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CONDITIONS WHICH IMPLY METRIZABILITY
IN SOME GENERALIZED METRIC SPACES*

A.M. MOHAMAD

ABSTRACT. In this paper we show that two important
generalized metric properties are generalizations of first
countability. We give some conditions on these gener-
alized metric properties which imply metrizability. We
prove that, a space X is metrizable if and only if X is a
strongly—quasi—-N-space, quasi—y-space; a quasi—y space
is metrizable if and only if it is a pseudo wN-space or
quasi-Nagata-space with quasi-Gj—diagonal; a space X
is a metrizable space if and only if X has a CWBC-map
g satisfying the following conditions:

1. g is a pseudo-strongly—quasi-N-map;

2. forany A C X, A C U{g(n,z): z € A}.

1. INTRODUCTION

A COC-map (= countable open covering map) for a topo-
logical space X is a function from N x X into the topology
of X such that for every z € X and n € N,z € g(n,z) and
gin+1,z) C g(n,z).

Consider the following conditions on g.

(A) If z € g(n,z,) for every n € N, then z is a cluster point
of the sequence (z,).

(B) If for each n € N, z € g(n,y,) and y,, € g(n,z,), then z
is a cluster point of the sequence (z,).
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(C) If for each n € N, {z,z,} C g(n,y,), then z is a cluster
point of the sequence (z,).

(D) If for each n € N, {z,2,} C ¢g(n,y,) and y, € g(n,2),
then z is a cluster point of the sequence (z.,).

(E) If for each n € N, z, € ¢g(n,y,) and the sequence (y,)
converges in X, then the sequence (z,) has a cluster point.

(F) Hforeachn € N, y,, € g(n,z,) and the sequence (y,,) con-
verges to z in X, then z is a cluster point of the sequence

().

Remark 1.1. There is no loss of generality in conditions (A),
(B), (C), (D), and (F) in assuming that the sequence (z,)
converges to x. (See [19, Remark 2.1]).

Let (S) be any of the conditions (A), (B), (C), (D), (£), or
(F), and (S™') be the statement obtained by formally inter-
changing all memberships (e.g., (C!) is the condition: If for
each n € N, y, € g(n,z) N g(n,z,), then z is a cluster point
of the sequence (z,)). If the COC-map g satisfies condition
(S)(resp. (S71)) for S = A, B, C, D, E, or F, we say that ¢
is an S—map (resp. S~!-map). If there'is an S-map (resp.
S=!-map) for X then we say that (X, 7) is an S—space (resp.
S~1-space). Corresponding to each of the conditions S above
except (£) is the weaker condition, denoted w.S, in which ‘then
x is a cluster point of the sequence (z,)’ is replaced by ‘then
the sequence (z,) has a cluster point’. If ¢ satisfies wS, we say
that g is an wS—map. If there is an wS-map for X then we
say that (X,7) is a wS-space. wS~!'-maps and wS~! spaces
are defined analogously. The following are known, A =semi-
stratifiable space, B =o—space, ' =developable space,
D =6-space, E =quasi—y—space, F' =strongly—quasi Na-
gata space (= strongly—quasi-N space), A™! =first—
countable space, B~! =~-space, C~! =Nagata space
(= N-space), E~! =quasi-Nagata space (= quasi—-N
space), wA =f3—-space, wB =wo—space, wD =wl—space,
wA~! =g—space, wB~! =w~-space, wC~! =wN-space.
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A CWBC-map (= countable weak base covering map) for
a topological space X is a function from Nx X into P(X) such
that for every z € X and n € N we have z € ¢(n,z),g(n +
1,2) C g(n,z) and a subset U of X is open if and only if for ev-
ery ¢ € Uthere is an n € N such that g(n,z) is contained in U.
A space with a CWBC-map is called weakly first countable.

H.W. Martin in [34] introduced weakly developable spaces.
A space X is called a weakly developable space if there is
a sequence {G,}nen of covers of X such that G,y refines G,
for all n and {st(z,G,)}nen is a local weak base at z for each
r € X; the sequence {G, },en is said to be a weak—development
for the space X.

A space X has a quasi—Gj—diagonal (resp. quasi—S;—
diagonal) (resp. quasi—a;—diagonal) if there exists a count-
able family G = {G, }nen of collections of open subsets (resp.
of collections of subsets and for each z € X, st(z,G,) is open
for all n € N) (resp. of collections of subsets and for each
r € X,z € Int st(z,G,)) such that for any distinct z,y € X,
there exists n € N such that z € st(z,G,) C X — {y}.

A space X is called c—semi-stratifiable [35] (c—stratifiable)
if there a sequence (g(n,z)) of open neighborhoods of z such
that for each compact set K C X, if g(n, K) = | J{g(n,z) : z €
K}, then N{g(n,K):n>1} =K (N{9(n,K):n>1} = K).
The COC-map g : N x X — 7 is called a c-semi-stratification
(c—stratification) of X.

A space X which has a CWBC-map that satisfies condition
(wC~1) is called pseudo—wN space.

A space X which has a CWBC-map that satisfies condition
(C~1) is called pseudo—N space.

A space X which has a CWBC-map that satisfies condition
(wB™') is called pseudo—quasi—~ space.

A space X which has a CWBC-map that satisfies condition
(B™1) is called pseudo— space.

From the papers [16], [18], [27] and [32], the relationship
between the classes of spaces above can be summarized in the
following diagram:
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metrizable
/ \w&akly developable
developab‘/
Nagata
/ pseudo ¥y l \

o— semlmet.rlzabl pseudo N
wy l wN
1 pseudo wy l l

semimetrizable l
quasi ¥y J quasi N pseudo wN

semistratifiable

Figure 1: Relationships between some generalized metric spaces.

A space X is called an R—space if it has a o-locally finite K-
network, where a collection B of subsets of X is a K—network
if for any compact set C' and open neighborhood U of C there
is a finite subcollection B’ of B such that C' C B”* C U, where
B™ = |J{B : B € B'}. The following implications are well-
known.

Frechet X = Lasnev = stratifiable = strongly-quasi-N =
o = semi-stratifiable.

In this paper all spaces will be Hausdorff, unless we state
otherwise.

2. GENERALIZATION OF FIRST COUNTABLE SPACES

A space X is sequential [7] if every sequentially open set
is open, where a set U is said to be sequentially open if every
sequence converging to a point in U is eventually in U. A space
is Frechet [7] if every accumulation point of a set is the limit
of a sequence in the set. X is called strongly Frechet if,
whenever {F, : n € N} is a decreasing sequence of subsets of’
X with a cluster point z, then there are z, € F,,n € N such
that (z,) converges to x.

Lemma 2.1. [41] A space X is first countable if and only if
X is Frechet and weakly first countable.
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Example 2.2. [41] A Frechet space which is not weakly first
countable and so not first countable.

The space of rational numbers with the integers identified
to a point and the quotient (or identification) topology. The
one-point compactification of an uncountable discrete space.

O

Example 2.3. [41] A ¢, and weakly first countable space which
is not Frechet and so not first countable.

Let X be obtained from [0,00) by identifying 1/n and n
for all n € N. We denote by z, the point {I/n,n} in the
identification space X. All other points of X are singleton
equivalence classes, i.e. real numbers.

This example is also quasi-N space but neither wN nor
strongly—quasi-N. O

Note that every Nagata space is first countable; every ~
space is first countable and every Frechet, pseudo wN-space
1s a wN—-space.

The proof of the following theorem is straightforward:

Theorem 2.4. (1) Every quasi-N-space is 3.
(2) .Every quasi—y space is q.

Theorem 2.5. The following are equivalent for a first count-
able space X

1. X is a quasi—y—space.
2. X is a pseudo y—space.
3. X is a pseudo quasi—y—space.

Proof: It is clear that, (1) = (2) = (3). We prove that
every Frechet, pseudo quasi—y—space is a quasi—y—space. Let
g : Nx X — P(X) be a pseudo quasi-y—map. We can use same
proof as for Lemma 2.1 to prove that for each z € X, g(n,z) is
a neighborhood of z for each n € N. Thus z is in the interior
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of g(n,z). Now, put h(n,z) = Int g(n,z) for each n € N and
z € X, then h: Nx X — 7 satisfies the quasi—y—condition. J

Y. Inui and Y. Kotake [23] proved the following result:

Theorem 2.6. The following are equivalent for a first count-
able space X

1. X is a wN-space.

2. X is a quasi N-space.

3. X is a pseudo N -space.

4. X s a pseudo wN —space.

Lemma 2.7. A ¢ space with quasi-S, s first countable.

Proof: Let f be a g-map and (G, : n € N) a quasi-Sy-
sequence of X. Define g by '
(n.z) = st(z,G,) ifz € @G
L= X ifz¢gr.
For each z € X and n € N, let h(n,z) = f(n,z) N g(n,z).
Then h is a first countable map. Let z, € h(n,z). Then (z,)
has a cluster point, say y (because g is g-map). For alln € N,y

is a cluster point of {z, : m > n},en, so y € h(n,z) as z,, €
h(n,z) for all m. Thus y € (),cnh(n,2) C (,enst(z,Gn) =
{z},s0o y = z and z is a cluster point of (z,). O

Theorem 2.8. (Lutzer [30]) Let X be a regular q space. If
every point in X ts a Gs then X 1is first countable.

Corollary 2.9. A regular q space with quasi—«a;-diagonal is
first countable.

3. STABILITY OF STRONGLY—QUASI-N SPACES

Theorem 3.1. Every subspace of a strongly—quasi—-N-space is
a strongly—quasi-N-space.

Proof: Let g be a COC-map on X satisfying the condition
for a strongly—quasi-N-space. Let Y be a subspace. Then the
restriction h of g on NxY, h(n,z) = g(n.2)NY isa COC-map.
O



CONDITIONS WHICH IMPLY METRIZABILITY ... 221

Theorem 3.2. Every countable product of strongly—quasi-N-
spaces is a strongly-quasi-N-space.

Proof: For each ¢, let X; be a strongly—quasi-N space with a
COC-map g; satisfying the strongly—quasi-N condition. Let
X =[] X; be the product space, and let 7; : X — X; be the
projection. For each i¢,n and = € X, let hi(n,z) = gi(n,m:(z))
if 1 < j,and X; if ¢ > j. Now let g(n,z) = [[;2,hi(n,z) for
each (n,z) € Nx X. That is, g(n,z) = g1(n, z1) X g2(n, x3) X
gs(n,x3) X ...gn(n,2,) X [[,5, X; for each n € N, where z =
(.Il, o, I3, )

Clearly each g(n,z) is open, ¢ € g(n,z) and g(n +1,z) C
g(n,z) for each (n,z) € N x X.

To verify g is a strongly—quasi-N-map for X, let (z,) and
(yn) be two sequences in X = [] X; such that y,, € g(n.z,) and
the sequence (y,) converges to z in X, we only need to prove
that z is a cluster point of the sequence (z,). Put, z,, = (z,);,
Yn = (yn)i and z = (z);. For each fixed + € N, we have
(yn): € g(n,(z,);) when n > 7 and and the sequence ((yn):)
converges to z; in X;. Since each X, is a strongly—-quasi-N
space, ((z,);) converges to z;. Thus, x is a cluster point of
((zn)) in X. Hence, X = [[X; is a strongly—quasi-N-space.
U

Theorem 3.3. Closed images of regular strongly-quasi—N--
spaces are strongly—quasi-N-spaces.

Proof: Let f : X — Y be closed surjective map such that
X is a strongly—quasi-N-space. We want to show that Y is
also a strongly—quasi-N-space. Since X is a strongly—quasi-
N-space, there is a COC-map g satisfying the strongly-quasi-
N-condition. In other words, if z,, € g(n,y,) for each n € N
and (z,) converges to z, then (y,) converges to z. Define
hn,y) = Y — f(X — (Ulg(m2) : = € f(y)}). 1t is clear
that h is a COC-map. Let z, € h(n,y,’). Suppose (z,’)
converges to z’. We want to prove that (y,’) converges to z’.
Let z,, € f~'(z,’) for each n € N, so every subsequence of
(z,,) has at least a cluster point in f~'(z’) since f is closed.
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Note that, since X is a strongly—quasi-N-space, it is perfect,
so, f~1{az'} is a Gs-set for each 2’ € Y and since f is closed,
{z'} is a Gs—set for every ' € Y. Let z € f~!(z’) be a cluster
point of (z,). Note that, {z} = [)._,G,, where G, is a closed
neighborhood of z (X is regular).

Choose z,,, € {z,}NG,, (because z is a cluster point of (z,)
and G, is a neighborhood of z), where we may assume n; <
ng < ..., then z is a unique cluster point of (z,,), (if z # z,
then there is a G, such that z ¢ G,,,, hence z is not cluster
point of (z,,.)). But (z,,) has a cluster point, therefore, y
is a unique cluster point of (z,,). Since every subsequence
of (z,,,) has cluster point, we have that the sequence (z,,,)
converges to .

Now, we have z,, € g(nm,Yn,.) C 9(M,Yn,) and (z,,)
converges to z is a cluster point of . Since X is a strongly-
quasi-N-space, z is a cluster point of (y,,,). Since f is closed,
¢’ is a cluster point of (y,,.’) and hence z’ is a cluster point of
(y»"). This completes the proof that Y is a strongly—quasi-N-
space. (]

Theorem 3.4. FEvery strongly—quasi—-N-space is oc—space.

Proof: Let g be a COC-map on X satisfying the condition for
a strongly—quasi-N-space. Let = € g(n,y,) and y, € g(n,z,),
for each n € N. Then (y,) converges to z and since g is
strongly—quasi-N-map, = is a cluster point of the sequence

(). a

Example 3.5. The converse of Theorem 3.4 is not true. There
is a o—space (and so semi-stratifiable) which is not a strongly-
quasi—N-space.

Proof: Let X (Heath space [17]) be the upper half plane
including the real axis R. Let each point of X — R be open
and take as a neighborhood basis of points z € R a V-vertex
at z, sides of slopes = 1 and height 1/n, which a V-vertex at
zis the set W= {({,n):n=[f—z|and p < 1}
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We define a COC-map by:

. | |z} ifze X -R.
(n,2) = the V-vertex at x of height 1/n ifz € R.

Clearly h is a COC-map and satisfies the condition for a
o-space. Thus X is a o-space. It is known that X is a Moore
space [17], and hence first countable. If X is a strongly-quasi-
N-space, it would be stratifiable by 4.1 and hence it would be
paracompact. However X is not even normal: consider the
two closed sets consisting of the rationals and irrationals in R
respectively. OJ

In [13], Z. Gao proved the following result:

Theorem 3.6. Fvery regular k-semi—stratifiable space is a
strongly—quasi—-N-space.

Example 3.7. There is a strongly—quasi—N-space which is not
an N-space (it is not even stratifiable).

Proof: In [39], O’Meara constructs an example of a non-
normal (and hence not stratifiable) N-space which is com-
pletely regular, and by Lemma 2.4 [30], any R-space is k-
semi-stratifiable and hence a strongly—quasi-N-space. d

4. METRIZABILITY RESULTS

Theorem 4.1. A space X is N if and only if it is a first count-
able strongly—quasi—N-space.

Proof: It is well-known that every Nagata—space is a para-
compact first countable space. Now, let f and g be, respec-
tively, a first countable-map and a strongly—quasi-N-map on
X. Let h(n,z) = f(n,z) Ng(n,z). It is easy to see that h is
a first countable and strongly—quasi-N-map. To prove h is a
Nagata-map, suppose that h(n,z,) N h(n,z) # 0. Then there
is a sequence (y,) such that y, € h(n,z,) N h(n.z). Since
h is a first countable-map, (y,) converges to z and since h
is strongly—quasi-N-map, (z,) converges to . Hence X is a
Nagata space. g



224 A.M. MOHAMAD

Corollary 4.2. A space X is N (and stratifiable) if and only
of it is a q strongly-quasi-N-space with quasi-G§—diagonal.

Proof: The ‘only if’ part is obvious. The ¢ if’ follows from
Theorem 4.1 and Lemma 2.7 . O

From Theorem 2.8, Theorem 3.6 and Theorem 4.1 we get
the following result:

Corollary 4.3. A space X is N (and stratifiable) if and only
if it is a reqular q k—semi-stratifiable space.

Theorem 4.4. A space X is metrizable if and only if X is a
strongly—quasi-N—-space and quasi—y—space.

Proof: Suppose that X is strongly—quasi-N-space and quasi-
~-space. We shall show that the space X is developable. This
will complete the proof since developable spaces are first count-
able and first countable strongly—quasi-Nagata spaces are Na-
gata, hence paracompact, and paracompact developable spaces
are metrizable [3]. Let f: Nx X - rand g : Nx X — 7
be, respectively, quasi—y and strongly—quasi—-N maps for X.
Let h(n,z) = f(n,z) N g(n,z) for each (n,z) € N x X. Then
h : N x X — 7 is both a quasi—y and a strongly—quasi-N map
for X. Suppose {p,z,} € h(n,y,) for each n € N. Since h is
a semistratifiable map, p is a cluster point to (y,). Also there
is a point g such that ¢ is a cluster point of (z,) (because h is
quasi—y) and since h is a strongly—quasi-N map, ¢ is a cluster
point of (y,), so p = ¢. Hence p is a cluster point of (z,). O

From [18, Corollary 4.6 (a space X is a Moore space if and
only if it is a regular semi-stratifiable wf-space)], Corollary 4.3
and Nagata’s famous double sequence theorem (every Nagata
developable space is metrizable), we have the following:

Corollary 4.5. A space is metrizable if and only if it is a
regular k-semi-stratifiable wl-space.
Martin proved the following result:

Theorem 4.6. [32] Every vy quasi-Nagata—space is metrizable.
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He asked in [33, Question 1]: Is every quasi-N, quasi—y
space with a G3-diagonal metrizable?

Noting that, every space with a Gj-diagonal has a quasi—
S,-diagonal, we answer this question in the affirmative by the
following;:

Theorem 4.7. A quasi—y space is metrizable if and only if it
is a pseudo wN-space or quasi-Nagata—space with quasi-Sy-
diagonal.

Proof: Let X be a quasi-v, pseudo wN-space or quasi-Nagata-
space with quasi-S;. Since every quasi-y space is a g-space
[23] then by lemma 2.7, X is first countable. From Theorem
2.6 and [18, Proposition 3.2], X is countably paracompact, so
by [2], X is regular. Since every wN-space is # and every f3
space with quasi—S;—diagonal is a semistratifiable space [37], X
is a Nagata-space which is therefore a strongly—quasi-Nagata
space. Applying Theorem 4.4 completes the proof. d

The following is a well-known characterization of y—spaces
(see [10, Section 7.18]:

Proposition 4.8. A space X isv if and only if X has a COC-
map g such that if (z,) and (y,) are sequences in X such that
Tn € g(n,yn) for each n € N and (y,) converges to z in X,
then x is a cluster point of the sequence (z,).

Definition 4.9. A space X has a quasi—-G}(2)—diagonal if

there exists a sequence (G, : n € N) of open families of X
such that for distinct points x,y there ezists some G,, such

that y ¢ st?(z,G,,).

Theorem 4.10. A space X with a quasi-G3(2)-diagonal is
Nagata if and only if it is a q, quasi-N-space.

Proof: Suppose that X is a ¢ quasi-N-space with a quasi-
G3(2) sequence {G,}nen. Since the space X is a ¢ and has
a quasi-G—diagonal, by Lemma 2.7, X is a first countable
space. From Theorem 4.1, we need only to prove that X is
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a strongly—quasi-N space. Let f be a quasi-N-map. Define
g :Nx X — 7 as follows:

_ | st(z,G,) ifzegr
g(""")‘{ X itz ¢gr.

Let h(n,z) = (_,9(:,z). Set k(n,z) = f(n,z) N h(n,z).
We show that k is a strongly—quasi-N-map for X. Let y, €
k(n,z,) and suppose (y,,) converges to p. Since f is a quasi-N-
map, (z,) has a cluster point, say q. The proof ends if p = q.
Suppose p # ¢. Fixn € cg(q) = {m € N: ¢ € G }. Then there
are infinitely many integers m > n such that z,, € k(n,q). Let
m > n with z,, € k(n,q). Then z, € g(n,q) = st(q,G.).
Thus {ym : m > n} C st*(¢,G,) for all n € cg(z).. So, p €
{ym : m >n} C st?(q,G,) for all n € cg(z). It follows that

pE mnecQ(z)Stz(q’gn) = {q}. Thus p = ¢, as required. d

From Theorem 4.2 and Theorem 4.10 we get the following
result:

Corollary 4.11. Let X be a g-space with quasi-G}-diagonal,
then the following are equivalent:

1. X is a quasi-N space.

2. X 1is a strongly—quasi—N.
3. X is a wN space.

4. X is a N space.

Theorem 4.12. A space X with a quasi-G-diagonal is 7y if
and only if it is a c—stratifiable space and quasi—y—space.

Proof: Suppose that X is a quasi—y-space with a quasi-G-
diagonal. From Lemma 2.7, X is a first countable space. Since
every first countable quasi—y-space is wy, by Lemma 2.2 [29],
X is y—space. d

The relationships between the classes of spaces considered
in this section can be summarized in the following diagram:
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N
s—q—N wN
9+ a-G;3(2)
g— N
metrizable + q-G;
q9—9

q-G% + c-stratifiabl
wy

Relationships between generalizations of N and v spaces. -

A,/

5. DIFFERENCE BETWEEN METRIZABILITY AND
STRONGLY—QUASI-N AND v SPACES

In this section we discuss and answer the question: What is
the difference (in terms of g-maps) between metrizable spaces
and various generalized metric spaces, like strongly—quasi-N



228 AM. MOHAMAD

and v spaces. First we start with the following result which
gives the difference between Lasnev (= the closed continuous
image of a metric space) and strongly—quasi—-N-spaces.

The proofs of the following theorems can be found in [13]
and [38].

Theorem 5.1. A space X is Lasnev (metrizable) if and only
if X is Frechet (strongly Frechet), strongly-quasi-N and there
is a COC-map g : Nx X — 7 such that if the sequences (z,)
and (y,) satisfy either:

1. z; € g(n,y;) for all t € N, and z; € X — g(n,y;) for all
Jj>1or
2. z; € X —g(n,y;) for all e € N, and z; € g(n,y;) for all
J >4,
then {z; : 1 € N} is discrete in X.
Theorem 5.2. A space X is metrizable if and only if X is

strongly—quasi-N and there is a COC-map g : NX X — 7
such that for any A C X, A C J{g(n,z): 2z € A}.

Theorem 5.3. (Nagata) A space X is metrizable if and only if
X s strongly—quasi—-N and there is ¢ COC-map g : Nx X — 7
such that for any A C X, A C |J{g*(n,z) : = € A}, where
g*(n,z) = Hy(n,y) : y € g(n,2)}.

Theorem 5.4. A space X is an R-space if and only if it is
strongly—quasi-N and there is a COC-map g : Nx X — 7
such that if y € g(n,z), then g(n,y) C g(n,z) and for each
z € X,neN[{g(n,y):y € g(nz)z¢g(ny} <.

The following theorem is due (independently) to Hung [21]
and Hodel [20].

Theorem 5.5. A space X is metrizable if and only if X has
a COC-map g satisfying the following conditions:

1. g s ay-map;
2. forany AC X, A CJ{g(n,z):z € A}.
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The proof of our next results relies on a metrisation theorem

of H. Martin [34].

Theorem 5.6. (Martin) A necessary and sufficient condition
that a topological space X be metrizable is that X has a weak
development {G,}nen such that {st*(z,G,) :n € Nyz € X} is
a weak base of X.

Definition 5.7. A space X s called a pseudo—strongly—
quasi—N-space if there is a CWBC-map g : Nx X — P(X)
such that if for each n € Ny, € g(n,z,) and the sequence
(yn) converges to p in X, then p is a cluster point of the se-
quence (z,) (it is equivalent to say (x,) converges to p). The
CW BC-map g 1is called a pseudo—strongly—quasi-map.

Theorem 5.8. A space X is metrizable if and only if X has
a CW BC-map g satisfying the following conditions:

1. g is a pseudo-strongly-quasi-N-map;

2. forany AC X, A CJ{g(n,z):z € A}.

Proof: The only if part is obvious. We now prove the if
part. Assume that X has a a CW BC-map g satisfying the
conditions (1) and (2). Let h(n,z) = {y € X : z € g(n,y)}
and k(n,z) = g(n,z) N h(n,z) for each (n,z) € N x X. Let
Gn = {k(n,z) : (n,z) € Nx X}. Then st(z,G,) = U{k(n,y) :
z € k(n,z)} and st*(z,G,) = J{k(n,y) : (n y) N st(z,G,) #
0,(n,z) e Nx X}

By condition (2), h(n,z) is a neighborhood (not necessarily
open) of z and so is k(n, z). Therefore, in virtue of the Martin
metrization theorem 5.6, we only need prove that {st*(z,G,) :
n € Nz € X} is a weak base of X. If {st*(z,G,) : n € N}
is not a local weak base for some z € X, then there exists an
open neighbourhood U of z such that st*(z,G,) — U # 0 for
each n € N. Take y, € st*(z,G,) — U,n € N. That means
we can find z,,w, € X such that y, € k(n,z,),k(n,z,) N
k(n,w,) # 0,2 € k(n,w,). Take v, € k(n,z,) N k(n,w,).
By z € k(n,w,) C g(n,w,) and condition (1), we conclude
that (w,) converges to z, and by v, € k(n,w,) C h(n,w,)
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and the definition of h, we get w, € g(n,v,). Using condition
(1) again, we have that (v,) converges to x. Similarly, from
v, € k(n,z,) C g(n,z,), we have that (z,) converges to z, and
by y, € k(n,z,) C h(n,z,), we get that (y,) converges to z.
But y, ¢ U for each n € N, which is a contradiction. d
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