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THE STRUCTURE AND TOPOLOGY OF THE
 
BRJUNO NUMBERS
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ABSTRACT. We construct a naturally occurring planar 
straight brush associated with the set of highly irrational 
numbers known as the Brjuno numbers, which are im­
portant in dynamical systems. Furthermore, we parti­
tion the Brjuno numbers by "degree of irrationality" and 
we construct an infinite sequence of straight brushes cor­
responding to this partition. We use continued fractions 
throughout this work; listing pertinent classical theory 
and proving special properties, as necessary. 

o. INTRODUCTION 

Over the last century, researchers in dynamical systems con­
sidered the" small divisors problem"; they studied linearization 
conditions for complex analytic maps with neutral fixed points 
at the origin and irrational rotation numbers. Ttley consid­

21riexered maps of the form f( z) = e z + a2z2 + . .. and sought 
necessary and sufficient conditions on the irrational rotation 
number, a to ensure linearization in some neighborhood of the 
origin for every such map. From the works of C.L. Siegel in 
1942 and A.D. Brjuno in 1965, it was known that when the 

!(ey lvords and phrases. Straight Brush, Brjuno Numbers, Continued 
Fractions, Irrationality Degree. 
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rotation number was a Diophantine number [8] or more gen­
erally, an irrational that was "poorly approximated by ratio­
nals" [2], then linearization was always possible. In 1987 J.e. 
Yoccoz proved that the Brjuno numbers possess the necessary 
and sufficient" degree of rational approximation" for a rotation 
number to always yield linearization [9]. 

We study the structure of the Brjuno numbers and the topol­
ogy of a planar graph associated with the Brjuno function. In 
Section 1, we provide some necessary background in number 
theory and topology. From number theory, the use of continued 
fractions in the rational approximation of irrational numbers 
is presented to the extent necessary to define the Brjuno func­
tion and the Brjuno numbers. We produce examples of Brjuno 
and non-Brjuno numbers and prove that the Brjuno numbers 
are dense in the irrationals. Next, we review the definition of 
planar straight brushes and give an example of one that ~rises 
naturally in dynamics. 

In Section 2 we present our main result, which is a construc­
tion of a planar straight brush over the Brjuno numbers. We 
rely heavily on continued fraction theory to construct irrational 
numbers with prescribed absolute value and prescribed Brjuno 
sum. 

In Section 3, we show that the B~juno numbers properly 
contain the Diophantille numbers aloIlg with Liouville numbers 
of varying degrees of irrationality. Furthermore, we construct 
a nested sequence of subsets inside the Brjuno numbers and we 
prove that each of these subsets yields a planar straight brush. 

1. PRELIMINARIES 

Continued fractions and Brjuno numbers 

By the simple regular continued fraction representation of an 
irrational number we mean an infinite expansion of the form 
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1 
Q' == ao + -------­

1 
al +----­

1 
a2+--­

1 
a3+­

where ao E Z and an E Z+ for every n > o. 
We shall use standard shorthand notation for the continued 

fraction representation, letting Q' == [ao, al , a2, ... ] or Q' == [an]. 
An important example in the work that follows is the con­

tinued fraction representation for the golden ratio: 

1 + V5 1 
2 = 1 +---1-- == [1,1,1, ... ] 

1+---­
1 

1+-­
1 

1+­

Truncation of the infinite continued fraction expansion for Q' 

after a finite number of steps yields rational approximations, 
known as partial fraction convergents. The nth convergent of 
Q' is' given by: 

P 1 
- n == ao +-------- == [ao, aI, a2,··· ,an]
Qn 1 

al+----­
1 

a2+--­
1 .. +­

an 

The convergents are the" closest" nearby rational numbers 
in the sense that if 1 (Y - ~ 1<1 (Y - ~: 1for some n ~ 0, then 
b > Qn. We are interested in approximating irrationals by ra­
tionals with the least denominators possible, so the convergents 
provide the best rationals for the job. 
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Below are some properties of the convergents that are used 
in our work. All, except for 1.3.B are elementary and are found 
in [5]. Property 1.3.B is easily proved by induction. See [6] for 
proof. 

1.1 Recursive relations 

Po == ao, PI == al ao + 1, Pn == anPn- 1 +Pn- 2 for every n 2: 2 

Qo == 1, QI == aI, Qn == anQn-1 + Qn-2 for every n 2: 2 

1.2 The convergents converge to a in an oscillating manner: 
~ < a < P2k±1 for every k > 0 
Q2k Q2k+l ­

That is, the subsequence of even terms yields monot0I!ic con­
vergence from below and the subsequence of odd terms yields 
monotonic convergence from above. 

1.3 (A) If x == [ao, al, ,an, an+1 ... ] and 
y == [ao, al,· · . ,an, bn+1 ] then I x - y 1< 2nl_ l • 

(B) If x == [ao, al, ] and 1 x - y 1<1 x - QPn±l 1then 
n+l 

y == [ao, al,· .. ,an, bn+1 ... ]. 

1.4 The proximity of nearby rational numbers is governed by 
the convergent fraction denominators: 

1 Pn 1 
Q (Q' Q ) < let - -Q I < Q Q for all n ~ O. 

n n + n+1 n n n+1 

A close look at the lower bound in Property 1.4 reveals that 
the growth rate of the convergent denominator sequence actu­
ally determines the type of "rational barrier function" exhib­
ited by a. That is to say, an irrational number with a fast grow­
ing denominator sequence will permit better rational approx­
imations than found with an irrational having a denominator 
sequence exhibiting slower growth rate. Intuitively, the latter 
are considered "more irrational" than the former. The abso­
lute slowest denominator growth rate possible is found with 
the golden ratio (the sequence is the Fibonacci sequence) and 
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the golden ratio is considered the "most irrational" number. 
On the other extreme, varying degrees of fast growth rates are 
found within the set of Liouville numbers. 

We study functions of an irrational number pertaining to 
continued fraction data. For starters, if {Qn} is the seqll-ence 
of convergent denominators, we remark that the infinite sum 
Bo(a) = 2::'=0 lo~~n is finite for every irrational number [6]. 
This function does not distinguish between irrational numbers 
of different irrationality degrees, but things change when we 
choose a function that captures the growth rate of {Qn} , such 
as the Brjuno function: 

B(a) = f= log Qn+!. 
n=O Qn 

The set of Brjuno numbers is defined to be'the domain of 
convergence of this function. That is, 

B == {a E (R\Q) I B(a) < oo}. 

Proposition 1.1. Not all irrational numbers are Brjuno num­
bers. 

Proof: If we let a == [an] where 

if n == 0, 1 
an == {QI0Qn_ 

n-l 
1 if n 2 2 

~ 

then one can check easily that Qn+l > Q~n-l and the Ratio 
Test guarantees divergence of the Brjuno sum for a. 0 

Rest assured that Brjuno numbers exist. Below we describe 
some and prove that the Brjuno numbers are dense in the ir­
rationals. 

Proposition 1.2. The golden ratio is a Brjuno number. More­
over, any irrational number whose continued fraction expan­
sion ends with a string of 1 's is a Brjuno number. 
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Proof: If Q' == [1,1,1, ] then Qn+l < Q~ when n ~ 2 and if 
Q' == [ao, ... ,ak, 1, 1, 1, ] for some integer sequence ao, ... ak, 
then Qn+l < Q~ when n > k. Thus, eventually, IOgg:±l < 
21'JnQn holds in both cases and since 2::'=0 lo~~n < 00, we have 
finite Brjuno sums in both cases. 0 

Remark: If Q' == [ao, . .. ak, 1, 1, 1, ... ] for some integer sequence 
ao, ... ,ak, then we say that Q' has a "golden tail". 

Earlier we remarked that two numbers are close if their con­
tinued fractions share the same front end and m<;>reover, the 
longer that the front ends match, the closer the two numbers 
will be. This observation, coupled with the second part of 
Proposition 1.2, proves that the set of all numbers that end 
with a golden tail is dense in the irrationals. Hence we have 

Proposition 1.3. The Brjuno numbers are dense in the irra­
tionals. 

Straight brushes We follow J.M. Aarts and L.G. Oversteegen 
[1] in defining a canonical planar straight brush. A straight 
brush in R 2 is a closed subset A of the set R \ Q X [0,(0) with 
the following properties: 

1.	 Hairiness 

For each (Q', y) E A there is a Ya E [0,00) such that 
{y I (a,y) E A} == [Ya, (0). The point (Q',Ya) is 
called the endpoint of the hair at Q' and the non­
endpoints on th'e hair are called interior points of 
the hair. 

2.	 Density 

(i)	 The set {Q' I (Q', y) E A for some y} is dense in 
the irrational numbers and 

(ii) for each	 (Q',y) E A, there exist'sequences of ir­
rational numbers, {,an} and {(n} such that 
,an i Q', (n t Q', Y(3n ---+ y, and YCn ---+ y. 
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On the other hand, from dynamics Julia sets of many en­
tire functions of finite type have been shown to contain Cantor 
bouquets of rays in the complex plane. See, for example [4] 
where Devaney and l"'angerman exhibit Cantor bouquets in the 
Julia sets for each member of the family of complex exponential 
maps EA(z) == Aez for a real parameter A, 0 < A < lie. Aarts 
and Oversteegen [1] proved that a Cantor bouquet is homeo­
morphic to a straight brush and that all planar straight brushes 
are homeomorphic. The Julia sets mentioned above were cele­
brated as the first "naturally occurring" straight brushes and 
the Brjuno brushes presented here provide more such exam­
ples. 

2. THE BRJUNO BRUSH 

What does the set of Brjuno numbers look like? We begin 
by graphing the Brjuno function in the plane, and we find that 
{(a, B(a))la E B} is a totally disconnected and perfect set. 
Next, we attach a vertical ray to each endpoint and define 
A == {(a, y) E R 21a E Band y ~ B(a)}. 

By construction, A satisfies the necessary hairiness property 
for a straight brush and with Propositions 2.1 and 2.2, we show 
that is a_. closed subset of the plane satisfying the endpoint 
density property for a straight brush. 

Proposition 2.1. A == {(a,y) E R 2 I a E Band Y 2 B(a)} 
is a closed subset of the plane. 

Proof: We assume {(xn,Yn)} E A is an infinite sequence 
converging to (a, y) where a == [ai] and we must prove th(~t 

(a, y) E A. We fix an n ~ 0 and we let ~: and ~i; be the ith 
convergents for a and X n , respectively. 

By assumption, X n E Band Yn 2 B(xn) we must show that 
Y 2 B(a) and a E B. First, we observe that Property I.3.B 
implies that we may assume, without loss of generality, that 
the continued fraction representation for X n has a front end 
that matches the front end for a. 
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This implies that Qi == Qi for 0 ::; i ::; n , which implies 
that the nth partial Brjuno sum for X n is identical to the nth 
partial Brjuno sum for Q', yielding B(xn ) > L:~~~-1 loggii+l . 

By assumption Yn 2 B(xn),	 hence Yn > L:~~~-1 loggii+l for 
> I' ""i=n-l logQi+l hd I· every n >_ 0 ,an lmn -+oo Yn	 _ lmn -+oo L....Ji=O Qi ,t .at 

isY2:B(a) 

This last inequality forces B(a) to be finite since y was as­
sumed to be finite in the first place. Thus a is a Brjuno number 
and we have shown that (a, y) EA. 0 

The endpoint dedsity requirement of a straight brush re­
quires the construction of two sequences that converge on a ; 
one monotonically increasing and the other monotonically de­
creasing. Our approach involves constructing a single seqllence 
that converges in an oscillating way, where the subsequence of 
even terms is eventually strictly increasing and the sllbsequence 
of odd terms eventually is strictly decreasing. 

Proposition 2.2. For each (a, y) E A, there exists a sequence 
{(xn, B(xn))} in A with X n --+ a and B(xn) --+ y. 

Proof: Suppose (a, y) E A where a == [an] and z == y - B(a). 
We form a sequence of irrational numbers, {xn } where the 
front end of the continued fraction for each X n matches the 
continued fraction for a through the first n places and the 
continued fraction tail for each X n is golden. We custom design 
one integer in the continued fraction for X n so as to control its 
Brjuno sum. That is, we let 

Qn±lezQn_Qn_l 
== [ao, > ,an, [I bn I] , 1, 1 1 ,... h 'X n , ] were bn == Qn 

and [I bn I] means the greatest integer in bn . 

We denote the kth convergent denominators for a and X n 

by Qk and Q"k, respectively and observe that Q"k == Qk for 
o::; k ::; n. 

By the remarks made in Section 1, it is obvious that X n E B 
for every n ~ 0 and X n --+ a. 
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Next, we fix an n 2:: 0 and we consider B(xn ) - B(a): 

In the limit we have: 

( IOg~) 
lim (B(xn ) - B(a)) = lim QQn+l 
n~(X) n~(X) n 

+ lim (" log Qk+l)
n~(X) LJ Qkk>n 

_ lim (" log Qk+l)
n~(X) LJ Qk

k>n 

The second and third terms on the right hand side drop out. 
In [6] a comparison test is used to show that 

limn --+oo (L:k>n IOgci§+l ) O. On the other hand, 

limn --+oo (L:k>n IOgg:±l) = 0 because this is the limit of the 
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tail of the converging series corresponding to the Brjuno sum 
for a. 

Lastly, the number bn was custom designed to give 

limn-->oo(Qn~;~;Qn) = 1. See [6] for details. Thus, 
limn-+oo(B(xn) - B(a)) == z or equivalently, B(xn) ----t y. 0 

Using elementary properties of continued fractions, we find 
that the even terms of {x n } eventually are strictly increasing  
and the odd terms are eventually strictly decreasing. Thus we 
have proved the following corollary which gives the necessary 
endpoint density property for a planar straight brush. 

Corollary 2.3. For each (a, y) E A, there exist sequences of 
irrational numbers {,an} and {(n} such that ,an i a, 
(n 1a, Y{3n ----t y, and Y(n ----t y. 

3.	 STRUCTURE OF THE BRJUNO NUMBERS AND A
 

SEQUENCE OF BRUSHES
 

The Brjuno brush is just the beginning of the story! In 
this section we des<;ribe a sequence of nested subsets inside the 
Brjuno numbers. Each subset admits a ~traight brush con­
struction similar to the one we constructed for the Brjuno 
numbers. 

Suppose that the convergents for the irrational number a 

are given by {~:} and suppose that the integer j ~ 1 is fixed. 

Definitions. The Brjuno function of order j is given by 
B .( ) - ~oo logQn+j d 

J a - L...Jn=O Qn an 
the Brjuno	 numbers of order j are given by 

Bj == {a E R\QIBj(a) < oo}. 
Of course, B1(a) is the Brjuno function and B1 is the set of 

Brjuno numbers. 

In [6] we prove that these sets are properly nested inside the 
Brjuno numbers: 

... Bj+1 ~ Bj ~ Bj- 1 ... B2 ~ B1 == B 
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As j increases and we go from B j to B j+l , we squeeze out 
irrationals which are easier to approximate by rationals, that 
is to say, the irrational numqers in B j +1 are "more irrational" 
than those in the difference set Bj \Bj +l . This partition of the 
irrational numbers leads to the following: 

Definition. If a is an irrational number and a E Bj but 
a fj. B j +1 then the degree of irrationality of a is j. 

We let Boo = nj>1 B j and we say that a number has an 
infinite degree of irr~tionality if it is contained in Boo. In [6] 
we show that the Diophantine' numbers are contained in Boo, 
which is consistent with their reputation as being most poorly 
approximated by rationals, or most irrational. 

We construct a straight brush over each Bj similarly to 
the Brjuno brush construction for each positive j. We let 
Aj = {(a,y) E R 2 1a E Bj and y ~ Bj(a)}. This set is easily 
shown to be closed in the plane. using a nearly identical argu­
ment to the one used in Proposition 2.1 for the Brjuno brush 
case. The endpoint density proof requires a small change. 

Proposition 3.1. For each (a, y) E Aj , there exists a sequence 
{(xn,Bj(xn))} in Aj with X n ~ a and Bj(xn) ~ y. 

Outline of Proof: As with the Brjuno brush case, we define a 
sequence of irrational numbers {xn } where the front end of the 
continued fraction for X n matches that for a and X n ends with 
the golden tail. However, whereas in the Brjuno brush proof we 
inserted one custom-designed integer in the middle, for the A j 

case, we need to insert j custom-designed and distinct integers 
in the middle. 

In [6] we prove that the following recipe does the job: 

[ao, al,· .. ,an, [lbn+II], [lbn+2 1],. · · ,[Ibn+jl], 1, 1, 1,. · .] 

where 
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zQn+2-j 

Qn+2 e j - Qn 
andbn +2 = z Qn+l-j ' 

Qn+l e j 

zQn+i-J zQn+i-2-j 

Qn+i e j - Qn+i-2 e j 
for 3 :::; i :::; j.

zQn+i-l-j 

Qn+i-l e j 

4. FINAL COMMENTS AND QUESTION 

We have not explored questions of Hausdorff dimension and 
Lebesque measure for the straight brushes constrllcted here. 
C. McMullen showed that not every straight brush has the 
same Lebesque measure. In [7] he showed that the Cantor 
bouquets found in the Julia sets for the exponential family 
mentioned earlier, have Lebesque measure 0, while on the other 
hand the Cantor bouquets present in the Julia sets for certain 
functions involving the sine function have infinite Lebesque 
measure. In both cases he found the straight brushes to have 
Hausdorff dimension 2. What about our straight brushes? 
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