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ABSTRACT. We construct a naturally occurring planar
straight brush associated with the set of highly irrational
numbers known as the Brjuno numbers, which are im-
portant in dynamical systems. Furthermore, we parti-
tion the Brjuno numbers by ” degree of irrationality” and
we construct an infinite sequence of straight brushes cor-
responding to this partition. We use continued fractions
throughout this work; listing pertinent classical theory
and proving special properties, as necessary.

0. INTRODUCTION

Over the last century, researchers in dynamical systems con-
sidered the ”small divisors problem”; they studied linearization
conditions for complex analytic maps with neutral fixed points
at the origin and irrational rotation numbers. They consid-
ered maps of the form f(z) = €™z + ay22 + ... and sought
necessary and sufficient conditions on the irrational rotation
number, a to ensure linearization in some neighborhood of the
origin for every such map. From the works of C.L. Siegel in
1942 and A.D. Brjuno in 1965, it was known that when the
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rotation number was a Diophantine number [8] or more gen-
erally, an irrational that was "poorly approximated by ratio-
nals” [2], then linearization was always possible. In 1987 J.C.
Yoccoz proved that the Brjuno numbers possess the necessary
and sufficient ”degree of rational approximation” for a rotation
number to always yield linearization [9].

We study the structure of the Brjuno numbers and the topol-
ogy of a planar graph associated with the Brjuno function. In
Section 1, we provide some necessary background in number
theory and topology. From number theory, the use of continued
fractions in the rational approximation of irrational numbers
is presented to the extent necessary to define the Brjuno func-
tion and the Brjuno numbers. We produce examples of Brjuno
and non-Brjuno numbers and prove that the Brjuno numbers
are dense in the irrationals. Next, we review the definition of
planar straight brushes and give an example of one that arises
naturally in dynamics.

In Section 2 we present our main result, which is a construc-
tion of a planar straight brush over the Brjuno numbers. We
rely heavily on continued fraction theory to construct irrational
numbers with prescribed absolute value and prescribed Brjuno
sum.

In Section 3, we show that the Brjuno numbers properly
contain the Diophantine numbers along with Liouville numbers
of varying degrees of irrationality. Furthermore, we construct
a nested sequence of subsets inside the Brjuno numbers and we
prove that each of these subsets yields a planar straight brush.

1. PRELIMINARIES
Continued fractions and Brjuno numbers

By the simple regular continued fraction representation of an
irrational number we mean an infinite expansion of the form
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a =ap+

az + —

where ag € Z and a,, € Z* for every n > 0.
We shall use standard shorthand notation for the continued
fraction representation, letting o = [ao, a1, az,...] or @ = [a,].
An important example in the work that follows is the con-
tinued fraction representation for the golden ratio:

1++5 1

=1 =[1,1,1,...

5 + 7 [1,1,1,...]
It ————

I+

1
1+ —

Truncation of the infinite continued fraction expansion for o
after a finite number of steps yields rational approximations,
known as partial fraction convergents. The nth convergent of

« is given by:

P, 1
—=a0+ :[ag,al,ag,...,an]
Qn N 1
a —eeee
! 1
@t —7

an

The convergents are the ”closest” nearby rational numbers
in the sense that if | @ — ¢ |<| a — % | for some n > 0, then
b > @),. We are interested in approximating irrationals by ra-
tionals with the least denominators possible, so the convergents
provide the best rationals for the job.
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Below are some properties of the convergents that are used
in our work. All, except for 1.3.B are elementary and are found
in [5]. Property 1.3.B is easily proved by induction. See [6] for
proof.

1.1 Recursive relations
Po=ag, A= aya0+1, P, =a,P,_1 + P,_o foreveryn > 2
Qo=1, Q1= ay, Qn = a,Qn-1 + Qn_o for everyn > 2

1.2 The convergents converge to « in an oscillating manner:
P o o < Boit1 {61 every k > 0
Q2k C 0 Qakh ) )

That is, the subsequence of even terms yields monotonic con-
vergence from below and the subsequence of odd terms yields

monotonic convergence from above.

1.3 (A) If ¢ = [ao,a1,-.. ,an,an41...] and
y:[ao,al,...,an,bn+1...]then|:c—y|< 2,,1_1.
Py
(B) If ¢ = [ag,a1,...] and | z —y |<| = — oy | then
y = [ao, a1y ,anybpgr ... ].

1.4 The proximity of nearby rational numbers is governed by
the convergent fraction denominators:

1 P,

1
OOt ) <l|a-— @| < mfor all n > 0.

A close look at the lower bound in Property 1.4 reveals that
the growth rate of the convergent denominator sequence actu-
ally determines the type of "rational barrier function” exhib-
ited by a. That is to say, an irrational number with a fast grow-
ing denominator sequence will permit better rational approx-
imations than found with an irrational having a denominator
sequence exhibiting slower growth rate. Intuitively, the latter
are considered "more irrational” than the former. The abso-
lute slowest denominator growth rate possible is found with
the golden ratio (the sequence is the Fibonacci sequence) and
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the golden ratio is considered the "most irrational” number.
On the other extreme, varying degrees of fast growth rates are
found within the set of Liouville numbers.

We study functions of an irrational number pertaining to
continued fraction data. For starters, if {Q,} is the sequence
of convergent denominators, we remark that the infinite sum
Bo(a) = Y07, l"—g—fﬂ is finite for every irrational number [6].
This function does not distinguish between irrational numbers
of different irrationality degrees, but things change when we
choose a function that captures the growth rate of {@,} , such

as the Brjuno function:

Blo) = ) B,

The set of Brjuno numbers is defined to be the domain of
convergence of this function. That is,

B = {a € (R\Q) | B(a) < oo}

Proposition 1.1. Not all irrational numbers are Brjuno num-
bers.

Proof: If we let o« = [a,] where

. — 10 ifn=0,1
TS ifn>2
2Qn
then one can check easily that Qn41 > Q-""' and the Ratio
Test guarantees divergence of the Brjuno sum for o. O

Rest assured that Brjuno numbers exist. Below we describe
some and prove that the Brjuno numbers are dense in the ir-
rationals.

Proposition 1.2. The golden ratio is a Brjuno number. More-
over, any irrational number whose continued fraction expan-
sion ends with a string of 1’s is a Brjuno number.
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Proof: If o =[1,1,1,...] then Q41 < @2 when n > 2 and if
o = lag,... ,a,1,1,1,...] for some integer sequence ay, . . . ay,
then Qn41 < Q2 when n > k. Thus, eventually, %‘ﬂ <

21—“5&’- holds in both cases and since Y o7 %Qﬂ < 00, we have
finite Brjuno sums in both cases. O

Remark: If @ = [ao,...ax,1,1,1,...] for some integer sequence
ap, ... ,ak, then we say that o has a "golden tail”.

Earlier we remarked that two numbers are close if their con-
tinued fractions share the same front end and moreover, the
longer that the front ends match, the closer the two numbers
will be. This observation, coupled with the second part of
Proposition 1.2, proves that the set of all numbers that end
with a golden tail is dense in the irrationals. Hence we have

Proposition 1.3. The Brjuno numbers are dense in the irra-
tionals.

Straight brushes We follow J.M. Aarts and L.G. Oversteegen
[1] in defining a canonical planar straight brush. A straight
brush in R? is a closed subset A of the set R\Q X [0, 00) with
the following properties:

1. Hairiness

For each (a,y) € A there is a y, € [0,00) such that
{v | (,y) € A} = [ya,00). The point (a,ya) is
called the endpoint of the hair at o and the non-
endpoints on the hair are called interior points of
the hair.

2. Density
(i) The set {a | (o,y) € A for some y} is dense in
the irrational numbers and
(ii) for each (a,y) € A, there exist sequences of ir-
rational numbers, {#,} and {(,} such that
ﬂn T «, Cn l a, Yp, Y, and ¢, = Y.



THE TOPOLOGY OF THE BRJUNO NUMBERS 195

On the other hand, from dynamics Julia sets of many en-
tire functions of finite type have been shown to contain Cantor
bouquets of rays in the complex plane. See, for example [4]
where Devaney and Tangerman exhibit Cantor bouquets in the
Julia sets for each member of the family of complex exponential
maps F)(z) = Ae? for a real parameter A, 0 < A < 1/e. Aarts
and Oversteegen [1] proved that a Cantor bouquet is homeo-
morphic to a straight brush and that all planar straight brushes
are homeomorphic. The Julia sets mentioned above were cele-
brated as the first "naturally occurring” straight brushes and
the Brjuno brushes presented here provide more such exam-
ples.

2. THE BRIJUNO BRUSH

What does the set of Brjuno numbers look like? We begin
by graphing the Brjuno function in the plane, and we find that
{(er, B(e))|ae € B} is a totally disconnected and perfect set.
Next, we attach a vertical ray to each endpoint and define

A ={(e,y) € R*|la € Band y > B(a)}.

By construction, A satisfies the necessary hairiness property
for a straight brush and with Propositions 2.1 and 2.2, we show
that is a_closed subset of the plane satisfying the endpoint
density property for a straight brush.

Proposition 2.1. A = {(a,y) e R* | o € B and y > B(a)}
s a closed subset of the plane.

Proof: We assume {(zn,y»)} € A is an infinite sequence
converging to (a,y) where a = [a;] and we must prove that

(o, y) € A. We fix an n > 0 and we let % and g‘: be the ith

convergents for « and =z, respectively.

By assumption, z, € B and y, > B(z,) we must show that
y > B(a) and o € B. First, we observe that Property 1.3.B
implies that we may assume, without loss of generality, that
the continued fraction representation for z, has a front end
that matches the front end for a.
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This implies that @ = @, for 0 < 7 < n , which implies
that the nth partial Brjuno sum for z, is identical to the nth

partial Brjuno sum for «, yielding B(z,) > Z'—nq logQQ:+1 .

By assumption y, > B(z,), hence y, > Z—n—l logg,_H for

every n > 0, and lim,— o0 ¥ > limy_eo Z""‘l k’—ggﬂ , that
is y > B(a)

This last inequality forces B(«) to be finite since y was as-
sumed to be finite in the first place. Thus « is a Brjuno number
and we have shown that (a,y) € A . O

The endpoint density requirement of a straight brush re-
quires the construction of two sequences that converge on « ;
one monotonically increasing and the other monotonically de-
creasing. Our approach involves constructing a single sequence
that converges in an oscillating way, where the subsequence of
even terms is eventually strictly increasing and the subsequence
of odd terms eventually is strictly decreasing.

Proposition 2.2. For each (a,y) € A, there exists a sequence
{(zn, B(,))} in A with z,, — o and B(z,) — y.

Proof: Suppose (a,y) € A where o = [a,] and z = y — B(a).
We form a sequence of irrational numbers, {z,} where the
front end of the continued fraction for each z, matches the
continued fraction for a through the first n places and the
continued fraction tail for each z, is golden. We custom design
one integer in the continued fraction for z, so as to control its
Brjuno sum. That is, we let

T, = [ag, ... ,an,[| bn |],1,1,1,...] where b, = Q—’“‘%

n Y

and [| b, || means the greatest integer in b,.

We denote the kth convergent denominators for o and =z,
by Q@ and QF, respectively and observe that Q} = @y for
0<k<n.

By the remarks made in Section 1, it is obvious that z,, € B
for every n > 0 and z, — a.
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Next, we fix an n > 0 and we consider B(z,) — B(a):

log Qhy o log Qi
Blz,) — B(a) = 3 2kt _§°
( ) ( ) k=0 QZ k=0 Qk

k=n—1 n
B(z,) = Bla)= ) (log Qi1 _ log Qk+1)

k=0 QZ Qk
N (log Qry1  log Qn+1)
Qn Qn
: log QZ+1 log Qk+1)
(=t =D
(k>n k k>n Qk
log Onis
B(z,) — B(a) =0 + QQ"“
log Q%1 log Qry1
* Z QF Z @
k>n k k>n

In the limit we have:

1 n
+ lim <Z _OgglkH)
n—+00 k

k>n

~ lim (Z log QQk+1>
n—00 k

k>n

The second and third terms on the right hand side drop out.

In [6] a comparison test is used to show that
1

limy o0 (Zk>n %ﬂ) = 0 On the other hand,

limy oo (Zk>n %ﬂ) = 0 because this is the limit of the
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tail of the converging series corresponding to the Brjuno sum
for a.

Lastly, the number b, was custom designed to give
limn_,oo(Q:i—’l‘:j@) = 1. See [6] for details. Thus,
lim, 00 (B(z,) — B(a)) = z or equivalently, B(z,) — y. O

Using elementary properties of continued fractions, we find
that the even terms of {z,} eventually are strictly increasing
and the odd terms are eventually strictly decreasing. Thus we
have proved the following corollary which gives the necessary
endpoint density property for a planar straight brush.

Corollary 2.3. For each (a,y) € A, there exist sequences of
irrational numbers {B,} and {(,} such that p, T «,

Cnla, ys, =y, andye, —y.

3. STRUCTURE OF THE BRJUNO NUMBERS AND A
SEQUENCE OF BRUSHES

The Brjuno brush is just the beginning of the story! In
this section we describe a sequence of nested subsets inside the
Brjuno numbers. Each subset admits a straight brush con-
struction similar to the one we constructed for the Brjuno
numbers.

Suppose that the convergents for the irrational number «
are given by {gi-} and suppose that the integer j > 1 is fixed.

Definitions. The Brjuno function of order j is given by
oo logQn4;

Bi(a) = T, B8 and
the Brjuno numbers of order j are given by

B; = {a € R\Q|Bj(a) < co}.

Of course, By(«) is the Brjuno function and Bj is the set of
Brjuno numbers.

In [6] we prove that these sets are properly nested inside the
Brjuno numbers:

...Bj+1gngBj_l...BnglzB
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As j increases and we go from B; to B;;;, we squeeze out
irrationals which are easier to approximate by rationals, that
is to say, the irrational numbers in B4, are "more irrational”
than those in the difference set B;\B;41. This partition of the
irrational numbers leads to the following:

Definition. If « is an irrational number and o € B; but
a & Bj;1 then the degree of irrationality of « is j.

We let B, = N;>1B; and we say that a number has an
infinite degree of irrationality if it is contained in Be. In [6]
we show that the Diophantine numbers are contained in B,
which is consistent with their reputation as being most poorly
approximated by rationals, or most irrational.

We construct a straight brush over each B; similarly to
the Brjuno brush construction for each positive 5. We let
A; = {(o,y) € R%*|la € B; and y > Bj(a)}. This set is easily
shown to be closed in the plane using a nearly identical argu-
ment to the one used in Proposition 2.1 for the Brjuno brush
case. The endpoint density proof requires a small change.

Proposition 3.1. Foreach (a,y) € Aj, there exists a sequence
{(zn, Bj(zn))} in Aj with z, — o and Bj(z,) — y.

Outline of Proof: As with the Brjuno brush case, we define a
sequence of irrational numbers {z,} where the front end of the
continued fraction for z, matches that for o and z, ends with
the golden tail. However, whereas in the Brjuno brush proof we
inserted one custom-designed integer in the middle, for the A;
case, we need to insert j custom-designed and distinct integers
in the middle.

In [6] we prove that the following recipe does the job:
[a0> ai, ... ,Qn, [|bn+1|]a [|bn+2|]a SRR ['bn+j|]? 17 ]-a 1’ . ]

where
anil—z

b _ Qn+16 J - Qn-l
+1 —
n Qn b
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an+2—z
Qn+26 J - Qn
ZQ":U—Z
Q'n+16 J
anii—Z an+i—2—z
Qn+ie J - 6211-1--1’—2e
b"+i = 2Qn4i—1—3
Qn+i-—l € J

bpy2 = , and

for 3 < <.

4. FINAL COMMENTS AND QUESTION

We have not explored questions of Hausdorff dimension and
Lebesque measure for the straight brushes constructed here.
C. McMullen showed that not every straight brush has the
same Lebesque measure. In [7] he showed that the Cantor
bouquets found in the Julia sets for the exponential family
mentioned earlier, have Lebesque measure 0, while on the other
hand the Cantor bouquets present in the Julia sets for certain
functions involving the sine function have infinite Lebesque
measure. In both cases he found the straight brushes to have
Hausdorff dimension 2. What about our straight brushes?
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