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a-PSEUDOCOMPACTNESS IN Cp-SPACES
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Abstract

We prove that C,(X) is o-a-pseudocompact if and
only if X is pseudocompact and a-b-discrete, and
C,(X,[0,1]) is a-pseudocompact if and only if X
is a-b-discrete. We also give an example of an
infinite a-pseudocompact a-b-discrete space.

1. Introduction

For a Tychonoff space X the space C,(X) of the real-valued
functions defined on X with the pointwise convergence topology
contains a copy of the real line as a closed subset. Thus C,(X)
is not compact for any X. Hence, the following general question
arises for a compact-like property P: under which conditions
on X is C,(X) the union of a countable collection of subspaces
satisfying P? With respect to this problem, for P = pseudo-
compactness, V.V. Tkachuk proved in [9] the following result.

Theorem 1.1. C,(X) is o-pseudocompact if and only if X is
pseudocompact and b-discrete

On the other hand, it was proved in [6] that if C,(X) is o-
countably compact, then X must be finite. This fact explains
why the construction of infinite pseudocompact b-discrete spaces
is not trivial (see [5], [2, Example 6.1], [1, 1.2.5]).

In Section 2 of this article we generalize Theorem 1.1 by prov-
ing that C,(X) is o-a-pseudocompact if and only if X is pseu-
docompact and a-b-discrete. (This result was mentioned in [7]
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without any proof.) In Section 3 we give an example of an infi-
nite pseudocompact a-b-discrete space.

In order to prove Theorems 2.7 and 2.8, we follow a similar
strategy to that given to prove Propositions 3.5 and 3.9 in [9].
The example in Section 3 is obtained by modifying Example
[.2.5 in [1]. Proofs hold by applying some results obtained in
3].

We assume that all spaces are Tychonoff spaces. If X is
a space and A C X, then clx(A) (or simply cl(A)) denotes
the closure of A in X. The Greek letters & A, v stand for
infinite ordinal numbers, and the Greek letters o, x stand for
infinite cardinals. For a set X, |X| denotes the cardinality of
X. Besides, [X]<* stands for the family of subsets of X of
cardinality < a. For ordinal numbers £ and v with £ < 7, (§,7)
and [0,7) are the sets {\ : € < A < v} and {\ : A < v},
respectively. If a is a cardinal number, then « also stands for
the discrete space of cardinality a. As usual, R denotes the set
of real numbers with its Euclidean topology. For a space X,
B(X) is its Stone-Cech compactification.

The following concepts and some of its properties were ana-
lyzed in [3].

Definition 1.2. 1. A subset B of X is said to be Cy-compact
in X if f[B] is a compact subset of R* for every continuous
function f : X — R®.

2. If X 1is Cy-compact in itself, then we say that X is «-
pseudocompact.

3. A space X C Y is 0-Cy-compact in Y if there is a cover
{X, : n < w} of X where X,, is Cy-compact in Y. The
expression X is 0-Co-compact will mean that X is 0-C-
compact i X.

If o <, then every C-compact subset of X is C,-compact.
A set Y C X is a Gs-set in X if there is a sequence (U, )n<w
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of nonempty open sets in X such that ¥ =, U,. A subset
Y of X is Gs-dense in X if each nonempty Gs-set in X has
a nonempty intersection with Y. Observe that a space X is
pseudocompact iff X is Ng-pseudocompact. For each o < 7,
there exists a space X which is a-pseudocompact and is not ~-
pseudocompact. In fact, the space of ordinal numbers [0, ™)
endowed with the order topology is a-pseudocompact but is not
v-pseudocompact (see [3]).

If X and Y are two spaces, we denote by C(X,Y) the set
of continuous functions defined on X and with values in Y. If
Y = R, then we write C'(X) instead of C'(X,R ). The set of
real bounded continuous functions defined on X is denoted by
C*(X). A subspace Y of a space X is C*-embedded in X if for
every f € C*(Y) there is g € C*(X) such that gy = f; and it
is a zero-set (resp., cozero-set) if there is f € C'(X) such that
Y = f7H0} (resp., Y = f~HR\{0})). Z(X) is the collection of
zero-sets of X. We write C,(X,Y), Cp(X) and C;(X) in order to
symbolize the sets C'(X,Y), C(X) and C*(X) considered with
the pointwise convergence topology. Recall that two disjoint
subsets A and B of a space X are completely separated if there
exists f € C(X,][0,1]) such that f[A] = {0} and f[B] = {1}.
For a product [];c; X; and for K’ C J, mx denotes the projection
from J[;c; X; to [1jex Xj-

As usual, if P is a topological property, then a space X is
o-P if X is the countable union of subspaces having P.

Definition 1.3. Let o be a cardinal number,

1. a space X 1is a-discrete if every subset of X of cardinality
< « 1s discrete, or equivalently is closed in X,

2. X is a-b-discrete if every subset Y of X of cardinality < «
1s discrete and C*-embedded in X,

3. a space X 1is b-discrete if X is w-b-discrete,
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4. asubsetY of a product X = [;c; Xj is said to be a-dense in
X if for every K C J of cardinality < o we have mg(Y) =

erK Xk-

Observe that if v < a and Y is a-dense in X, then Y is
~v-dense and dense in X.

The following two results proved in [3] will play an important
role for our purposes.

Proposition 1.4. For a subset B of X, the following are equiv-
alent:

1. B is Cy-compact in X;

2.4f{Z¢ £ < a} C Z(X) and BN Neer Ze # O for every
finite subset I of o, then B N Neeo Ze # 0.

It is worth mentioning that conditions (1) and (2) in the
proposition just formulated are equivalent to B being G,-dense

in #(X).

Proposition 1.5. Let a be a cardinal number and let X =

[Licr Xi be a product of compact spaces of weight not greater
than «, with o < |I|. Then, for a dense subset Y of X the
following are equivalent.

1. 'Y s a-pseudocompact.
2. Y is Cy-compact in X.
3. Y is a-dense in X.

The following basic results about o-C'\,-compact sets can be
easily proven and will be useful.

Proposition 1.6. Let X = U,,., X, be a space.

1. If f: X — Y 1is a continuous and onto function and X,, is
C-compact (resp., a-pseudocompact) in X for every n <
w, then Y is 0-Cy-compact (resp., o-a-pseudocompact).
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2. If X, is 0-Cy-compact (resp., o-a-pseudocompact) in'Y,, C
Y for each n < w, then X is o-Cy-compact (resp., o-c-
pseudocompact) in U<y, Yo

2. a-Pseudocompactness in C,(X)

To be able to prove the main theorems of this section, we need
to establish some previous results.

Proposition 2.1. A space X is a-b-discrete if and only if
Co(X,[0,1]) is a-dense in [0, 1]X.

Proof. Assume that X is a-b-discrete and let K be a subset of
X of cardinality < a. Let h be an element in [0,1]%. Since
K is discrete, h is continuous; so there exists h € Cy(X,[0,1])
which extends h because K is C*-embedded in X. Therefore,
C,(X,[0,1]) is a-dense in [0, 1]*.

Now, suppose that C,(X,[0,1]) is a-dense in [0, 1]* and let
K be a subset of X of cardinality < «. By hypothesis, every
h € [0, 1]% can be continuously extended to X, so K is discrete
and C*-embedded in X. O

We will use the following a-version of Proposition 3.8 in [9].
Its proof is similar to that given when o = w.

Lemma 2.2. For any space X the following conditions are equiv-
alent.

1. The space X 1s a-b-discrete.

2. X is a-discrete and clgx)A = B(A) for each A C X of
cardinality < .

3. X is a-discrete and clgx)yANclgxyB = 0 for every disjoint
A, B C X of cardinality < a.

In order to prove the following two results, we will use Propo-
sition 1.4
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Lemma 2.3. Let A = {x) : A < a} be a subset of X and let
zo be an element in clxA. For each C,-compact subset Y of
Z =A{f € Cp)(X,[0,1]) : f(20) = 0}, and each € € (0,1), there
ezists G = {&1, ..., &} € [a] such that, if f € Cp(X,]0,1]) and
flwg)>eV1<i<k, then f¢Y.

Proof. For each n > ¢! and each F' = {\1,..., \,} € [a]<¥, let
Mp={f€Z: f(z)€[e—+,1] V1 <i<n}. It happens that
each Mp is a nonempty zero-set in Z, and if F,..., Fs € [o]<*
with |FZ| >etv1<i< s, then Mp N...NMp, = MU{Fi:ISZ'Ss}.
Let M = {Mp : F € [a]<¥ and |F| > ¢ '}. Observe that
|IM| < a. Now, it is easy to see that if f € M, then f(z)) > €
for all A < a. But, f(z)) = 0. This means that f is not a
continuous function, but this is a contradiction. So M = 0.
Because of Proposition 1.4, we can find Fy,..., Fs € [a]<¥ such
that YN Mg, N...NMp, = 0. Let G = FiU.. .UF; = {&, ..., &}
Thus Y N Mg = 0. So, if f(zg) > € for all 1 < i < k and
feC,X,[0,1]), then f €Y. O

Lemma 2.4. Let A = {a) : A < a} and B = {by : A < «a}
be two disjoint subsets of X such that clgix)A N clgxyB # 0.
Let Y be a Cy-compact subspace of Cp(X,[—1,1]) and let € €
(0,1). Then there exist K = {\1,...,\n} € [a]<¥ and H =
{&,..,&m} € [a]=Y such that, for any f € C,(X,[—1,1]) with
flax,) > € and f(be;) < —e€ for every i € {1,...,n} and j €
{1,...,m} we have f €Y.

Proof. For each n > ¢! and for each F = {)\1,....,\,},G =
{&, .. &} € [a]* we take Mpoy = {f € Cpo(X,[-1,1]) :
flax) > e— 1+ and f(b) < —e4+ - V1<i<n1<j<n}
Let M = {Mrq) : F,G € [o]<* and |F|,|G| > ¢ '}. The col-
lection M is closed under finite intersections because Mg, ¢,) N
N Mgy = M, Foicienc- Moreover NM = (. In
fact, assume that f € M and let ay, be be arbitrary elements
in A and B, respectively. Let n < w be such that n > ¢!

We can take different elements Aq, ..., A\, € @\ {A\} and different



a-PSEUDOCOMPACTNESS IN Cp-SPACES 355

elements &, ...,&, € o\ {{}. We have that f € Mpq) where
F={M\XM,.., \}and G ={& &, ....&}. Thus, f(an) > e—+

and f(be) < —e+ % Since this can be done for every n > e,

then f(ax) > € and f(be) < —e. Let f : B(X) — [~1,1] be
the continuous extension of f. So f(a,\) > e for all A < o and
f(bg) < —e¢ for all £ < a. But this is not possible because there
is 7 € clgx)ANclgx)B. Therefore, N M = 0.

Each of the elements in M is a nonempty zero-set in
Cy(X,[—1,1]) and the cardinality of M is < «, so, by Proposi-
tion 1.4 we conclude that there exist n > ¢!, K = {\1,..., \,}
and H = {1, ..., &} such that Y N Mg gy = 0. The sets K and

H are as promised. ]

Proposition 2.5. If C,(X,[0,1]) is 0-Cy-compact, then X is
a-discrete.

Proof. Let Cp(X,[0,1]) = U{P, : n < w} where, for each n < w,
P, is Cy-compact in Cp(X,[0,1]). Assume that X is not a-
discrete and let A be a non-closed subset of X of cardinality
< a;say A={xz): A <a}. Then, there exists zg € (clxA) \ A.
Besides, there exists a retraction R from C,(X, [0,1]) onto Z =
[f € Cy(X,[0,1)) : f(z0) = 0} (R(f) = f — f(20)). S0 Z is equal
t0 Upencw Zn Where each Z,, is C,-compact in Z (Proposition
1.6). We are going to obtain a contradiction after assuming
that zo € (clxA) \ A. By Lemma 2.3, for each 0 < n < w
there is G, = {A{,..., \j(,)} € [a]=¥ such that if f € Z and
f(zy,) > 2™ for all 1 < i < k(n), then f € Z,. Consider the
sets G, = GL U ... UG, (0 <n < w). Then G, C Gn+1 for all
0<n<w andif f € Zand f(zy) > 27" for all A € G,,, then
f ¢ Zn

Since X is a Tychonoff space, we can take, for each 0 < n < w,
a function f, € Z such that f,(z)) = 1 for all \ € G,. Let
f=%2,27"f, We have that f € Z and if n > 0 and X € G,,,
then f(zy) > 27" fu(xx) = 27" Thus, f ¢ Z, forall 0 < n < w.



356 Angel Tamariz-Mascaria

But this is a contradiction because Z = Uy, Zn. Therefore,
A must be closed in X. O

The function r : C,,(X) — Cp(X, [0, 1]) defined as r(f) = o f
is a retraction of C,(X) onto Cp(X, |0, 1]), where £ : R — R is
defined as follows: £(z) = z for x € [0,1], £(z) = 1 for x > 1,
and {(z) = 0 if © < 0. So, rfcy(x) is a retraction of C;(X) onto
Cp(X,[0,1]). Besides, Cy(X) = U< Cp(X, [-n,n]). Thus, by
using Proposition 1.6 we obtain:

Proposition 2.6. C,(X,[0,1]) is 0-Cy-compact (resp., o-a-
pseudocompact) if and only if C;(X) is 0-Cy-compact (resp.,
o-a-pseudocompact).

Now, we are able to prove the main results of this article.

Theorem 2.7. Let X be a space and o a cardinal number. Then
the following are equivalent:

1. X is a-b-discrete.

2. Cp(X,[0,1]) is a-pseudocompact

3. Cp(X,[0,1]) is Cy-compact in [0, 1]
4. Cp(X,0,1]) is o-a-pseudocompact
5. Cp(X,[0,1)) is 0-Cy-compact

6. C3(X) is 0-Co-compact

7. C(X) is o-a-pseudocompact

Proof. The equivalencies (1) < (2) < (3) are a consequence of
Propositions 1.5 and 2.1, the implications (2) = (4) = (5) are
evident, and Proposition 2.6 gives us (4) < (7) and (5) < (6).
So, we have only to prove (5) = (1).

For convenience, we are going to consider the space
Cp(X,[—1,1]) instead of C,(X,[0,1]). Because of Proposition
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2.5 and Lemma 2.2, it is enough to prove that if A and B are two
disjoint subsets of X of cardinality < o, then clgx)ANclgx)B =
(). Assume the contrary. Let A and B be disjoint subsets of
X of cardinality < «, and let r be an element belonging to
clagxyA N clgx)yB. Enumerate A and B as {a) : A < a} and
{bx : A < a}, respectively.

Assume that C,(X,[—1,1]) = U{Z, : 0 < n < w} where
Zn is Cy-compact in Cp(X, [—1,1]) for each 0 < n < w. Due to
Lemma 2.4, we know that for each 0 < n < w there exist K,, and
H, in [a]=¥ such that if f € C,(X,[-1,1]) and f(axru) > 27"
for every A(i) € Ky, and f(be(;)) < —27" for every £(j) € H,,
then f ¢ Z,. Without loss of generality we can assume that
K1CKQC...CKnC...,H1CH2C...CHnC...,
and there exists a sequence (ky)o<n<, of natural numbers such
that K, = {\0), ..., A\(k,)}, and H,, = {£(0), ..., &(kn)} for every
0 < n < w, where A(n) # A(m) and £(n) # {(m) if n # m.

We know that X is a-discrete (Proposition 2.5). Thus, there
exist disjoint open families Y = {U,, : n < w} and V = {V}, :
n < w} such that

(a) (UU)N(UV)=0; and
(b) axm) € Uy and beny € V;, for every n < w.

Now, since X is a Tychonoff space, there exist two collec-
tions F = {f, € Cp(X,[-1,1]) : n < w} and G = {g, €
Cp(X,[—1,1]) : n < w} such that, for every n < w,

(i) fn >0 and g, <O0;
(i) f7'([=1, 1]\ {0}) C Uy and g;*([-1,1] \ {0}) C Vi; and
(iii) fn(a,\(n)) =1 and gn(bg(n)) = —1.

We define, for each 0 < n < w, the function
dy = 27" - (S0 (f: + g¢)). Take h = ¥2°.d,. The function
h belongs to Cy(X,[—1,1]), and h(aru) > 27" V1 < i < Ky,
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and h(bepy) < 27"V 1 < i < ky, for each 0 < n < w. But this
means that h ¢ Z,, for all 0 < n < w, which is not possible be-
cause Cp(X, [—1,1]) = U{Z, : 0 < n < w}. This contradiction
leads us to conclude that clgx)A N clgx)B = (). Therefore, X
is a-b-discrete. O

Theorem 2.8. Let X be a space and o be a cardinal number.
Then, the following assertions are equivalent:

1. X s pseudocompact and a-b-discrete.
2. Cp(X) is o-a-pseudocompact.
3. Cp(X) is 0-Cy-compact.

Proof. If C,(X) is 0-C,-compact, then C,(X, [0, 1]) also has this
property because it is a retract of C,,(X). Then X is a-b-discrete
and C,(X) is o-pseudocompact (Theorem 2.7). Therefore, X is
also pseudocompact (Theorem 1.1).

If X is pseudocompact, then Cy(X) = C;(X). Since X is a-b-
discrete, then C(X) = C,(X) is o-a-pseudocompact (Theorem
2.7). O

3. An Infinite a-Pseudocompact a-b-Discrete Space

In [1, Example 1.2.5] the efforts done in [5] are synthesized, and
an example is given of an infinite pseudocompact b-discrete space
Z. By reason of Proposition 1.5, a slight modification of Z
is enough to obtain an infinite a-pseudocompact a-b-discrete
space for each infinite cardinal .. For the sake of completeness

we present here the details of this construction. The interval
[0,1] C'| R will be denoted by I.

Let « be an uncountable cardinal number, and let M be the
set [0,2%) of ordinals smaller that 2%. Let S = {z € IM :
H{N € M : my(z) # 0} < a} € IM be the X,-product based
at the point which has all its coordinates equal to zero. Then
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|S| = 2% = |M|. Let {sy : A € M} be an enumeration of the
elements of S such that [{A € M : s =s,}| =2%forall s € S.
Let £ = {A C M : |A| < a}. The cardinality of £ is equal to 2%,
so we can choose an enumeration {Ay : A € M} of the elements
of £ such that [{\: Ay = A}| = 2% for each A € £.

Remark 3.1. Let A, B be subsets of M of cardinality k < «,
and let f € S. Then, there exist £&,v € M greater than supB
such that A¢ = A and s, = f.

Proof. Indeed, since |B] = & < a and a < cof®"), supB =
v < 2% Because of the way we enumerate S and &, there are
&, X € (7,2%) such that Ae = A and s) = f. O

For each A € M we define a point x) € IM by:

Ty(sa) if 7y <A
() =4q 1 ify>Xand A € A;
0 if y>Xand A € A,.

We are going to prove that the subspace X = {x)\ : A\ € M}
of I is the one we looked for.

Claim 3.2. X is dense in I,

Proof. Let {my,...,my} be a finite subset of M and Aq,..., Ay
be open subsets of I. Consider the basic open subset U = {f €
™M f(m;) € A, for i € {1,...,k}}. Take g € I'™ such that

Ja; e A ifie{l, . k};
g(ms) = { 0 if i ¢ {1,..k}.

The function ¢ is an element in S N U. Because of Re-
mark 3.1, there is & € M which is greater than m; for ev-
ery i, such that ¢ = s¢. Now, it can be proved that z¢ € X
belongs to U. O
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Claim 3.3. Let k be a cardinal < . Then X is k-pseudo-
compact.

Proof. By virtue of Proposition 1.5 and Claim 3.2, in order to
prove Claim 3.3, we need to show that for any B C M of cardi-
nality < x, 75(X) = I® holds.

Let g € I” be arbitrary. Take f € S defined by

0 if \ € B;
f()\):{g()\) if A € B.

Let v = supB. There is £ € (v,2%) such that f = s¢ (Re-
mark 3.1). It is not difficult to see that mp(z¢) = g. Therefore,
7TB(X) = IB. |

Claim 3.4. Let B be a subset of M of cardinality k < «. Then
clp({xy : A € B}) is homeomorphic to B(k).

Proof. 1t suffices to prove that for all disjoint My, My C M of
cardinality < k we have clpa({zy : A € Mi}) Nelpe({zy X €
My}) =0 (see [4, 6.5]).

Let £ € M be such that £ > sup(M; U M) and Ae = M,
(Remark 3.1). Then m¢(zy) = 1 if A € My, and me(xy) = 0 if
A € M,. Thus the sets {x) : A € M;} and {x) : A € My} are
completely separated in IM. O

As a consequence of this last claim we have the following
result.

Claim 3.5. Fvery subset of X of cardinality < « is closed in
X.

Proof. Let B C M with |B| = k < «, and v € M \ B. Due to
Claim 3.4, clym{xy : A € B} n{zy} = 0. Thus clx{z) : X €
B} N {xzy} = 0. Therefore, {z) : A € B} is closed in X. O

Claim 3.6. Every subset of X of cardinality < « is C*-embedded
m X.
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Proof. Let B C M with |B] = k < a. Let f € Cp({zy : X €
B}, I) = IB. Since P = clyu({zy : A\ € B}) is homeomor-
phic to B(k) (Claim 3.4), there is an hg € C,(P,I) such that
hol(zsrepy = f. Clearly, there is an hy € C,(I™,I) such that
hi|p = ho. Then h = hy|x is the required function on X. O

Recall that a space Y is left-separated if there is a well-ordered
< on Y such that the set {y € Y : y < x} is closed in Y for
every x € Y.

Claims 3.3, 3.5 and 3.6 say that X is an infinite
a-pseudocompact a-b-discrete space. Moreover, X is left sep-
arated (Claim 3.5) and connected (Claim 3.3, Proposition 1.5
and Lemma in [8]).
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