many interesting
special cases have been treated in the literature: for example,
R.-E. Hoffmann discusses all cases for which the cardinality of
S does not exceed 2 [1]. F. Linton had earlier dealt with the
case where S is the Sierpiński dyad. In [2] and [4] the case of
the unit interval with its usual topology is discussed. Related
and extensive work has been done in other categories, though
we shall only single out the “Locally Convex Algebras” of D.
Pumplün and H. Röhrl [5]; and that of J.W. Pelletier and J.
Rosický [4], where further references are also given. Other ex-
amples are provided in P. Johnstone’s book “Stone Spaces” [3]
to which we refer for the general theory.

Our intention has been to obtain a unified description of the
Eilenberg–Moore category of MS–algebras for a general S. This,
however, is not the appropriate place to report on that work;
instead we shall consider a further special case: S is a finite
linearly ordered set when given the specialization order: x ≤ y
if and only if y ∈ clx, equivalently, when S is a finite T0 space
whose topology is linearly ordered by set inclusion.

The reason for studying this special case should be clear if
we recall that the category of MS–algebras is the category of
Frames and Frame Homomorphisms when S is the Sierpiński
dyad. The study also leads to an interesting description of the
algebras as “C(S)–module”–type structures.

Finally, the case where S is an infinite linearly ordered set
seems to involve an additional notion of limit. We have not
yet succeeded in describing the resulting category of Eilenberg–
Moore algebras in a way analogous to the finite case, not even
when S is compact.

We shall record, for ease of reference, the following well known
and readily verifiable facts concerning the monad MS on Ens:
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(i) The unit η is specified by:

ηA : A→ C(SA, S), ηA(a) = πa for all a ∈ S.

(ii) The multiplication µ is specified by:

µA : M2
SA → MSA is given by composition on the right

with the evaluation map eSA : SA → SC(SA,S), whereπf ◦
eSA = f for all f inC(SA, S).

Thus µA(α) = α ◦ eSA, for all α in M2
S(A).

(iii) For f : A→ B, we have f̂ : SB → SA given by πa◦f̂ = πf(a).

Then Mf : C(SB, S) → C(SA, S) is given by composition
with f̂ on the right: Mf(β) = β ◦ f̂ , for all β in C(SB, S).

2. The Chain S

We shall be concerned with finite chains S with a smallest ele-
ment 0, a largest element 1; equipped with the u–topology with
basic open sets of the form [0, a), a ∈ S. Denote by Su the
resulting topological space. The l–topology on S has basic open
sets of the form (a, 1], a ∈ S. The u ∨ l–topology on S is the
discrete topology d on S. Denote by Sl and Sd the corresponding
topological spaces.

Observe that S has the property that if x, y, a, b are in S
and x < y , a < b, then there is ϕ ∈ C(S, S) such that ϕ(x) =
a, ϕ(y) = b, when S is Su, Sl or Sd.

Finally, let us record some facts that will be used later with-
out further explanation: In all cases, S is a complete ordered
set; every ϕ ∈ C(Su, Su) is a monotone function and preserves
finite infima and finite suprema in S; moreover, when C(Su)
is given the pointwise induced partial order: f ≤ g if, for all
x ∈ S, f(x) ≤ g(x), then it is closed under finite suprema and
arbitrary infima, where these constructs are specified pointwise.
Of course, C(Su, Su) is also closed under arbitrary suprema, but
these are not given by pointwise evaluation.



326 Sergio Salbany

Throughout this note S will always refer to a finite chain with
the u–topology, unless specified otherwise.

3. A Theorem of Stone–Weierstrass Type for C(SA)

It will be essential to express the functions in C(SA) in terms
of the projection mappings. A simple description is available in
terms of

∧
and

∨
when S is a finite chain.

Theorem 3.1. Every continuous function f : SA
u → Su is the

pointwise infimum of finite suprema of functions of the form
ϕ ◦ πa, where ϕ is in C(Su) and πa : SA → S is a projection.

Proof. We first establish a two point approximation property.
Given x, y in SA, we have f(y) < f(x) or f(x) < f(y) or
f(x) = f(y). Assume f(y) < f(x). Since f is, necessarily,
a monotone non–decreasing function, we cannot have x ≤ y.
Hence there is a ∈ A such that πa(x) > πa(y). Since f(x) > f(y)
there will exist a continuous function ϕa : Su → Su such that
ϕa(πa(x)) = f(x), ϕa(πa(y)) = f(y).

Similarly, if f(x) < f(y), then there is b ∈ A and ϕb ∈ C(Su)
such that ϕb ◦ πb(x) = f(x), ϕb(πb(y)) = f(y).

When f(x) = f(y) = c, then c ◦ πa is the required function,
where c denotes the constant map to c, c : Su → Su, where a is
any element of A.

We denote the function constructed above by fxy. Thus,
fxy : SA

u → Su, fxy(x) = f(x), fxy(y) = f(y) (“two point ap-
proximation property”).

Let us observe that fxy is also a continuous function from SA
l

to Sl, since πa : SA
l → Sl and ϕ : Sl → Sl are continuous. Hence

fxy : SA
u∨l → Su∨l is continuous.

Now, fix x. For each y there is a Πl–neighbourhood of y,
Vy, whose image under fxy is contained in [f(y), 1], by (Π l− l)–
continuity of fxy. By continuity of f , there is a
Πu–neighbourhood, Wy, of y, whose image under f is contained
in [0, f(y)]. Thus Vy ∩ Wy = Uy is a Πl

∨
Πu =

Π(l∨u)–neighbourhood of y. Since l∨u is the discrete topology



ON EILENBERG–MOORE ALGEBRAS INDUCED ... 327

on S and S is a finite set, the product space Πa∈A(S, u ∨ l)a is
a compact. Hence, there are finitely many Uy’s which cover SA,
say Uy1, Uy2, . . . , Uyn .

Let fx = fxy1 ∨fxy2 ∨ . . .∨fxyn . Observe that fx : SA
u → Su is

continuous and that fx(x) = f(x), since fxyj (x) = f(x), 1 ≤
j ≤ n.

We now show that f ≤ fx for all x. Consider an arbitrary z
in SA. By above, z ∈ Uyj for some j. Now, since z ∈ Vyj we have
fxyj (z) ≥ f(yj); since z ∈ Wyj , we have f(z) ≤ f(yj). Hence
f(z) ≤ fxyj(z) ≤ fx(z). Now z is arbitrary, hence f ≤ fx for
all x. Letting h =

∧
x∈SA

fx, we have h ∈ C(SA
u , Su) and f ≤ h.

Observe that, for a given t in SA, h(t) =
∧

x∈SA

fx(t) ≤ ft(t) ≤

f(t). Thus h ≤ f . Hence h = f , as required.

Definition 3.2. Let S denote the set of functions g : SA
u → Su

such that g =
n∨

i=1

ϕi ◦ πai, where ϕi ∈ C(Su) and ai ∈ A for

1, 2, . . . , n.

Every f in C(SA, S) can be expressed as the infimum of all
members of S that dominate it.

Proposition 3.3. Let f : SA
u → Su be a continuous function,

then f =
∧
{g|g ∈ S, f ≤ g}.

Proof. Let Sf consist of all g in S such that f ≤ g. Then,
clearly, f ≤

∧
{g | g ∈ Sf} . On the other hand, fx, defined

in the proof of 3.1, is in Sf . Hence
∧
{g | g ∈ Sf} ≤ fx. This

inequality holds for all x in SA, hence
∧
{g|g ∈ Sf} ≤

∧
x∈S

A

fx = f . The proof is complete.

The set S has an important compactness property:

Theorem 3.4. Let f ∈ S, and suppose {gi| i ∈ I} is a fam-
ily of functions in S such that

∧
i∈I

gi ≤ f . Then, there exists

gi1 , gi2, . . . , gin such that
n∧

r=1

gir ≤ f .
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Proof. Let g =
∧

i∈I gi. For each i, there are ϕij ∈ C(Su),

aij ∈ A, 1 ≤ j ≤ n(i), such that gi =
n(i)∨
j=1

ϕij ◦ πaij . Let ϕp, ap,

1 ≤ p ≤ m, be such that f =
m∨

p=1

ϕp ◦ πap. Consider x in SA.

We have g(x) = gi(x) for some i = i(x). Similarly, there is
p = p(x) such that f(x) = ϕp ◦ πap(x). Now, as observed in
3.1, both f and gi are continuous as functions from SA

d to Sd,
where Sd denotes S with the discrete topology. Hence, there is
a Πd–neighbourhood of x, Wx, say, such that for all z in Wx we
have gi(z) = gi(x) and ϕp(πap(z)) = ϕp(πap(x)), where i = i(x)
and p = p(x), determined above. Because of compactness, SA

d

is covered by finitely many Wx’s, say Wx1 ,Wx2, . . . ,WxN
. Let w

be any element of SA. There is Wxr such that w ∈ Wxr . For
ir = i(xr) and pr = p(xr), we then have:

(1) gir (w) = gir(xr) = g(xr).
(2) ϕpr ◦ πapr

(xr) = f(xr).
Hence:

N∧

t=1

git(w) ≤ gir (w) = gir (xr)

= g(xr) ≤ f(xr)

= ϕpr ◦ πapr
(w) ≤ f(w).

Since (
N∧

t=1

git)(w) ≤ f(w) for all w in SA, we have
N∧

t=1

git ≤ f , as

required.

As a Corollary, we obtain an apparently stronger version of
the Theorem. The formulation below arose from a suggestion
by the anonymous referee.

Corollary 3.5. If the infimum of a set F of functions in S is in
S, then it is also the infimum of a finite subset of F .



ON EILENBERG–MOORE ALGEBRAS INDUCED ... 329

It should be noted, however, that the property does not hold
generally, as shown by the following example. Thus emphasizing
the special nature of S.

Example 3.6. Let πn : 2w
u → 2u denote the nth projection map.

Then
∞∧

n=1

πn is never equal to the infimum of a finite set of πn’s.

4. The MS–Algebras

The set C(SA
u , Su), with the order induced by Su, is a partially

ordered set which is closed under arbitrary infima and finite
suprema, defined pointwise. It also admits an action by elements
of C(Su) defined by composition on the left: ϕ∗f = ϕ◦f , where
f ∈ C(SA

u , Su), ϕ ∈ C(Su). We shall show that these operations
can be transferred to anMS–algebra A by means of the structure
map h : C(SA

u , Su) → A.
Firstly, the definition of an action by C(Su) on a lattice that

admits arbitrary infima and finite suprema.

Definition 4.1. Let (A,≤) be a complete lattice. A is said to
admit a C(Su)–action if there is a map C(Su) ×A→ A, where
(ϕ, a) 7→ ϕ ∗ a, satisfying the following:

(1) IS ∗ a = a for all a ∈ A, where IS is the identity map in
C(Su).

(2) (ϕ ◦ ψ) ∗ a = ϕ ∗ (ψ ∗ a) , where ◦ denotes composition in
C(Su).

(3)

(∧
i∈I

ϕi

)
∗ a =

∧
i∈I

(ϕi ∗ a)

(3′) ϕ ∗
(∧

i∈I

ai

)
=
∧
i∈I

(ϕ ∗ ai), I arbitrary.

(4)

(∨
i∈I

ϕi

)
∗a =

∨
i∈I

(ϕi ∗ a) (4)′ ϕ∗
(∨

i∈I

ar

)
=
∨
i∈I

(ϕ∗ar),

I finite.
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(5) Let ϕ1, ϕ2, . . . , ϕn, ψ1, . . . , ψn ∈ C (Su) be such that for all
si ∈ S we have

∧
〈ϕi〉 ≤

∨
〈ψi〉 , i.e.: ϕ1(s1) ∧ ϕ2 (s2) ∧

. . . ∧ ϕn (sn) ≤ ψ1 (s1) ∨ . . . ∨ ψn (sn) , then for any choice
a1, . . . , an, we have:

n∧
i=1

〈ϕ1, . . . ϕn〉∗〈a1, . . . an〉 ≤
n∨

i=1

〈ψ1, ψ2, . . . , ψn〉∗〈a1, . . . an〉 ,

i.e.:
ϕ1 ∗a1∧ϕ2 ∗a2∧ . . .∧ϕn ∗an ≤ ψ1 ∗a1∨ψ2 ∗a2∨ . . .∨ψn ∗an.

Examples 4.2.

1. If (X,T ) is a topological space, then C (X,Su) is a com-
plete lattice, where arbitrary infima and finite suprema are
specified pointwise by:

f =
∧

i∈I

fi ⇐⇒ f(x) =
∧

i∈I

fi (x) , for all x ∈ X.

f =
n∨

j=1

fj ⇐⇒ f(x) =
n∨

j=1

(fj (x)) , for all x ∈ X.

In this example, (A,≤) = C (X,Su) and the action is speci-
fied by composition: for ϕ ∈ C (Su) and f ∈ C (X,Su) , ϕ∗
f = ϕ ◦ f. The verification of the requisite properties is
straightforward, taking into account that S is a finite chain
and ϕ ∈ C (Su) .

2. (S,≤) itself admits a C (Su) action given by evaluation:
ϕ ∗ s = ϕ(s) for all ϕ ∈ C (Su) , s ∈ S. This example is a
particular case of the first one when X is a singleton set.
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5. The Transfer of Structure from C
(
SA

u , Su

)
to A for

an Algebra (A, h)

We shall assume that (A,h) is an MS–algebra with structure
map h, so that the following diagrams commute:

2M A

µA

η
A MA

h

1A

MA

A

A

h h

MA A

Mh

We shall start by defining
∧
i∈I

ai, for an arbitrary index set,

and
n∨

i=1

ai for a finite index set, all elements belonging to A; as

well as the C (Su) action on A.

Definitions 5.1.

(1) Let I be a nonempty set of indices, ai ∈ A for i ∈ I. Define
∧
i∈I

ai to be h

(∧
i∈I

πai

)
.

(2) For a finite index set J, aj ∈ A for j ∈ J, define
∨
j∈J

aj to

be h

(
∨
j∈J

πaj

)
.

(3) For a ∈ A, ϕ ∈ C (Su) define ϕ ∗ a to be h (ϕ ◦ πa) .

Theorem 5.2. Under the operations
∧

and
∨
, A is a complete
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lattice, and h preserves arbitrary infima and finite suprema:

h

(∧

i∈I

fi

)
=
∧

i∈I

h (fi)

h

(
n∨

j=1

fj

)
=

n∨

j=1

h (fj)

Moreover, the dual frame identity holds: a∨
∧
i∈I

ai =
∧
i∈I

(a ∨ ai) .

Lemma 5.3. Mh and µA preserve arbitrary infima and finite
suprema of functions, both operations being defined pointwise.

Proof. Both maps are defined as composition on the right with
some function. The definition of pointwise order on the function
spaces yields the conclusion.

Proposition 5.4. h preserves arbitrary infima.

Proof. Let {fi | i ∈ I} be a set of functions inC
(
SA

u , Su

)
. Then

f =
∧
i∈I

fi is also in C
(
SA

u , Su

)
. Now fi ∈ C

(
SA

u , Su

)
, so

πfi ∈ C

(
S

C(SA
u ,Su)

u , Su

)
= M2

SA.

Observe that
∧
i∈I

πfi is in M2
S A. Now:

µA

(∧

i∈I

πfi

)
=
∧

i∈I

µA (πfi) (by the lemma)

=
∧

i∈I

fi (by the nature of µA ).

Hence: h

(
µA

(∧
i∈I

πfi

))
= h

(∧
i∈I

fi

)
.
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We know that h◦µA = h◦M h, so we now calculate h◦M h :

M h

(∧

i∈I

πfi

)
=
∧

i∈I

M h (πfi) (by the lemma)

=
∧

i∈I

πfi ◦ ĥ (by the definition of M h)

=
∧

i∈I

πh(f(i)) (by definition of ĥ ).

Hence: h

(
M h

(∧
i∈I

πfi

))
= h

(∧
i∈I

πh(fi)

)
=
∧
i∈I

h (fi) (by defi-

nition of
∧

in A ). Thus h

(∧
i∈I

fi

)
=
∧
i∈I

h (fi), as required. 2

The proof of the following proposition is analogous.

Proposition 5.5. h preserves finite suprema

Similarly, we have

Proposition 5.6. The lattice identities hold in A with respect
to the operators

∧
(over arbitrary sets), ∨ (over finite sets ), as

well as the dual frame distributive law.

Proof. We shall only verify one identity in order to illustrate
the method: To show that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ,
observe that a ∧ (b ∨ c) = h (πa ∧ (πb ∨ πc)) , since h preserves
the operators. Now πa ∧ (πb ∨ πc) = (πa ∧ πb) ∨ (πa ∧ πc) ,
hence h (πa ∧ (πb ∨ πc)) = h ((πa ∧ πb) ∨ (πa ∧ πc)) = h (πa ∧ πb)
∨ h (πa ∧ πc) = (a ∧ b) ∨ (a ∧ c) , as required.

Note :It is perhaps worth observing that h is the order inducing
map; by contrast µA has little to do with order, indeed if µA(a) ≤
µA (b) , then πa ≤ πb, hence πa = πb, hence a = b.

We now consider the action of C (Su) on (A,≤) .
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Proposition 5.7. With ϕ ∗ a = h (ϕ ◦ πa) , we have:

(1) 1S ∗ a = a, where 1S is the identity map on Su.

(2) (ϕ ◦ ψ) ∗ a = ϕ ∗ (ψ ∗ a) .

(3) h preserves the action: h (ϕ ◦ f) = ϕ ∗ h (f) .

Proof. (1) 1S ∗ a = h (1S ◦ πa) (by definition of ∗ on A) =
h (πa) = a.

(2) This is a remarkable identity with a simple proof that is,
perhaps, not too obvious. We prefer to deduce it from (3):

(ϕ ◦ ψ) ∗ a = h ((ϕ ◦ ψ) ◦ πa) = h (ϕ ◦ (ψ ◦ πa))

= ϕ ∗ h (ψ ◦ πa) = ϕ ∗ (ψ ∗ a) .

(3) To prove this, consider ϕ ◦ πf in M2
S A, where f ∈ MS A.

Now h (µA (ϕ ◦ πf)) = h (M h (ϕ ◦ πf )) , also:

(i) h (µA (ϕ ◦ πf )) = h (ϕ ◦ πf ◦ eSA) = h (ϕ ◦ f) .

(ii) h(M h (ϕ ◦ πf)) = h
(
ϕ ◦ πf ◦ ĥ

)
= h

(
ϕ ◦ πh(f)

)
= ϕ∗

h (f) .

Hence, h (ϕ ◦ f) = ϕ ∗ h (f) .

For completeness we state the remaining identities
relating to ∗ :

Proposition 5.8.

(i) ϕ ∗
(∧

i∈I

ai

)
=
∧
i∈I

ϕ ∗ ai.

(ii) ϕ ∗

(
n∨

j=1

aj

)
=

n∨
j=1

ϕ ∗ aj.
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Proof. (i) ϕ ∗
(∧

i∈I

ai

)
= h

(
ϕ ◦

∧
i∈I

πai

)
= h

(∧
i∈I

ϕ ◦ πai

)

(since ϕ preserves arbitrary infima in the finite chain S)
=
∧
i∈I

h (ϕ ◦ πai) =
∧
i∈I

(ϕ ∗ ai) .

The proof of (ii) is similar.

Finally, the compatibility of ∗ with respect to the
∧∨

inequality:

Proposition 5.9. Assume that ϕi, ψi ∈ C (Su, Su) are such
that, for all si in S :

n∧

i=1

ϕi (si) ≤
n∨

i=1

ψi (si) (+)

Then, for a1, . . . , an ∈ A, we have:

n∧

i=1

ϕi ∗ ai ≤
n∨

i=1

ψi ∗ ai.

Proof. Let a1, . . . , an be given. Observe that the condition ex-
pressed in (+) is equivalent to the following:

n∧

i=1

ϕi ◦ πai ≤
n∨

i=1

ψi ◦ πai .

By monotonicity of h and the fact that h preserves finite suprema
and finite infima, we have;

n∧

i=1

ϕi ∗ ai = h

(
n∧

i=1

ϕi ◦ πai

)
≤ h

(
n∨

i=1

ψi ◦ πai

)
=

n∨

i=1

ψi ∗ ai,

as required.
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We have now established that an MS algebra (A,h) can
be given the structure of a complete lattice compatible with
a C (Su)–action on A, and satisfies the dual frame distributive
law.

6. The Constants in MS–Algebras

It is natural to enquire if algebras contain copies of S. The nat-
ural representative of the element c of S is the constant function
c : SA

u → Su, so we define c in A to be h (c) . To what extent
are the h (c)’s distinct? We shall show that if c 6= d are ele-
ments of S and h(c) = h (d) , then A is a singleton set, a trivial
MS–algebra: Suppose h (c) = h (d) , c 6= d. We may assume,
since S is a chain, that c < d. Let ϕ ∈ C (Su) be a monotone
map such that ϕ(c) = 0 and ϕ(d) = 1. Then ϕ ◦ c = 0 and
ϕ ◦ d = 1, hence

h (ϕ ◦ c) = h (0) = 0A, h (ϕ ◦ d) = h (1) = 1A.

But

h (ϕ ◦ c) = ϕ ∗ h (c) = ϕ ∗ h (d) = h (ϕ ◦ d) .

Hence 0A = 1A.

Thus, we have proved the following proposition.

Proposition 6.1. Every nontrivial MS algebra contains a copy
of S.

Corollary 6.2. The two element chain is not a M3–algebra,
where 3 is the three element chain with the u–topology.

7. The Algebra Maps

Let (A,hA) , (B,hB) be MS–algebras. Let f : (A,hA) →
(B,hB) be an algebra map, then the following diagram com-
mutes.
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hA

f

h

MB

B

MA

A B

Mf

Proposition 7.1. f preserves arbitrary infima, finite suprema,
the C (Su)–action and constants:

(i) f

(∧
i∈I

ai

)
=
∧
i∈I

f (ai) .

(ii) f

(
n∨

j=1

aj

)
=

n∨
j=1

f (aj) .

(iii) f (ϕ ∗ a) = ϕ ∗ f (a) , for all ϕ ∈ C (Su) , a ∈ A.

(iv) f (c) = c, for all c ∈ S.

Proof. (i) Let a =
∧
i∈I

ai. Then f(a) = f

(
hA

(∧
i∈I

πai

))
=

hB

(
M f

(∧
i∈I

πai

))
.

(ii) = hB

(∧
i∈I

M f (πai)

)
(by 5.3) = hB

(∧
i∈I

πf(ai)

)
=

∧
i∈I

hB

(
πf(ai)

)
=
∧
i∈I

f (ai) .
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(iii) f (ϕ ∗ a) = f (hA (ϕ ◦ πa)) = hB (M f (ϕ ◦ πa)) =

hB

(
ϕ ◦ πa ◦ f̂

)
= hB

(
ϕ ◦ πf(a)

)
= ϕ∗hB

(
πf(a)

)
= ϕ∗f(a).

(iv) f (c)= f (hA (c))= hB (M f (c))= hB

(
c ◦ f̂

)
= hB (c) = c.

8. The Eilenberg–Moore Category of MSu–Algebras

We have established that on every non trivialMSu–algebra (A,h)
there can be defined a complete lattice structure, and a C (Su)–
action. The following properties hold:

(i) a ∨
∧
i∈I

ai =
∧
i∈I

(a ∨ ai) .

(ii) c ∗ a = c, for all c ∈ S, where c : A → S denotes the
constant function mapping A onto {c} .

(1) 1S ∗ a = a.

(2) (ϕ ◦ ψ) ∗ a = ϕ ∗ (ψ ∗ a) , where ◦ denotes composition in
C (Su) .

(3)

(∧
i∈I

ϕi

)
∗ a =

∧
i∈I

(ϕi ∗ a) (3)′ ϕ ∗
(∧

i∈I

ai

)
=
∧
i∈I

ϕ ∗ ai.

(4)

(
n∨

i=1

ϕi

)
∗ a =

n∨
i=1

(ϕi ∗ a) (4)′ ϕ ∗
(

n∨
i=1

ai

)
=

n∨
i=1

ϕ ∗ ai.

(5) Axiom of ∗–consistency: If ϕi, ψi ∈ C (Su) , 1 ≤ i ≤ n, are
such that, for all possible choices of si ∈ S, we have:

n∧

i=1

ϕi (si) ≤
n∨

i=1

ψi (si) ,

then, for all choices a1, . . . , an in A, we have

n∧

i=1

ϕi ∗ ai ≤
n∨

i=1

ψi ∗ ai.
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We shall refer to such a lattice as a C(S)–consistent dual
frame.

That (3), (3)′, (4), (4)′ hold is a straightforward consequence
of the definition of ∗ and of the fact that a structure map pre-
serves arbitrary infima and finite suprema.

We can now formulate the characterization of MS–algebras,
up to isomorphism.

Theorem 8.1. The Eilenberg–Moore Category of MSu–algebras
has, as objects, the C (S)–consistent dual frames and, as mor-
phisms, the maps which preserve C (S)–action, arbitrary infima,
finite suprema and constants.

The explicit nature of the definitions involved renders it suf-
ficient to verify that, indeed:

(i) On everyC(S)–consistent dual frameA there can be defined
a (structure) map hA : MS A → A such that (A,hA) is an
MS–algebra.

(ii) Every map f : A → B between any two such C (S)–
consistent dual frames that preserves C (S)–action as well
as arbitrary infima, finite suprema and constants is an MS–
algebra map from (A,hA) to (B,hB) ; and the converse is
also true.

Let A be a C(S)–consistent dual frame. We define hA :
MSA→ A.

Definition 8.2. Let f ∈ C
(
SA, S

)
. Define

hA(f) =
∧

{ϕ1 ∗ ai∨ . . . ∨ ϕn ∗ an |
f ≤ ϕ1 ◦ πa1 ∨ ϕ2 ◦ πa2 ∨ . . . ∨ ϕn ◦ πan}.

By Theorem 3.1, it is clear that hA is well defined. It is also
clear that hA is monotone in the sense that hA (f) ≤ hA (g) if
f ≤ g.
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Proposition 8.3. hA (ϕ ◦ πa) = ϕ ∗ a.

Proof. Since g = ϕ ◦ πa is such that g ≤ ϕ ◦ πa, we have
hA (ϕ ◦ πa) ≤ ϕ ∗ a.

To prove the reverse inquality we consider two cases:

(i) Assume that g =
n∨

i=1

ϕi ◦ πai ≥ ϕ ◦ πa. If no ai is equal to

a, then ϕ (1) ≤ ϕ1 (0) ∨ ϕ2 (0) ∨ . . . ∨ ϕn (0) = ϕr (0) , for
some r (since S is linearly ordered). Then ϕ∗a ≤ ϕ(1)∗a ≤

ϕr(0) ∗ a = ϕr (0) ∗ ar ≤ ϕr ∗ ar, so that ϕ ∗ a ≤
n∨

i=1

ϕi ∗ ai.

(ii) If a is one of the ar’s, say a1, then we have ϕ (s) ≤ ϕ1 (s) ∨
ϕ2 (s2) ∨ . . . ∨ ϕn (sn), for all choices of s, s2, . . . , sn in S.
Hence:

ϕ (s) ≤ ϕ1 (s)∨ϕ2 (0)∨. . .∨ϕn (0) = ϕ1 (s)∨c = (ϕ1 ∨ c) (s) ,

where c =
n∨

r=2

ϕr (0) . Hence ϕ ∗ a ≤ (ϕ1 ∨ c) ∗ a, so that

ϕ ∗ a ≤ ϕ1 ∗ a ∨ c ∗ a = ϕ1 ∗ a ∨ c. But c = ϕr (0), for
some r, so that c = ϕr (0) ∗ ar ≤ ϕr ∗ ar. Moreover, a = a1,

hence ϕ∗a ≤ ϕ1 ∗a1∨ϕr ∗ar ≤
∨n

i=1 ϕi ∗ai. In conclusion:
ϕ ∗ a ≤ hA (ϕ ◦ πa). Hence ϕ ∗ a = hA (ϕ ◦ πa) . 2

Corollary 8.4. hA (πa) = a.

This follows from the fact that 1S ∗ a = a.

Proposition 8.5. hA

(
n∨

i=1

ϕi ◦ πai

)
=

n∨
i=1

ϕi ∗ ai.

Proof. It is clear that hA

(
n∨

i=1

ϕi ◦ πai

)
≤

n∨
i=1

ϕi ∗ ai, by defini-

tion of hA. Also, for each j, ϕj ◦ πaj ≤
n∨

i=1

ϕi ◦ πai, hence, by

monotonicity of hA, we have hA

(
ϕj ◦ πaj

)
≤ hA

(
n∨

i=1

ϕi ◦ πai

)
,
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so that ϕj ∗ aj ≤ h

(
n∨

i=1

ϕi ◦ πai

)
, since hA

(
ϕj ◦ πaj

)
= ϕj ∗ aj.

Hence
n∨

j=1

ϕj ∗ aj ≤ hA

(
n∨

i=1

ϕi ◦ πai

)
. The proof is complete.

Corollary 8.6. Let gi =
n(i)∨
j=1

ϕij ◦ πaij, i = 1, 2. Then hA (g1) ∨

hA (g2) = hA (g1 ∨ g2).

Proof. From Proposition 8.5, we have, for n = 1, hA (ϕ ◦ πa) =

ϕ∗a. We can write gi as
n∨

j=1

ϕij ◦aij, where n = n (1)∨n (2), by

taking some ϕij to be 0, if necessary. Hence g1∨g2 =
∨

1≤j≤n
1≤i≤2

ϕij ◦

πaij . By Proposition 8.5, we have hA (g1 ∨ g2) =
∨

1≤j≤n
1≤i≤2

ϕij ∗ aij.

Also, hA (g1)∨hA (g2) =
2∨

i=1

[
n∨

j=1

ϕij ∗ aij

]
. Hence hA (g1 ∨ g2) =

hA (g1) ∨ hA (g2) .

Proposition 8.7. hA

(
n∧

i=1

ϕi ◦ πai

)
=

n∧
i=1

ϕi ∗ ai.

Proof. Since
n∧

i=1

ϕi ◦ πai ≤ ϕj ◦ πaj for 1 ≤ j ≤ n, we have

hA

(
n∧

i=1

ϕi ◦ πai

)
≤ ϕ∗aj, for 1 ≤ j ≤ n. Hence hA

(
n∧

i=1

ϕi ◦ πai

)

≤
n∧

i=1

(ϕi ∗ ai). To prove the reverse inequality, let s =
m∨

k=1

ψk ◦

πbk
be such that

n∧
i=1

ϕi ◦ πai ≤ s. We consider two cases:

(1) If no ai is a bk, then
n∧

i=1

ϕi (1) = ϕr (1), for some r. Hence

ϕr (1) ≤
m∨

k=1

ψk (0) = ψt (0), for some t. Hence

ϕr ∗ ar ≤ ϕr (1) ∗ ar = ϕr (1) ≤ ψt (0) = ψt (0) ∗ bt ≤ ψt ∗ bt,
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so that
n∧

r=1

ϕr ∗ ar ≤
m∨

k=1

ψk ∗ bk.

(2) if a1, . . . , ap are the same as, respectively, b1, . . . , bp, then

we have
n∧

i=1

ϕi ∗ ai ≤
p∧

i=1

ϕi ∗ ai ≤
p∨

i=1

ψi ∗ bi (by the axiom

of ∗–consistency).

Hence
n∧

i=1

ϕi ∗ ai ≤
m∨

i=1

ψi ∗ bi.

Thus
n∧

i=1

ϕi ∗ ai ≤
m∨

i=1

ψi ∗ bi, in both cases. Consequently

n∧
i=1

ϕi ∗ ai ≤ hA

(
n∧

i=1

ϕi ◦ πai

)
, by definition of hA. The

proof is complete. 2

Proposition 8.8. hA

(∧
i∈I

gi

)
=

∧
i∈I

hA (gi), where gi ∈

C
(
SA

u , Su

)
, i ∈ I.

Proof. Let g =
∧
i∈I

gi. By monotonicity of hA, we have hA (g) ≤

∧
i∈I

hA (gi). To establish the reverse inequality, let f =
N∨

r=1

ϕr◦πar

be such that g ≤ f.

By Theorem 3.4, we have gi1, . . . , gim such that
m∧

s=1

gis ≤ f .

Then

hA

(
m∧

s=1

gis

)
≤ hA (f) = hA

(
N∨

r=1

ϕr ◦ πar

)
=

N∨

r=1

ϕr ∗ ar

by Corollary 8.6. Hence
m∧

s=1

hA (gis) ≤
N∨

r=1

ϕr ∗ ar, since

hA

(
m∧

s=1

gis

)
=

m∧
s=1

hA (gis), by Proposition 8.7. Thus
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∧
i∈I

hA (gi) ≤
N∨

r=1

ϕr ∗ ar, for all f =
N∨

r=1

ϕr ◦ πar such that g ≤ f .

Hence
∧
i∈I

hA (gi) ≤ hA (g), as required.

Proposition 8.9.. hA (ϕ ◦ f) = ϕ ∗ hA (f)

Proof. We have f =
∧
i∈I

n(i)∨
j=1

ϕij ◦ πaij by Theorem 3.1. Hence

ϕ◦f = ϕ◦
∧
i∈I

n(i)∨
j=1

ϕij ◦πaij =
∧
i∈I

n(i)∨
j=1

ϕ◦ϕij ◦πaij, since S is a finite

chain and ϕ, being monotone, preserves arbitrary infima and

finite suprema. Hence hA (ϕ ◦ f) =
∧
i∈I

hA

(
n(i)∨
j=1

ϕ ◦ ϕij ◦ πaij

)
,

by Proposition 8.7. Now

hA




n(i)∨

j=1

ϕ ◦ ϕij ◦ πij


 =

n(i)∨

j=1

hA

(
ϕ ◦ ϕij ◦ πaij

)
,

by Corollary 8.6. Also hA

(
ϕ ◦ ϕij ◦ πaij

)
= (ϕ ◦ ϕij) ∗ aij, by

Proposition 8.3. Now (ϕ ◦ ϕij) ∗ aij = ϕ ∗ (ϕij ∗ aij), hence

hA (ϕ ◦ f) =
∧
i∈I

n(i)∨
j=1

ϕ∗ϕij ∗aij. Putting ϕ = 1s, we get hA (f) =

∧
i∈I

n(i)∨
j=1

ϕij ∗ aij. Hence

ϕ∗hA (f) = ϕ∗
∧

i∈I

n(i)∨

j=1

ϕij ∗aij =
∧

i∈I

n(i)∨

j=1

ϕ∗ϕij ∗aij = hA (ϕ ◦ f) ,

as required.

Proposition 8.10. hA (f1 ∨ f2) = hA (f1) ∨ hA (f2)

Proof. By Theorem 3.1, we have f1 =
∧
i∈I

g1i, f2 =
∧
j∈J

g2j,

where each gkr is in S. By the dual frame law, we have f1∨f2 =
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∧
i∈I

g1i∨
∧
i∈I

g2j =
∧
ij

(g1i ∨ g2j). Hence hA (f1 ∨ f2) =
∧
ij

hA (g1i ∨ g2j),

by Proposition 8.8. Also, hA (g1i ∨ g2j) = hA (g1i)∨ hA (g2j), by
Corollary 8.6. Hence

hA (f1 ∨ f2) =
∧

ij

(hA (g1i) ∨ hA (g2j))

=
∧

i∈I

hA (g1i) ∨
∧

j∈I

hA (g2j) by the dual frame law,

= hA (f1) ∨ hA (f2) . 2

Proposition 8.11. hA ◦MhA = hA ◦ µA.

Proof. Let α ∈ M2A. Then α =
∧
i∈I

n(i)∨
j=1

ϕij ◦ πfij, where ϕij ∈

C (Su) and fij ∈ C
(
SA

u , Su

)
. Thus

hA (MhA (α)) = hA


∧

i∈I

n(i)∨

j=1

ϕij ◦ πfij ◦ ĥA




= hA


∧

i∈I

n(i)∨

j=1

ϕij ◦ πhA(fij)




=
∧

i∈I

n(i)∨

j=1

ϕij ∗ hA (fij) .

Also, hA (µA (α)) = hA

(
∧
i∈I

n(i)∨
j=1

ϕij ◦ fij

)
(µA preserves com-

position and µA (πf ) = f ) =
∧
i∈I

hA

(
n∨

j=1

ϕij ◦ fij

)
=
∧
i∈I

n∨
j=1

ϕij ∗

hA (fij) , since hA preserves finite suprema and C (Su)–action.
The proof is complete.
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We now complete the picture by describing the MS–algebra
morphisms. Let A and B be two nontrivial C (S)–consistent
dual frames and let hA, hB be the corresponding structure maps
defined above.

Proposition 8.12. If f : A → B preserves C (S)–action,
arbitrary infima and finite suprema, then f : (A,hA) → (B,hB)
is an algebra map.

Proof. We verify that hB ◦Mf = f ◦ hA. Let α ∈ MA, then

α =
∧
i∈I

n(i)∨
j=1

αij ◦ πaij, hence Mf (α) =
∧
i∈I

n(i)∨
j=1

ϕij ◦ πaij ◦ f̂ =

∧
i∈I

n(i)∨
j=1

ϕij◦πf(aij), so that hB (Mf (α)) =
∧
i∈I

n(i)∨
j=1

ϕij∗f (aij). Now

hA (ϕ) =
∧
i∈I

n(i)∨
j=1

ϕij ∗ aij. Hence f (hA (α)) =
∧
i∈I

n(i)∨
j=1

ϕij ∗ f (aij),

by our assumption on f .

Conversely,

Proposition 8.13. Let f : (A,hA) → (B,hB) be an MS–
algebra map, then f : A → B preserves arbitrary infima, finite
suprema and C (S)–action.

Proof. 1. f preserves arbitrary infima: Consider a =
∧
i∈I

ai in

A. By Corollary 8.4 and Proposition 8.8, we have

a = hA

(∧
i∈I

πai

)
, hence

f (a) = f ◦ hA

(∧

i∈I

πai

)
= hB

(
Mf

(∧

i∈I

πai

))

= hB

(∧

i∈I

πai ◦ f̂
)

= hB

(∧

i∈I

πf(ai)

)

=
∧

i∈I

f (ai) .
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2. f preserves finite suprema: Consider a1 ∨ a2. Now
hA (πa1 ∨ πa2) = a1 ∨ a2, so that

f (a1 ∨ a2) = f ◦ hA (πa1 ∨ πa2) = hB ◦Mf (πa1 ∨ πa2)

= hB

(
(πa1 ∨ πa2) ◦ f̂

)
= hB

(
πf(a1) ∨ πf(a2)

)

= f (a1) ∨ f (a2) .

3. f preserves C (Su)–action:

f (ϕ ∗ a) = f (hA (ϕ ◦ πa)) = hB (Mf (ϕ ◦ πa))

= hB

(
ϕ ◦ πa ◦ f̂

)
= hB

(
ϕ ◦ πf(a)

)
= ϕ ∗ f (a) .

9. Summary

The condition involving “replacement” in the description of the
algebras is a consequence of a more general property. It is easy
to show that this property is shared by all MS–algebras, thus
allowing the following description of the nontrivial objects of the
Eilenberg–Moore category of MS–algebras:

Complete lattices A which contain a copy of S and admit an
n–ary action ∗ : C (Sn) × An → A, for every integer n, n ≥ 1,
such that for all Φi ∈ C (Sn) , a = 〈a1, a2, . . . , an〉 ∈ An, c ∈ S,
we have:

(I)

(
n∨

i=1

Φi

)
∗ a =

n∨
i=1

Φi ∗ a (I)′ Φ ∗
(

n∨
i=1

ai

)
=

n∨
i=1

Φ ∗ ai

(II)

(
n∧

i=1

Φi

)
∗ a =

n∧
i=1

Φi ∗ a (II)′ Φ ∗
(

n∧
i=1

ai

)
=

n∧
i=1

Φ ∗ ai

(III) 1Sn ∗ a = a

(IV) c ∗ a = c
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10. The Case of the Sierpiński Dyad S = (2, u)

The Eilenberg–Moore category of MS–algebras, as mentioned in
the introduction, is the category of Frames and Frame homo-
morphism, with no reference to a C (S)–action. The results in
this paper refer explicitly to the C (S)–action, but this is easily
seen to be trivial: C (2u, 2u) consists of three elements 0, 12, 1
and we have 0 ∗ a = 0, 1 ∗ a = 1, 12 ∗ a = a, for all a in an
algebra A, so that, when S = 2u, reference to the C (S)–action
is superfluous.

11. Generalizations

It would be most interesting to be able to describe the MS–
algebras when S is, for instance, ω = {0 < 1 < 2 < · · · < n < . . .}
with the u–topology, and with the l–topology; as well as when
S = (ω+, u) , S = (ω+, l), etc. As far as we can ascertain, a
purely algebraic/discrete discription as the one given in this pa-
per would not be possible, and an MS–algebra would need to
satsify, in addition, a topological condition compatible with the
algebraic ones given in section 9, above.
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