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CONDITIONS WHICH IMPLY METRIZABILITY 
IN SOME GENERALIZED METRIC SPACES* 

A.M. MOHAMAD 

ABSTRACT. In this paper we show that two important 
generalized metric properties are generalizations of first 
countability. We give som"e conditions on these gener­
alized metric properties which imply metrizability. We 
prove that, a space X is metrizable if and only if X is a 
strongly-quasi-N-space, quasi-,-space; a quasi-, space 
is metrizable if and only if it is a pseudo wN-space or 
quasi-Nagata-space with quasi-G6-diagonal; a space X 
is a metrizable space if and only if X has a CWBC-map 
9 satisfying the following conditions: 

1. 9 is a pseudo-strongly-quasi-N-map; 
2. for any A ~ X, A ~ U{g(n, x) : x E A}. 

1. INTRODUCTION 

A CaC-map (== countable open covering map) for a topo­
logical space X is a function from N x X into the topology 
of X such that for every x E X and n E N, x E g(n, x) and 
g(n + 1,x) ~ g(n,x). 

Consider the following conditions on g. 

(A)	 If x E g(n, xn ) for every n E N, then x is a cluster point 
of the sequence (x n ). 

(B)	 If for each n E N, x E g(n, Yn) and Yn E g(n, xn), then x 
is a cluster point of the sequence (x n ). 
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(C)	 If for each n E N, {x,xn} C g(n,Yn), then x is a cluster 
point of the sequence (x n ). 

(D)	 If for each n E N, {x,xn} C g(n,Yn) and Yn E g(n,x), 
then x is a cluster point of the sequence (x n ). 

(E)	 If for each n E N, X n E g(n, Yn) and the sequence (Yn) 
converges in X, then the sequence (x n ) has a cluster point. 

(F)	 If for each n E N, Yn E g(n, xn) and the sequence (Yn) con­
verges to x in X, then x is a cluster point of the sequence 
(x n ). 

Remark 1.1. There is no loss of generality in conditions (A)) 
(B)) (C)) (D), and (F) in assuming that the sequence (x n ) 

converges to x. (See [19, Remark 2.1]). 

Let (5) be any of the conditions (A), (B), (C), (D), (E), or 
(F), and (S-l) be the statement obtained by formally inter­
changing all memberships (e.g., (C- 1 

) is the condition: If for 
each n E N, Yn E g(n,x) ng(n,xn), then x is a cluster point 
of the sequence (x n )). If the COC-map 9 satisfies condition 
(5)(resp. (S-l)) for S == A, B, C, D, E, or F, we say that 9 
is an S-map (resp. S-l-map). If thereris an S-map (resp. 
S-l-map ) for X then we say that (X, T) is an S-space (resp. 
S-l-space). Corresponding to each of the conditions 5 above 
except (E) is the weaker condition, denoted wS, in which 'then 
x is a cluster point of the sequence (xn )' is replaced by 'then 
the sequence (x n ) has a cluster point'. If 9 satisfies w5, we say 
that 9 is an wS-map. If there is an wS-map for X then we 
say that (X, T) is a wS-space. wS-1-maps and UJS-1-spaces 
are defined analogously. The following are known, A ==semi­
stratifiable space, B ==u-space, C ==developable space, 
D ==O-space, E ==quasi-,-space, F ==strongly-quasi Na­
gata space (== strongly-quasi-N space), A-I ==first­
countable space, B-1 ==,-space, C- 1 ==Nagata space 
(== N-space), E-,1 ==quasi-Nagata space (== quasi-N 
space), wA ==,B-space, wB ==wu-space, wD ==wO-space, 
wA- 1 ==q-space, wB- 1 ==w,-space, wC-1 ==wN-space. 
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A CWBC-map (== countable weak base covering map) for 
a topological space X is a function from N x X into P(X) such 
that for every x E X and n E N we have x E g(n,x),g(n + 
1, x) ~ g( n, x) and a sllbset U of X is open if and only if for ev­
ery x E Uthere is an n E N such that g(n, x) is contained in [f. 
A space with a CWBC-map is called weakly first countable. 

H.W. Martin in [34] introduced weakly developable spaces. 
A space X is called a weakly developable space if there is 
a sequence {gn}nEN of covers of X such that Yn+1 refines gn 
for all nand {st( x, Yn) }nEN is a local weak base at x for each 
x E X; the sequence {gn}nEN is said to be a weak-development 
for the space X. 

A space X has a quasi-G~-diagonal (resp. quasi-S2­

diagonal) (resp. quasi-aI-diagonal) if there exists a count­
able family 9 == {9n}nEN of collections of open subsets (resp. 
of collections of subsets and for each x E X, st(x, gn) is open 
for all n E N) (resp. of collections of subsets and for each 
x E X,X E Int st(x,gn)) such that for any distinct x,y E ~Y, 

there exists n E N such that x E st(x,gn) C X - {y}. 
A space X is call~d c-semi-stratifiable [35] (c-stratifiable) 

if there a sequence (g( n, x)) of open neigtlborhoods of x such 
that for each compact set!{ C X, if g(n, !{) == U{g(n, x) : x E 

!{}, then n{g(n, !{) : n 2:: I} == !{ (n {g(n, !{) : n 2:: I} == I{). 
The COC-map 9 : N X X ----+ T is called a c-semi-stratification 
(c-stratification) of X. 

A space X which has a CWBC-map that satisfies condition 
(wC- 1 

) is called pseudo-wN space. 
A space X which has a CWBC-map that satisfies condition 

(C- 1 
) is called pseudo-N space. 

A space X which has a CWBC-map that satisfies condition 
(wB- 1 

) is called pseudo-quasi-, space. 
A space X which has a CWBC-map that satisfies condition 

(B- 1 
) is called pseudo-, space. 

From the papers [16], [18], [27] and [32], the relationship 
between the classes of spaces above can be summarized in the 
following diagram: 
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semistratifiable 

Figure 1: Relationships between some generalized metric spaces. 

A space X is called an ~-space if it has a a-locally finite !{­

network, where a collection B of subsets of X is a K-network 
if for any compact set C and open neighborhood U of C there 
is a finite subcollection B' of B such that C c B'* c U, where 
B'* == U{B : B E B'}. The following implications are well­
known. 

Frechet ~ =} Lasnev =} stratifiable =} strongly-quasi-N =} 

a ::::} semi-stratifiable. 
In this paper all spaces will be Hausdorff, unless we state 

otherwise. 

2. GENER,ALIZATION OF FIRST COUNTABLE SPACES 

A space X is sequential [7] if eve'ry sequentially open set 
is open, where a set U is said to be sequentially open if every 
sequence converging to a point in U is eventually in U. A space 
is F'rechet [7] if every accumulation point of a set is the limit 
of a sequence in the set. X is called strongly F'rechet if, 
whenever {Fn : n E N} is a decreasing sequence of subsets of) 
X with a cluster point x, tllen there are X n E Fn , n E N such 
that (x n ) converges to x. 

Lemma 2.1. [41] A space X is first countable if and only if 
X is Frechet and weakly first countable. 
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Example 2.2. [41] A Frechet space which is not lveakly first 
countable and so not first countable. 

The space of rational numbers with the integers identified 
to a point and the quotient (or identification) topology. The 
one-point compactification of an uncountable discrete space. 
D 

Example 2.3. [41] A q, and weakly first countable space lvhich 
is not Frechet and so not first countable. 

Let X be obtained from [0,(0) by identifying l/n and n 
for all n E N. We denote by X n the point {1/n~ n} in the 
identification space X. All other points of X are singleton 
equivalence classes, i.e. real numbers. 

This example is also quasi-N space but neither wN nor 
strongly-quasi-N. 0 

Note that every Nagata space is first countable; every , 
space is first countable and every Frechet, pseudo wN-space 
is awN-space. 

The proof of the following theorem is straightforward: 

Theorem 2.4. (1) Every quasi-N-space is (3. 
(2) ,Every quasi, space is q. 

Theorem 2.5. The follolvl:ng are equivalent for a first c~unt­
able space X 

1. X is a quasi,-space. 
2. X is a pseudo ,-space. 
3. X is a pseudo quasi,-space. 

Proof: It is clear that, (1) * (2) * (3). We prove that 
every Frechet, pseudo quasi-,-space is a quasi--,-space. Let 
9 : Nx X ---+ P(X) be a pseudo quasi-'-,-map. We can use same 
proof as for Lemma 2.1 to prove that for each x E X,g(n, x) is 
a neighborhood of x for each n E N. Thus x is in the interior 
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of g(n,x). Now, put h(n,x) == Int g(n,x) for each n E Nand 
x EX, then h : N X X ~ 7 satisfies the quasi-,-condition. 0 

Y. Inui and Y. Kotake [23] proved the following result: 

Theorem 2.6. The follouJing are equivalent for a first count­
able space ~X" 

1. X is a 1vN-space. 
2. X is a quasi N -space. 
3. X is a pseudo N -space. 
4. X is a pseudo 1vN -space. 

Lemma 2.7. A q space 1vith quasi--S2 is first countable. 

Proof: Let f be a q-map and (Qn : n E N) a quasi-S2 ­

sequence of X. Define 9 by 

{st(x,Qn) if x E g~.) _(9 n, x - X if x t/.: Q~ . 

For each x E X andn E N, let h(n, x) == f(n, x) n g(n, x). 
Then h is a first countable map. Let X n E h(n,x). Then (xn) 
has a cluster point, say y (because 9 is q-map). For all n E N, y 

is a cluster point of {x m : m 2: n}nEN' so Y E h(n,x) as X m E 

h(n,x) for all m. Thus y E nnENh(n, x) c nnENst(x,Yn) == 
{x}, so y == x and x is a cluster point of (xn). 0 

Theorem 2.8. (Lutzer [30]) Let X be a regular q space. If 
every point in X is a G5 then X l;S first countable. 

Corollary 2.9. A regular q space with quasi-al -diagonal is 
first countable. 

3. STABILITY OF STR,ONGLY-QUASI--N SPACES 

Theorem 3.1. Every subspace of a strongly-quasi-N-space is) 
a strongly-quasi-N-space. 

Proof: Let 9 be a COC-map on X satisfying the condition 
for a strongly-quasi-N-space. Let Y be a subspace. Then the 
restriction h of 9 on Nx Y, h(n, x) == g(n.x)n Y is a COC--map. 
o 
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Theorem 3.2. Every countable p'roduct of strongly-quasi-JV-­
spaces is a strongly-quasi-N-space. 

Proof: For each i, let .-L)(i be a strongly-quasi-N space with a 
COC-map gi satisfying the strongly-quasi-N condition. Let 
X == IT Xi be the product space, and let 1ri : X ~ Xi be the 
projection. For each i,n and x E X, let hi(n,x) == gi(n, 1ri(x)) 
if i ~ j, and Xi if i > j. Now let g(n,x) == IT:1hi(n,x) for 
each (n,x) E N X X. That is, g(n,x) == gl(n,x1) X g2(n,x2) X 

g3(n, X3) X ...gn(n, xn) x ITj>nXj for each n E N, where x == 

(Xl, X2, X3, .. ). 
Clearly each g(n,x) is open, x E g(n,x) and g(r~ + l,x) C 

g(n,x) for each (n,x) E N x X. 
To verify 9 is a strongly-quasi--N-n1ap for X, let (x n ) and 

(Yn) be two sequences in ~Y == IT ~Yi such that Yn E g(rz" ~rn) and 
the sequence (Yn) converges to x in X, we only need to prove 
that x is a cluster point of the sequence (xn). Put, ~rn == (Xn)i' 
Yn == (Yn)i and x == (X)i' For each fixed i E N, we have 
(Yn)i E g(n, (Xn)i) when n 2: i and and the sequence ((Yn)i) 
converges to Xi in Xi. Since each Xi is a strongly---quasi-N 
space, ((Xn)i) converges to Xi. Thus, x is a cluster point of 
((xn)) in X. Hence, X == ITX'i is a strongly-quasi-N-space. 
o 
Theorem 3.3. Closed images of regular strongly-quasi-N-­
spaces are strongly-quasi-N-spaces. 

Proof: Let f : X ~ Y be closed surjective map such that 
.-LX" is a strongly-quasi-N-space. We want to show that Y is 
also a strongly-quasi-N-space. Since X is a strongly-quasi­
N-space, there is a COC-map 9 satisfying the strongly-quasi­
N-condition. In other words, if Xn E g(n, Yn) for each n E N 
and (xn) converges to X, then (Yn) converges to x. Define 
h(n,y) == Y - f(X - (U{g(n,x) : x E f-l(y)})). It is clear 
that h is a COC-map. Let xn' E h(n, Yn'). Suppose (x n') 
converges to x'. We want to prove that (Yn') converges to x'. 

Let X n E f- 1 (x n ') for each n E N, so every subsequence of 
(x n ) has at least a cluster point in f- 1 (x') since f is closed. 
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Note that, since X is a strongly-quasi-N-space, it is perfect, 
so, 1-1 {x'} is a G5-set for each x' E Y and since I is closed, 
{x'} is a G5-set for every x' E Y. Let x E f-l(x ' ) be a cluster 
point of (xn). Note that, {x} = n:=1 Gn, where Gn is a closed 
neighborhood of x (X is regular). 

Choose X nm E {xn}nGm (because x is a cluster point of (xn) 
and Gn is a neighborhood of x), where we may assume nl < 
n2 < ... , then x is a unique cluster point of (xnm ), (if z =f. x, 
then there is a Gmo such that z ~ Gmo , hence z is not cluster 
point of (xnm )). But (xnm ) has a cluster point, therefore, Y 
is a unique cluster point of (x nm ). Since every sllbsequence 
of (x nm ) has cluster point, we have that the sequence (x nm ) 
converges to x. 

Now, we have X nm E g(nm , Ynm) C g(m, Ynm) and (xnm ) 
converges to x is a cluster point of. Since X is a strongly­
quasi-N-space, x is a cluster point of (Yn m ). Since f is closed, 
x' is a cluster point of (Ynm ') and hence x' is a cluster point of 
(Yn ' ). This completes the proof that Y is a strongly-quasi-N­
space. 0 

Theorem 3.4. Every strongly-quasi-N-space is a-space. 

Proof: Let 9 be a COC-map on X satisfying the condition for 
a strongly-quasi-N-space. Let x E g(n, Yn) and Yn E g( n, x n), 
for each n E N. Then (Yn) converges to x and since g is 
strongly-quasi-N-map, x is a cluster point of the sequence 
(x n ). 0 

Example 3.5. The converse of Theorem 3.4 is not true. There 
is a a-space (and so semi-stratifiable) which is not a strongly­
quasi-N -space. 

Proof: Let X (Heath space [17]) be the upper half plane 
including the real axis~. Let each point of X - ~ be open 
and take as a neighborhood basis of points x E IR a V -vertex 
at x, sides of slopes = 1 and height 1/n, which a V -vertex at 
x is the set W = {(~,17) : 17 = I~ - xl and 17 < ;}. 
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We define a COC-map by: 

{x} ifxEX-~. 
h(n x) ­, - { the V -vertex at x of height lin if x E IR . 

Clearly h is a COC-map and satisfies the condition for a 
a-space. Thus X is a a-space. It is known that X is a Moore 
space [17], and hence first countable. If X is a strongly-quasi­
N-space, it would be stratifiable by 4.1 and hence it would be 
paracompact. However X is not even normal: consider the 
two closed sets consisting of the rationals and irrationals in ~ 

respectively. 0 

In [13], Z. Gao proved the following result: 

Theorem 3.6. Every regular k--semi-stratifiable space lS a 
strongly-quasi-N -space. 

Example 3.7. There is a strongly-quasi-N-space which is not 
an N-space (it is not even str·atifiable). 

Proof: In [39], 0 'l\tleara constructs an example of a non­
normal (and hence not stratifiable) N-space which is com­
pletely regular, and by Lemma 2.4 [30], any N-space is k­
semi-stratifiable and hence a strongly-quasi-N-space. 0 

4. METRIZABILITY RESULTS 

Theorem 4.1. A space X is N if and only if it is a first count­
able strongly-quasi-N-space. 

Proof: It is well-known that every Nagata-space is a para­
compact first countable space. Now, let f and 9 be, respec­
tively, a first countable-map and a strongly-quasi-N-map on 
X. Let h(n, x) == f(n, x) n g(n, x). It is easy to see that h is 
a first countable and strongly-quasi-N-map. To prove h is a 
Nagata-map, suppose that h(n, xn ) n h(n, x) -=F 0. Then there 
is a sequence (Yn) such that Yn E h(n, xn) n h(n~ x). Since 
h is a first countable-map, (Yn) converges to x and since h 
is strongly-quasi-N-map, (x n ) converges to x. Hence X is a 
Nagata space. 0 
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Corollary 4.2. A space X is N (and stratifiable) if and only 
if it is a q strongly-quasi-N-space 1vith quasi-Gs -diagonal. 

Proof: The 'only if' part is obvious. The' if' follows from 
rrheorem 4.1 and Lemma 2.7 . 0 

Frorn Theorem 2.8, Theorem 3.6 and Theorem 4.1 we get 
the following result: 

Corollary 4.3. A space X is N (and stratifiable) if and only 
if it is a regular q k-semi-stratifiable space. 

Theorem 4.4. A space X is metrizable if and only 11 X is a 
strongly-quasi-N-space and quasi,-space. 

Proof: Suppose that X is strongly-quasi-N-space and quasi­
,-space. We shall show that the space X is developable. This 
will complete the proof since developable spaces are first count­
able and first countable strongly-quasi-Nagata spaces are Na­
gata, hence paracompact, and paracompact developable spaces 
are metrizable [3]. Let f : N X X ~ T and 9 : N x X ~ T 

be, respectively, quasi-, and strongly-quasi-N maps for X. 
Let h(n,x) == f(n,x) ng(n,x) for each (n,x) E N X X. Then 
h : N x X ~ T is both a quasi-, and a strongly-quasi-N map 
for X. Suppose {p,xn} E h(n,Yn) for each n E N. Since h is 
a semistratifiable map, p is a cluster point to (Yn). Also there 
is a point q such that q is a cluster point of (x n ) (because h is 
quasi-,) and since h is a strongly-quasi-N map, q is a cluster 
point of (Yn), so P == q. Hence p is a cluster point of (xn). 0 

From [18, Corollary 4.6 (a space X is a Moore space if and 
only if it is a regular semi-stratifiable wB-space)], Corollary 4.3 
and Nagata's famous double sequence theorem (every Nagata 
developable space is metrizable), we have the following: 

Corollary 4.5. A space is 'metr1:zable if and only if it is a 
regular k-semi-stratifiable wB-space. 

Martin proved the following result: 

Theorem 4.6. [32] Every, quasi-Nagata-space is metrizable. 
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He asked in [33, Question 1]: Is every quasi-N, quasl-, 
space with a Gs-diagonal metrizable? 

Noting that, every space with a Gs-diagonal has a quasi­
5 2-diagonal, we answer this question in the affirmative by the 
following: 

Theorem 4.7. A quasi, space is metrizable if and only if it 
is a pseudo wN-space or quasi-Nagata-space with quasi-52 ­

diagonal. 

Proof: Let X be a quasi-" pseudo wN-space or quasi-Nagata­
space with quasi-52 . Since every quasi-, space is a q-space 
[23] then by lemma 2.7, X is first countable. From Theorem 
2.6 and [18, Proposition 3.2], X is countably paracompact, so 
by [2], X is regular. Since every wN-space is f3 and every f3 
space with quasi-52-diagonal is a semistratifiable space [37], X 
is a Nagata-space which is therefore a strongly-quasi-Nagata 
space. Applying Theorem 4.4 completes the proof. 0 

The following is a well-known characterization of ,-spaces 
(see [10, Sectiofl 7.18]: 

Proposition 4.8. A space X is, if and only 1f X has a COC­
map 9 such that if (x n) and (Yn) are sequences in X such that 
X n E g( n~,Yn) for each n E Nand (Yn) converges to x in X, 
then x is a cluster point of the sequence (x n ). 

Definition 4.9. A space X has a quasi-G~(2)-diagonal if 
there exists a sequence (On : n E N) of open families of X 
such that for distinct points x, y there exists sorne Qm such 

that y tt st2 (x, Qm). 

Theorem 4.10. A space X with a quasi-Gs(2)-diagonal is 
Nagata if and only if it is a q, quasi-N-space. 

Proof: Suppose that X is a q quasi-N-space with a quasi­
Gs(2) sequence {9n}nEN. Since the space X is a q and has 
a quasi-Gs-diagonal, by Lemma 2.7, X is a first countable 
space. From Theorem 4.1, we need only to prove that X is 
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a strongly-quasi-N space. Let f be a quasi-N-map. Define 
9 : N X X ---t T as follows: 

_ { st(x,Yn) if x E Y~. 
9 (n,x ) - X 

if x ~ Y~ . 

Let h(n,x) == n~lg(i,x). Set k(n,x) == f(n,x) n h(n,x). 
We show that k is a strongly-quasi-N-map for X. Let Yn E 
k( n, x n) and suppose (Yn) converges to p. Since f is a quasi-N­
map, (x n ) has a cluster point, say q. The proof ends if p == q. 
Supposep =1= q. Fixn E cg(q) == {m EN: q E Y~}. Then there 
are infinitely many ~ntegers m 2: n such that X m E k( n, q). Let 
m 2:: n with X m E k(n,q). Then X m E g(n,q) == st(q,Yn)' 
Thus {Ym : m 2: n} ~ st 2 (q,9n) for all n E cg(x)., So, P E 

{Ym: m ~ n} ~ st2 (q,Yn) for all n E cg(x). It follows that 

p E nnEcg(x)st2 (q,Yn) == {q}. Thus p == q, as required. 0 

From Theorem 4.2 and Theorem 4.10 we get the following 
result: 

Corollary 4.11. Let X be a q-space lvith quasi-G7J-diagonal) 
then the following are equivalent: 

1. X is a quasi-N space. 
2. X is a strongly-quasi-N. 
3. X is a wN space. 
4. X is a N space. 

Theorem 4.12. A space X lvith a quasi-G7J-diagonal is I if 
and only if it is a c-~tratifiable space and quasi,-space. 

Proof: Suppose that X is a quasi-,-space with a quasi-G7J­
diagonal. From Lemma 2.7, X is a first countable space. Since 
every first countable quasi-,-space is w" by Lemma 2.2 [29], 
X is ,-space. 0 

The relatioTlships between the classes of spaces considered 
in this section can be summarized in the following diagram: 
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N 

wNs -q -	 N 
q+ q-G8(2) 

q-N 

metrizable + q-G8 

q-G8+ c-stratifiable 

W, 

Relationships between generalizations of N and I spaces .. 

5.	 DIFFERENCE BETWEEN METRIZABILITY AND 

STRONGLY-QUASI-N AND I SPACES 

In this section we discuss and answer the question: What is 
the difference (in terms of g-maps) between metrizable spaces 
and various generalized metric spaces, like strongly-quasi-N 
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and ,spaces. First we start with the following result which 
gives the difference between Lasnev (== the closed continuOllS 
image of a metric space) and strongly-quasi-N-spaces. 

The proofs of the following theorems can be found in [13] 
and [38]. 

Theorem 5.1. A space X is Lasnev (metrizable) if and only 
if X is Frechet (strongly Frechet)) strongly-quasi-N and there 
is a COC-map 9 : N x X ---t 7 such that if the sequences (x n ) 

and (Yn) satisfy either: 

1.	 Xi E g(n,Yi) for all i E N) and Xj E X - g(n,Yi) for all 
j > i or 

2.	 Xi E X - g(n,Yi) for all i E N) and Xj E g(n,Yi) for all 
j > i) 

then {Xi : i E N} is discrete in X. 

Theorem 5.2. A space X is metrizable if and only if X is 
strongly-quasi-N and there is a COC-map 9 : N X X ---t 7 

such that for any A ~ X, A ~ U{g(n, x) : X E A}. 

Theorem 5.3. (Nagata) A space X is metrizable if and only £1 
X is strongly-quasi-N and there is a COC-'map 9 : N X X -t 7 

such that for any A ~ X,A ~ U{g2(n,x): x E A}) 1vhere 
g2(n,x) == U{g(n,y): y E g(n,x)}. 

Theorem 5.4. A space X is an- N-space if and only if it is 
strongly-quasi-N and there is a COC-map 9 : N x X ---t 7 

such that if y E g(n, x)) then g(n, y) C g(n, x) and for each 
x E X,n E N I{g(n,y}: y E g(n,x),x fI. g(n,y)}1 < No. 

The following theorem is due (independently) to Hung [21] 
and Hodel [20]. 

Theorem 5.5. A space X is metrizable if and only if X has 
a CDC -map 9 satisfying the follo1ving co.nditions: 

1.	 9 is a ,-'map)· 
2.	 for any A ~ X,A ~ U{g(n,x): x E A}. 
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The proof of our next results relies on a metrisation theorem 
of H. Martin [34]. 

Theorem 5.6. (Martin) A' necessary and sufficient condition 
that a topological space X be metrizable is that X has a weak 
development {On}nEN such that {st 2 (x, On) : n E N, X E X} is 
a weak base of X. 

Definition 5.7. A space X is called a pseudo-strongly­
quasi-N-space if there is a CWBC-map 9 : N x X ---* P(X) 
such that if for each n E N, Yn E g(n, xn) and the sequence 
(Yn) converges to p in X) then p is a cluster point of the se­
quence (xn) (it is equivalent to say (xn) converges to p). The 
CWBC-map 9 is called a pseudo-strongly-quasi-map. 

Theorem 5.8. A space X is metrizable if and only if X has 
a CWBC-map 9 satisfying the following conditions: 

1. 9 is a pseudo-strongly-quasi-N-map)· 
2. for any A ~ X,A ~ U{g(n,x): x E A}. 

Proof: The only if part is obvious. We now prove the if 
part. Assume that X has a a CWBC-map 9 satisfying the 
conditions (1) and (2). Let h(n,x) = {y EX: x E g(n,y)} 
and k(n,x) = g(n,x) n h(n,x) for each (n,x) E N x X. Let 
On = {k(n,x) : (n,x) E N X X}. Then st(x, On) = U{k(n,y): 
x E k(n, x)} and st2 (x, On) = U{k(n, y) : k(n, y) n st(x, On) =I­
0,(n,x) E N X X}. 

By condition (2), h(n, x) is a neighborhood (not necessarily 
open) of x and so is k( n, x). Therefore, in virtue of the Martin 
metrization theorem 5.6, we only need prove that {st 2 (x,On): 
n E N,x E X} is a weak base of X. If {st 2 (x, On) : n E N} 
is not a local weak base for some x EX, then there exists an 
open neighbourhood U of x such that st2 (x, Yn) - U =I- 0 for 
each n E N. Take Yn E st2 (x, On,) - U, n E N. That means 
we can find Zn, W n E X such that Yn E k(n, zn), k(n, zn) n 
k(n,wn) =I- 0,x E k(n,wn). Take Vn E k(n,zn) n k(n,wn). 
By x E k(n, wn) ~ g(n, wn) and condition (1), we conclude 
that (wn) converges to x, and by V n E k(n, wn) ~ h(n, wn) 
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and	 the definition of h, we get W n E g(n, vn ). Using condition 
(1) again, we have that (vn ) converges to x. Similarly, from 
V n E k(rt, zn) ~ g(n, zn), we have that (zn) converges to x, and 
by Yn E k(n, zn) ~ h(n, zn), we get that (Yn) converges to x. 
But Yn t/:. U for each n E N, which is a contradiction. 0 
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