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SPANS OF CERTAIN SIMPLE CLOSED CURVES
AND RELATED SPACES
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Abstract

In this paper we define a class of planar simple
closed curves. We refer to members of this class as
upward concave symmetric simple closed curves.
We calculate the spans of each simple closed curve
in this class. Also, we determine the spans of var-
ious surfaces and solids related to members of this
class. We show that if Y is a plane sepatating con-
tinuum and X, one of these simple closed curves,
is contained in a bounded component of R2 − Y ,
then the span of Y is larger than the span of X.

1. Introduction

The concept of the span of a metric span was introduced in [L1].
The span can be thought of as a continuous type analogue of the
diameter. Modified versions of the span have been introduced
(cf [L2] and [L3]). Most of the interest has been in the various
spans of continua, that is metric spaces which are compact and
connected. In general, it is difficult to calculate the span of a
given continuum.

Questions have been asked about how these various spans
are related for a given continuum. For instance, the following
questions have been asked (see [CIL],[L3]):
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(a) For a continuum X, is it true that the span of X is less
than or equal to twice the surjective span of X?

(b) For a continuum X, is it true that the semispan of X is less
than or equal to twice the surjective semispan of X?

(c) Is it true that the surjective span of X is less than or equal
to twice the surjective semispan of X?

(d) For a simple closed curve X, is it true that the span of X
is equal to the semispan of X?

For results related to (a), (b), and (c) see ([L2], [W1]). For
results related to (d) see ([T1], [W2]). In this paper we calculate
the spans for continua in various classes of continua. Also, we
note that the questions asked above are answered in the affir-
mative for the continua considered in this paper.

Other questions concern the relationships of the spans of re-
lated continua. The following question by H. Cook, has gener-
ated much interest.

If S1 and S2 are two simple closed curves in the plane and
S2 is contained in the bounded component of R2 −S1, then
is the span of S1 larger than the span of S2? ([CIL]).

This question is answered in the affirmative for the class of
simple closed curves considered in this paper. For other patial
answers to this question and related results see ([T1], [T2], [W2],
[W3], [W4], [W5], [W6]).

2. Preliminaries

If X is a non-empty metric space, we define the span of X,
σ(X), to be the least upper bound of the set of real numbers α
which satisfy the following condition: there exists a connected
space C and continuous mappings g, f : C → X such that
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g(C) = f(C) (σ)

and α ≤dist[g(c), f(c)] for c ∈ C.

The definition does not require X to be connected, but to
simplify our discussion we will now consider X to be connected.
The surjective span σ∗(X), the semispan σ0(X), and the sur-
jective semispan σ∗

0(X) are defined as above, except we change
conditions (σ) to the following:

g(C) = f(C) = X, (σ∗)

g(C) ⊆ f(C), (σ0)

g(C) ⊆ f(C) = X, (σ∗
0)

Equivalently (see [L1], p.209), the span σ(X) is the least up-
per bound of numbers α for which there exist connected subsets
Cα of the product X × X such that

p1(Cα) = p2(Cα) (σ)′

and α ≤dist(x, y) for (x, y) ∈ Cα, where p1 and p2 denote the
projections of X ×X onto X, i.e., p1(x, y) = x and p2(x, y) = y
for x, y ∈ X. Again, we will now consider X to be connected.
The surjective span σ∗(X), the semispan σ0(X), and the sur-
jective semispan σ∗

0(X) are defined as above, execpt we change
conditions (σ)′ to the following (see L3):

p1(Cα) = p2(Cα) = X, (σ∗)′

p1(Cα) ⊆ p2(Cα), (σ0)
′

p1(Cα) ⊆ p2(Cα) = X. (σ∗
0)

′
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We note that for a compact space X, C in the first set of
definitions and Cα in the second set can be considered to be
closed. The following inequalities follow immediately from the
definitions.

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diam X,

0 ≤ σ∗(X) ≤ σ∗
0(X) ≤ σ0(X) ≤ diamX.

It can easily be shown that, if J is an arc then σ(J) = σ0(J) =
σ∗(J) = σ∗

0(J) = 0. A simple consequence of this is that when
X is a simple closed curve, σ(X) = σ∗(X) and σ0(X) = σ∗

0(X).

It has been shown by Lelek (see [L4] and [L5]) that in the
above definitions, the inequalites

α ≤ dist(x, y) and α ≤ dist(g(c), f(c))

can be actually be replaced by (*)

α = dist(x, y) and α = dist(g(c), f(c))

respectively, in the case of compact spaces.
We utilize the following theorem from [L1], section 7.

Theorem L If Y is a closed subset of the Hilbert cube Iω and
f : Y → S is an essential mapping of Y into the circumference
S, then

inf
s∈S

(f−1(s), f−1(−s)) ≤ σ(Y ).

To simplify our exposition, we define and use the follow-
ing notation. We let px denote either px : R3 → R where
px(x, y, z) = x or px : R2 → R where px(x, y) = x. Similarly,
we let py denote either py : R3 → R where py(x, y, z) = y or
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py : R2 → R where py(x, y) = y. Let W be a subset of either R2

or R3. Let

RW = {w ∈ W | px(w) ≥ 0},

LW = {w ∈ W | px(w) ≤ 0},

TW = {w ∈ W | py(w) ≥ 0}, and

BW = {w ∈ W | py(w) ≤ 0}.

Let W be a subset of R2 and let w ∈ W. We use Cw to denote
either the circle in R3 generated by w when W is rotated about
the x-axis or the circle generated by w when W is rotated about
the y-axis. We let Dw represent the disc corresponding to Cw.
Let J be an arc in the plane such that J and the y-axis intersect
in a single point, w, and for each (x, y) ∈ J either y ≥ 0 or
y ≤ 0. In the surface, which is generated by rotating J about
the x-axis. We let Js denote the following: Js is the copy of
J which is obtained when J is rotated (in a rigid manner) and
the point w on J is rotated to the point s on Cw. We define
Js in the comparable way when the rotation is about the y-
axis. By cl(W ) we mean the closure of W in the space under
consideration. We let θ represent the origin either in R2 or in
R3.

3. Main Results

Let f be a concave upward function where f : [0, p] → [0, q] and
f(0) = q and f(p) = 0. Let A1 = G where G is the graph of
f in R × R. Let A2 be the reflection of A1 through the y-axis.
Let A3 be the reflection of A2 through the x-axis. Let A4 be the
reflection of A1 through the x-axis. Let X = A1 ∪A2 ∪A3 ∪A4.
We refer to the simple closed curve X, defined in this manner,
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as a concave upward symmetric simple closed curve. Also, let
P = (p, 0) and Q = (0, q) or P = (p, 0, 0) and Q = (0, q, 0)
when X is considered as a subset of R3. Let (X, d) be a metric
space. Let x ∈ X and A be a closed set in X. We denote
min{d(x, y) | y ∈ A} by d(x,A).

Theorem 1. Let X be a concave upward symmetric simple closed
curve (as defined above). Then σ(X) = σ0(X) = σ∗(X) =
σ∗

0(X) = min{d(−P,A1), d(−Q,A1)}.

Proof. We can assume without a loss of generality that
min{d(−P,A1), d(−Q,A1)} = d(−P,A1). If this is not the case,
then rotate X 90o counterclockwise and the proof will be similar.
Consider the set in X × X given by

C = ({−P} × (A4 ∪ A1)) ∪ ((A3 ∪ A4) × {Q})
∪({P} × (A2 ∪ A3)) ∪ ((A1 ∪ A2) × {−Q}).

Clearly, p1(C) = p2(C) = X and C is connected. Also, for each
(x, y) ∈ C, d(x, y) ≥ d(−P,A1). When x = −P and y = S ∈ A1

such that d(−P, S) = d(−P,A1), then d(x, y) = d(−P, S) =
d(−P,A1). So, σ(X) ≥ d(−P,A1). Now, we will show that
σ0(X) ≤ d(−P,A1). Note that S 6= P, since the line through
P and Q is neither tangent to the circle centered at −P of ra-
dius 2p nor does it have positive slope. Let S1 = PS, S2 = −PS,
S3 = −P (−S), and S4 = −SP . Let R1 be the ray in quadrant
I emanating from S which is parallel to the y-axis or on the
y-axis in the case when S = Q. Let R2 be the ray in quadrant
II emanting from −P which is parallel to the y-axis. Let R3 be
the ray in quadrant III emanting from −S which is parallel to
the y-axis or on the y-axis in the case where −S = −Q. Let R4

be the ray in quadrant IV emanating from P which is parallel
to the y-axis. Note that X must be contained in the portion
of the plane bounded by R1 ∪ S1 ∪ R4 and R2 ∪ S3 ∪ R3 which
contains the origin.
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Let L be the line through the origin which is perpendicular to
S2. The line L is not the y-axis since S 6= P. Let p : X → L be
the map from X to L which takes each point of X and projects
it perpendicularly onto L. Suppose f, g : C → X are continuous
functions from a connected set C into X where f(C) = X.
Now, consider p ◦ f, p ◦ g : C → L. Consider the ordering on
L given by (x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 for each
pair of points (x1, y1) and (x2, y2) on L. Let A = {t ∈ C |
p ◦ f(t) ≤ p ◦ g(t)} and B = {t ∈ C | p ◦ f(t) ≥ p ◦ g(t)}. Since,
C = A∪B, C is a connected set, and A and B are both closed,
it must be that A ∩ B 6= φ. So, there exists t

′ ∈ C such that
p ◦ f(t

′
) = p ◦ g(t

′
) so, f(t

′
) and g(t

′
) must both be on a line

segment S∗ which is perpendicular to L where the endpoints of
S∗ are either on S1 and S3, R1 and R2, or R3 and R4. Clearly,
d(f(t

′
), g(t

′
)) ≤diam(S∗) ≤diam(S2) = d(−P, S). Consequently,

σ0(X) ≤ d(−P, S) = d(−P,A1). Since, d(−P,A1) ≤ σ(X) ≤
σ0(X) ≤ d(−P,A1), we see that σ(X) = σ0(X) = d(−P,A1).
Also, since X is a simple closed curve

σ(X) = σ0(X) = σ∗(X) = σ∗
0(X). 2

Hence, question (d) has been answered in the affirmative for
simple closed curves in this class.

Theorem 2. Let X be a concave upward symmetric simple closed
curve. Suppose Y is a continuum such that Y is contained in
B ∪ X where B is the bounded component of R2 − X. Then
α(Y ) ≤ α(X) where α = σ, σ0, σ∗, σ∗

0.

Proof. Similar to the last part of the proof of Theorem 1.

Theorem 3. Let X be a concave upward symmetric simple closed
curve. Suppose Y is any plane separating continuum such that
X is contained in cl(B), where B is a bounded component of
R2 − Y. Then σ(Y ) ≥ σ(X).

Proof Again we assume without loss of generality that
min {d(−P,A1), d(−Q,A1)} = d(−P,A1). Let 0 < ε <
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(diam A1)/4. Let θ ∈ (0, π
8
) such that the diameter of the por-

tion of X contined in the wedge of angle 2θ formed by these

pairs of rays,
−−−−−→
θei(π/2−θ) and

−−−−−→
θei(π/2+θ),

−−−−→
θei(π−θ) and

−−−−→
θei(π+θ), and−−−−−−→

θei(3π/2−θ) and
−−−−−−→
θei(3π/2+θ) is less than ε/2.

Let q : Y → S1 be given by q(reiγ) = eiγ. Since Y is a plane
separating continuum and θ is in a bounded component of R2−Y,
q is an essential map. Let U be the unbounded component of
R2 − X. We partition cl(U) into six sets as follows:

A = {reiα ∈ cl(U) | 0 ≤ α ≤ π/2 − θ or 3π/2 + θ ≤ α ≤ 2π},
A′ = {reiα ∈ cl(U) | π − θ ≤ α ≤ π + θ},
B = {reiα ∈ cl(U) | π/2 + θ ≤ α ≤ π − θ},
B′ = {reiα ∈ cl(U) | 3π/2 − θ ≤ α ≤ 3π/2 + θ},
C = {reiα ∈ cl(U) | π + θ ≤ α ≤ 3π/2 − θ}, and

C ′ = {reiα ∈ cl(U) | π/2 − θ ≤ α ≤ π/2 + θ}.

If x ∈ A
′

and y ∈ A then d(x, y) ≥ d(−P,A1 ∪ A4) − ε =
d(−P,A1)− ε. If x ∈ B

′
and y ∈ B then d(x, y) ≥ d(−Q,A2)−

ε = d(−Q,A1) − ε ≥ d(−P,A1) − ε. If x ∈ C
′
and y ∈ C then

d(x, y) ≥ d(Q,A3)−ε = d(−Q,A1)−ε ≥ d(−P,A1)−ε. In each
of the three cases d(x, y) ≥ d(−P,A1) − ε.

Let r : S1 → S1 be a one-to-one continuous function on S1

such that:

r(ri0) = ei0,

r(ei(π/2−θ)) = eiπ/6,

r(ei(π/2+θ)) = eiπ/2,

r(ei(π−θ)) = ei5π/6,

r(ei(π+θ)) = ei7π/6,

r(ei(3π/2−θ)) = ei3π/2, and

r(ei(3π/2+θ)) = ei11π/6.

Consider the function r ◦ q : Y → S1. It is an essential map
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from Y onto S1 such that

inf
s∈S1

d
(
(r ◦ q)−1(s), (r ◦ q−1)(−s)

)
≥ d(−P,A1) − ε.

Consequently, by Theorem L σ(Y ) ≥ d(−P,A1)−ε. Since ε was
arbitrary, we see that σ(Y ) ≥ d(−P,A1) = σ(X). 2

Let Zx be the surface generated by rotating X about the x-axis
in 3-space. Let Wx be the corresponding solid. We have the
following results.

Theorem 4. Let Zx be as defined above. Then σ(Zx) =
σ0(Zx) = 2q.

Proof. Let C = {(s,−s) | s ∈ CQ}. The set C is connected
and p1(C) = p2(C). Hence, σ(Zx) ≥ 2q. Suppose D ⊂ Zx × Zx,
where D is connected and p1(D) ⊆ p2(D). Define p

′
x : R3 → R3

by p
′
x(x, y, z) = (x, 0, 0). Consider (p

′
x ◦ p1)(D) and (p

′
x ◦ p2)(D).

They are connected and (p
′
x ◦ p1)(D) ⊆ (p

′
x ◦ p2)(D) ⊆ [−p, p]×

{0} × {0}. Hence, there is a d ∈ D such that (p
′
x ◦ p1)(d) =

(p
′
x ◦ p2)(d). So, p1(d) and p2(d) are both on the circle in Zx

generated by a point (x
′
, y

′
, 0) ∈ X where (p

′
x ◦ p1)(d) = (p

′
x ◦

p2)(d) = (x
′
, 0, 0). Consequently, d(p1(d), p2(d)) ≤ 2|y′| ≤ 2q.

So, σ0(Zx) ≤ 2q. Hence, σ(Zx) = σ0(Zx) = 2q.

Theorem 5. Let Wx be as defined above. Then σ(Wx) =
σ0(Wx) = 2q.

Proof. The proof is similar to the proof of Theorem 4.

Let Zy be the surface generated by rotating X about the
y-axis. Let Wy be the corresponding solid.

Theorem 6. Let Zy be as defined above. Then σ(Zy) =
σ0(Zy) = 2p.

Proof. The proof is similar to the proof of Theorem 4.
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Theorem 7. Let Wy be as defined above. Then σ(Wy) =
σ0(Wy) = 2p.

Proof. The proof is similar to the proof of Theorem 4.

Theorem 8. Let Wx be as defined above. If d(−P,A1) ≤
d(−Q,A1) then σ∗(Wx) = σ∗

0(Wx) = diamX/2.

Proof. We consider two cases.
case 1: p ≥ q.
Let D = ({−P}×RWx)∪ (LWx ×{P})∪ (A3×{Q})∪ ({−Q}×
A2) ∪ (RWx × {−P}) ∪ ({P} × LWx). The set D is connected
and p1(D) = p2(D) = Wx. For each (x, y) ∈ D, d(x, y) ≥
d(θ, P ) = p. So, σ∗(Wx) ≥ p. Since for every x ∈ Wx, d(θ, x) ≤ p,
σ∗

0(Wx) ≤ p. So, σ∗(Wx) = σ∗
0(Wx) = p = diamX/2.

case 2: q > p.
Let D = ({Q} × BWx) ∪ (TWx × {−Q}) ∪ {(s,−s) | s ∈ CQ} ∪
(BWx×{Q})∪({−Q}×TWx). For each (x, y) ∈ D, d(x, y) ≥ q and
p1(D) = p2(D) = Wx. So, σ∗(Wx) ≥ q. Also, for each x ∈ Wx,
d(θ, x) ≤ q, and σ∗

0(Wx) ≤ q. Hence, σ∗(Wx) = σ∗
0(Wx) = q =

diamX/2. In both cases we have shown that σ∗(Wx) = σ∗
0(Wx) =

diamX/2.

Theorem 9. Let Wy be as defined above. If d(−P, A1) ≤ d(−Q, A1)
then σ∗(Wy) = σ∗

0(Wy) = min{diamX
2 , d(−P, A1)}.

Proof. We consider two cases.
case 1: q ≤ p.
Let D = ({−P} × RWy) ∪ (LWy × {P}) ∪ {(s,−s) | s ∈ CP} ∪
(RWy ×{−P}) ∪ ({P} ×LWy ). The set D is connected p1(D) =
p2(D) = Wy and for all (x, y) ∈ D, d(x, y) ≥ p. So, σ∗(Wy) ≥ p.
Also, σ∗

0(Wy) ≤ p since d(θ, x) ≤ p for all x ∈ Wy. So, σ∗(Wy) =
σ∗

0(Wy) = p = diamX/2.

case 2: q > p.
Let D = ({Q}×BWy)∪({−Q}×TWx)∪(A2×{P})∪({−P}×A1)∪
(BWy ×{Q})∪ (TWy ×{−Q}). The set D is connected, p1(D) =
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p2(D) = Wy. For all (x, y) ∈ D, d(x, y) ≥ min{q, d(−P,A1)}. If
q ≤ d(−P,A1) then by an argument similar to the one in case 1
we can see that σ∗(Wy) = σ∗

0(Wy) = diamX/2. Now consider the
case where d(−P,A1) < q. We know that σ∗(Wy) ≥ d(−P,A1).
We need to show that σ∗

0(Wy) ≤ d(−P,A1). Let f, g : C → Wy

be continuous functions from C into Wy, where C is connected,
f(C) = Wy, and d(f(c), g(c)) = σ∗

0(Wy) for all c ∈ C. Such
functions exist by (*). Let p

′
y : R3 → {0}×R×{0} be given by

p
′
y(x, y, z) = (0, y, 0). Let r : {0} × [−q, q]× {0} → A1 ∪ A4 be

the function given byr((0, y, 0)) = (x, y, 0) where (x, y, 0) is the
corresponding element of A1 ∪ A4. Clearly, this is a continuous,
one-to-one function. Let l : {0} × [−q, q] × {0} → A2 ∪ A3 be
the function given by l((0, y, 0)) = (x, y, 0) where (x, y, 0) is the
corresponding element of A2 ∪ A3. Again this is a continuous
one-to-one function. So,

r ◦ p
′

y ◦ f : C → A1 ∪ A4 and l ◦ p
′

y ◦ g : C → A2 ∪ A3

are continuous functions and r ◦ p
′
y ◦ f(C) = A1 ∪ A4. Consider

m : C → R given by m(c) = m(r ◦ p
′

y ◦ f(c), l ◦ p
′

y ◦ g(c)) =

slope between the points r ◦ p
′
y ◦ f(c) and l ◦ p

′
y ◦ g(c). This is

a well defined continuous function as long as the slope between
the points is defined. The line segment between r ◦ p

′
y ◦ f(c)

and l ◦ p
′
y ◦ g(c) is never degenerate because for each c ∈ C

neither f(c) = g(c) = Q nor f(c) = g(c) = −Q can occur since
σ∗

0(Wy) 6= 0. Also, when f(c) = Q, g(c) 6= −Q since clearly
σ∗

0(Wy) 6= 2q =diam(Wy). Similary, when f(c) = −Q, g(c) 6= Q.
Since f is onto, there is a c

′
in C such that f(c

′
) = Q and

a c
′′ ∈ C such that f(c

′′
) = −Q. Observe that when f(c

′
) =

Q, m(c
′
) = m(r ◦ p

′
y ◦ f(c

′
), l ◦ p

′
y ◦ g(c

′
)) > m(−P, S) (where

S ∈ A2 such that d(−P, S) = d(−P,A2)) since the line of slope
m(−P, S) through Q does not intersect Wy at any other point
and m(x,Q) > m(−P, S) for all x ∈ A2∪A3−{Q}. Also, observe
that when f(c

′′
) = −Q,

m(c
′′
) = m(r ◦ p

′

y ◦ f(c
′′
), l ◦ p

′

y ◦ g(c
′′
)) < 0.
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Since m is continuous and C is connected, [m(c
′′
), m(c

′
)] ⊂

m(C). So, there is a c∗ in C such that m(c∗) = m(−P, S). Let
r◦p

′
y ◦f(c

∗
) = (x1, y1, 0) = p1 and l◦p

′
y ◦g(c

∗
) = (x2, y2, 0) = p2.

In the proof of Theorem 1 we showed that d(p1, p2) ≤ d(−P, S).
Clearly, f(c∗) ∈ Dp1 , g(c∗) ∈ Dp2 , and d(f(c∗), g(c∗))≤d(−P, S).
Hence, σ∗

0(Wy) ≤ d(−P, S). So, for case 2, we can conclude that
σ∗(Wy) = σ∗

0(Wy) = min{diamX/2, d(−P,A1)}.

Theorem 10. Let Wx be as defined above. If d(−Q,A1) <
d(−P,A1) then σ∗(Wx) = σ∗

0(Wx) = min{diamX/2, d(−Q,A1)}.

Proof. If we rotate X 90◦ clockwise and then rotate it about
the y-axis, we get a space W which is isometric to Wx. We
can apply to W an argument similar to the one used in the
proof of Theorem 9. The conclusion, which is comparable to the
conclusion in Theorem 9, is

σ∗(Wx)=σ∗
0(Wx)=min{diamX/2, d(−Q,A1)}. 2

Theorem 11. Let Wy be as defined above. If d(Q,A1) <
d(−P,A1) then σ∗(Wy) = σ∗

0(Wy) = diamX/2.

Proof. If we rotate X 90◦ clockwise and then rotate it about
the x-axis, we get a space W which is isometric to Wy. We can
apply to W an argument which is similar to the one used in the
proof of Theorem 8. The conclusion, which is comparable to
conclusion in Theorem 8, is σ∗(Wy) = σ∗

0(Wy) = diamX/2.

Theorem 12. Let Zy be as defined above. Then σ∗(Zy) =
σ∗

0(Zy) = d(−P,A1).

Proof. Let D = ∪
s∈CP

({s}×(A1∪A4)−s)∪ ( ∪
s∈CP

(A1∪A4)−s×{s})
where (A1∪A4)−s is as defined in section 2 and −s is the element
of CP which is antipodal to s. For each (x, y) ∈ D, d(x, y) ≥
d(−P,A1∪A4) = d(−P,A1) = d(−P, S). Clearly, D is connected
and p1(D) = p2(D) = Zy . Hence σ∗(Zy) ≥ d(−P,A1). Now we
need to show that σ∗

0(Zy) ≤ d(−P,A1).
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Suppose f, g : C → Zy are continuous functions from a con-
nected set C into Zy such that f(C) = Zy and d(f(c), g(c)) =
σ∗

0(Zy) for each c ∈ C. We know that such functions exist by
(*).

It cannot be the case that there is a c ∈ C such that f(c) = Q
and g(c) = −Q. If q > p this is clear since diam(Zy) = 2q and
Q and −Q are the only two points in Zy such that d(x, y) = 2q.
Suppose q ≤ p. It is clear from the construction of X and Zy

that we can choose ε > 0 small enough, such that if x ∈ B(Q, ε)
and y ∈ B(−Q, ε) then d(x, y) < 2q when either x 6= Q or
y 6= −Q. Let U = f−1(B(Q, ε)) ∩ g−1(B(−Q, ε)) where ε is as
described above. So for each c

′ ∈ U, f(c
′
) = Q and g(c

′
) = −Q.

Hence U = f−1(Q) ∩ g−1(−Q) is both open and closed. This
contradicts the connectedness of C. So there is no c ∈ C such
that f(c) = Q and g(c) = −Q. Similarly, there is no c ∈ C such
that f(c) = −Q and g(c) = Q. Now, consider l◦p

′
y ◦g, r ◦p

′
y ◦f :

C → X. Because of the above observation, m : C → R given by
m(c) = m(l◦p

′
y◦g(c), r◦p

′
y◦f(c)) is well defined and continuous,

since the line segment l ◦ p′
y ◦ g(c) r ◦ p′

y ◦ f(c) is never vertical

nor degenerate. Note that for c ∈ C where f(c) = Q, p
′

y ◦f(c) =

(0, q, 0), r ◦ p
′
y ◦ f(c) = Q and m(c) > m(−P, S), since the

line through Q in R2 of slope m(−P, S) does not intersect X
and X is ‘below’ this line. Also, for c ∈ C where f(c) = −Q,
m(c) < 0. Since f(C) = Zy there is a c

′ ∈ C such that m(c
′
) >

m(−P, S) and there is a c
′′ ∈ C such that m(c

′′
) < 0. Since m is

continuous and C is connected, [m(c
′′
),m(c

′
)] ⊂ m[C]. Hence,

there is a c
′′′ ∈ C such that m(c

′′′
) = m(−P, S). As in the

proof of Theorem 9, we see that d(f(c
′′′
), g(c

′′′
)) ≤ d(−P, S). So,

σ∗
0(Zy) ≤ d(−P, S) and σ∗(Zy) = σ∗

0(Zy) = d(−P,A1).

Theorem 13. Let Zx be as defined above. Then σ∗(Zx)
= σ∗

0(Zx) = d(−Q,A1).

Proof. Let D = ∪
s∈CQ

({s} × (A1 ∪ A2)−s)∪ ( ∪
s∈CQ

(A1 ∪ A2)−s ×

{s}). The set D is connected, p1(D) = p2(D), and for each
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(x, y) ∈ D, d(x, y) ≥ d(−Q,A1∪A2) = d(−Q,A1). So, σ∗(Zx) ≥
d(−Q,A1). If we rotate X in the plane by 90◦ clockwise and then
rotate it about the y-axis, we get a space W which is isometric
to Zx. We can apply to W the argument used in Theorem 12
to show that σ∗

0(Zx) = σ∗
0(W ) ≤ d(−Q,A1). Hence, σ∗(Zx) =

σ∗
0(Zx) = d(−Q,A1).

For the spaces Zx, Wx, Zy and Wy we observe that questions
(a), (b), and (c) are all answered in the affirmative. For Zx , we
showed that

σ(Zx) = σ0(Zx) = 2q

and
σ∗(Zx) = σ∗

0(Zx) = d(−Q, A1).

So,
σ∗

0(Zx)
σ0(Zx)

=
σ∗(Zx)
σ(Zx)

=
d(−Q, A1)

2q

and
1
2

<
d(−Q, A1)

2q
< 1,

since q < d(−Q,A1) < 2q. For Zy we showed that σ(Zy) =
σ0(Zy) = 2p and σ∗(Zy) = σ∗

0(Zy) = d(−P,A1). So,

σ∗
0(Zy)

σ0(Zy)
=

σ∗(Zy)
σ(Zy)

=
d(−P, A1)

2p

and
1
2

<
d(−P, A1)

2p
< 1,

since p < d(−P,A1) < 2p. We showed that σ(Wx) = σ0(Wx) =
2q and that σ(Wy) = σ0(Wy) = 2p. When d(−P,A1) ≤ d(−Q,A1)
we showed that

σ∗(Wx) = σ∗
0(Wx) =

diamX

2

and that

σ∗(Wy) = σ∗
0(Wy) = min{diamX

2
, d(−P, A1)}.



SPANS OF CERTAIN SIMPLE CLOSED CURVES AND... 377

So, in this case

σ∗
0(Wx)

σ0(Wx)
=

σ∗(Wx)
σ(Wx)

=
(diamX)/2

2q

=
diamX

4q
=

{ 1
2 , q ≥ p
p
2q > 1

2 , p > q
.

Also, in this case

σ∗
0(Wy)

σ0(Wy)
=

σ∗(Wy)
σ(Wy)

=
(min{diamX

2 , d(−P, A1)})
2p

.

If (diamX)/2 ≤ d(−P, A1) then

σ∗
0(Wy)

σ0(Wy)
=

σ∗(Wy)
σ(Wy)

=
diamX

4p
=

{ 1
2 , p ≥ q
q
2p > 1

2 , q > p
.

If d(−P, A1) < (diamX)/2 then

σ∗
0(Wy)

σ0(Wy)
=

σ∗(Wy)
σ(Wy)

=
d(−P, A1)

2p

and
1
2

<
d(−P, A1)

2p
< 1,

since p < d(−P, A1) < 2p. Similarly when d(−Q, A1) <
d(−P, A1) we can see that

σ∗
0(Wy)

σ0(Wy)
=

σ∗(Wy)
σ(Wy)

≥ 1
2

and that
σ∗

0(Wx)
σ0(Wx)

=
σ∗(Wy)
σ(Wy)

≥ 1
2
.
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matički, Vol. 24 (44) (1989), 405-415.

[W3] Thelma West, Relating spans of some continua homeomorphic
to Sn, Proc. Amer. Math. Soc., Vol. 112, No. 4, August 1991,
1185-1191.

[W4] Thelma West, The relationships of spans of convex continua in
Rn, Proc. Amer. Math. Soc., Vol. 111, No. 1, January 1991,
261-265.

[W5] Thelma West, A bound for the span of certain plane separating
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