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HEREDITARILY NORMAL, LOCALLY
 
COMPACT DOWKER SPACES
 

PETER J. NYIKOS 

ABSTRACT. Using the set-theoretic axiom 0, a method 
of constructing hereditarily normal, locally compact 
Dowker spaces (a space X. is Dotvker if it is normal but 
not countably paracon1pact) is given. The spaces pro
duced are, in addition, hereditarily separable, locally 
countable, of cardinality N1 , and have Frechet-Urysohn 
one-point compactifications. A special case of the method 
results in a one-point compactification that is al, and this 
cannot be done by assuming CH alone. It is also shown 
how MA(Wl) implies the existence of a locally compact, 
hereditarily countably paracompact anti-Dowker space. 

On the last day of the 1999 Spring Topology Conference in 
Salt Lake City, I offered cash prizes, in the Paul Erdos tradi
tion, for the first person to give certain kinds of solutions to 
the following problem. 

Problem 1. In a compact Hausdorff space, which of the fol
lowing implies the other: (a) hereditary normality and (b) 
hereditary countable paracompactness? 

One could put "locally" in front of "compact" in this prob
lem and have an equivalent one: on the one hand, every com
pact Hausdorff space is locally compact; on the other, both 
hereditary normality and hereditary countable paracompact
ness are preserved in the taking of one-point compactifications, 
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so that a locally compact counterexample to either (a) imply
ing (b) or the converse also gives a compact one. 

Problem 1 was posed by Boris Shapirovskil' shortly before 
his death in 1991. The cash awards announced in Salt Lake 
City included: 

(1) for a consistent "Yes" to (a) ---t (b): $200. 
(2) for a ZFC counterexample to (a) ---t (b): $500. 
(3) for a ZFC counterexample to (b) ---t (a): $50. 
(4) for a consistent "Yes"	 to (b) ---t ( a): $400. 

Originally there was also a $50 award for a consistent "No" 
answer to (a) ---t (b), and one of $500 for a ZFC answer of "Yes" 
to the same implication, but that was withdrawn a week later 
in the wake of the main example in this paper: a hereditarily 
normal (and Hausdorff, hence Ts), locally compact space that 
is not countably paracompact, using the set-theoretic axiom <). 
Since the one point compactification of a Ts locally compact 
space is likewise Ts, this provides a consistent "No" answer 
to (a) ---t (b). There have long been known consistent "No" 
answers to (b) ---t (a), which will be discussed in Section 3. 

Both implications are actually part of the theme of "Dowker 
and anti-Dowker spaces," a theme long popular with set
theoretic topologists. A Dowker space is a T4 space space whose 
product with the closed unit interval is not normal. Dovvker 
spaces can also be characterized as those T4 spaces which are 
not countably paracompact. The term "anti-Dowker" is based 
on this latter characterization: an anti-Dowker space is a count
ably paracompact T3 space that is not T4 . [Throughout this 
article, Ti-spaces with i 2: 2 are taken to be Hausdorff, and we 
use the convention that a Ts space is one that is hereditarily 
T4 .] Recently there has been a great advance, thanks mostly 
to Zoltan Balogh, in our techniques of constructing Dowker 
spaces using only the u~ual (ZFC) axioms of set theory, but 
there are still many unsolved problems in this area and even 
in the area of consistency results. For example, the following 
problem is still open: 
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Problem 2. Is ZFC, or even ZFC+CH, enough to imply the 
existence of a locally compact Dowker space? 

In contrast, examples have long been known of locally com
pact anti-Dowker spaces obtained using just ZFC; for exam
ple, the 1976 example of Eric van Douwen [1] is even locally 
countable and of cardinality WI. Problem 1, however, asks 
for a hereditarily countably paracolllpact and (locally) com
pact example. Such examples do exist under the assumption 
of MA(wI)-see Section 3-but we lack a ZFC example. 

Our <) example is also of cardinality NI and is hereditarily 
separable, hence (hereditarily) wI-compact. [A space is WI

co'mpact if every closed discrete subspace is countable.] Nor
mality aIld WI-compactness imply collectionwise normality, and 
so this example is hereditarily strongly collectionwise Hausdorff 
(abbreviated "hereditarily scwH"). A space is said to be scwH 
if every closed discrete subspace D can be expanded to a dis
crete collection of open sets, each of which meets D in a single 
point. The following result of [2] is in sharp contrast to our <) 
construction: 

Theorem [PFA] Every locally compact, T4 , hereditarily scwH, 
WI -compact space is countably paracornpact. 

In other words, there are no locally compact, WI-compact, 
hereditarily scwH Dowker spaces if the Proper Forcing Axiom 
(PFA) is assumed. Of course, this is still a far cry from a solu
tion to Problem 2, but this is among the very few consistency 
results that say such-and-such a kind of Dowker space does 
not exist. All earlier known ones are, if anything, even more 
specialized. Also, there will be other theorems in [5] of which 
this theorem is a corollary, that begin to fill the gap between 
it and Problem 2; one will be given in Section 2. 

Our <> example is a special case of a construction done by 
Juhasz in [3]. This Juhasz construction, in turn, is generalized 
by Example 3.1 (ii) in [7], which actually gives a Tychonoff 
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space which is locally compact and hereditarily separable, but 
not countably metacompact; extra conditions along the lines 
of Juhasz's example are needed to make it normal and thus 
Dowker. There is a statement accompanying Example 3.1 (ii) 
in [7] which could be construed to imply that this example is 
hereditarily normal, but that requires yet more extra condi
tions along the lines of our main example in Section 1. 

In Section 2, we will construct a yet more special case of our 
construction, which has the extra property of having an aI

space for its one-point compactification. This extra property 
requires more than just CH: see Section 2, Theorem A. 

1. THE BASIC <:; CONSTRUCTION 

We will follow Juhasz's construction in [3] closely in the fol
lowing three paragraphs, only making two notational changes: 
we use A in place of L I to designate the set of countable limit 
ordinals, and R(a, k) where [3] uses C(a, k). 

1.1. Basic properties. Our space X uses WI XW as the under
lying set. It is loca.lly countable and so, being locally compact, 
it is first countable. Each 'horizontal line' WI x {n} == Yn is 
a sub-Ostaszewski space in its relative topology, meaning that 
every relatively open subset is either countable or has count
able complement in Yn . It follows easily that X is hereditarily 
separable and, since it is hereditarily normal, it is hereditarily 
collectionwise normal. 

Each subspace of the form a X n (a < WI, nEw) is open, 
and from this it follows that WI X n and a X ware open, while 
each upper right rectangle R(a, k) == (WI \ a) X (w \ k) is closed. 
Each 'vertical line' {a} X W is closed discrete and each set of 
the form [a, a +w) X {k} is discrete and has R(a +w, k) as its 
derived set. From these facts it follows that our space is not 
countably metacompact. Recall that a space X is countably 
metacompact if, and oBly if, each ascending sequence of open 
sets Un whose union is X can be followed up by closed subsets; 
that is, there exists a sequence (Fn : nEw) of closed sets 
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whose union is X and which satisfy Fn C Un. In our example, 
if we let Un = WI X n then this proves impossible. Indeed, if 
Fn is any closed subset of X == WI X W that is a subset of Un, 
then Fn is actually countable, because the alternative is that 
Yk \ Fn is countable for some k < n, but then some interval 
[a, a+w) X {k} would be in Fn nYk , and then all of R( a+w, k) 
would be a subset of Fn , a contradiction. 

The facts in the preceding paragraph also help make the 
proof of hereditary normality easier. For example, if Aa and 
Al are uncountable subsets of X, then each meets some hor
izontal line in an uncountable set, and if the lowest such line 
for Ai is no higher than the lowest for A I - i, then Ai has all but 
at most countably many of the points of A I - i in its closure. So 
if Fa and FI are disjoint closed sets in any subspace of X, one 
must be countable. The case where both are countable is easily 
handled: both are subsets of some open subspace Xo: == a X w 
of X and this is metrizable, being second countable and regu
lar. Normality of X can thus be achieved by insuring that each 
countable closed set !{ and each uncountable closed F disjoint 
from !{ can be put into disjoint open sets; for hereditary nor
mality, it is enough to verify this for open subspaces of X since 
if every open subspace of a to'pological space is normal, then 
ev~ry subspace is normal, cf. [4]. To achieve normality, we 
use CH to list all countably infinite subsets 'of X == WI X,W as 
(A;\ : A E A) in such a way that A;\ is always a subset ofax w 
for some a < A. Whenever A-\ is closed in X-\ == A x w, we 
use the fact that X -\ is metrizable and countable to define a 
relativelyclopen subset Z-\ of X-\ such that A-\ c Z-\ C (axw); 
note that a x w is open in X-\ and that Ind(X-\) == O. If A-\ 
is not closed, let Z;\ == 0. Assuming we can handle the later 
stages of the inductive construction of X to keep all Z-\ clopen 
in X itself, normality follows thus: if !{ is closed and countably 
infinite and F is closed and disjoint from !{, we have !{ == A-\ 
for some A, and Z;\ is a countable clopen set containing !{; us
ing normality of Z;\, let U and V be disjoint open subsets of Z-\ 
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containing I{ and F n ZA respectively; then U and V U Z~ are 
disjoint open subsets of X containing Ii and F respectively. 

To achieve hereditary normality, we define additional operl 
sets. One kind of open subspace that needs special attention 
is the 'State of Utah' formed by removing some R(a, k) from 
X. In the resulting space, the sets a X (w \ k) and (WI \ a) X k 
are disjoint relatively closed sets. To take care of them, we will 
define open sets G(a, k) such that a x (w \ k) c G(a, k) c X a , 

and such that G( a, k) n(a X k) is relatively closed in (a+w) X k, 
and we make sure that G( a, k) n (a X k) remains relatively 
closed irl WI X k. Also, at stage A, if AA is not closed in X but 
is a subset of AX k for sorne k E wand is relatively cl,osed in 
the subspace A X k of X A, we let W(A, k) be an open subset 
of aX k that is relatively closed in A X k for all integers k for 
which this applies, otherwise we let W(A, k) == 0. We insure 
that later stages of the induction leave W( A, k) relatively clbsed 
in WI X k even though it may acquire new limit points outside 
this subspace. The proof of hereditary normality, assuming 
this can be done, is similar to that for normality and will be 
given at the end of the inductive construction. 

1.2. The construction of X. Begin by fixing a ladder system 
£ == {LA: A E A} witnessing ,-. That is, each ladder LA is 
a set of ordinals of order type w whose supremum is A, and 
for each uncollntable S C WI there exists A such that LAC S. 
Let X w == W X w be given the discrete topology. Our induction 
hypothesis at A is that X p has been defined for all limit p < A 
with topology T p and underlying set p x w, in such a way that 

(1)	 T p is locally compact and Hausdorff. 
(2)	 X(j is an open subspace of X p whenever a < p; in other 

words, T(j == {U E T p : U C (J' X W }. 

(3) If	 (6:, n) E X and a == , + m where, E A and mEw, 
then {Vk(a,n) : k E w} is a descending neighborhood 
base at (a, n) consisting of compact open sets, such that 
Vk(a,n) C (, X (n, + 1)) U {(a,n)}. 
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(4)	 For all limit a < p, the sets of the form Za, G( u, k) and 
W( a, k) have been defined to satisfy the foregoing descrip
tion; in particular, Za is clopen in X p , while W( a, k) n 
(p X k) and G(a, k) n (p x k) are relatively clopen in p x k. 

In (4), if ,,\ is of the form, +W for some lin1it " the induction 
hypothesis includes the assumption that Z"" etc. have not 
yet been defined, nor has Z8, etc. for any {) ~ A. In (3), 
"descending" does not mean "strictly descending," so vve let 
Vk(m,n) == {(m,n)} for all (m,n) in Xw , and the induction 
hypothesis is clearly satisfied at A == w. Suppose it is true for 
all pEA such that p < A. 

Case 1: A E A' where A' denotes the derived set of A; that 
is, A' is the set of all countable ordinals that are lilnits of limit 
ordinals. In this case, vve simply let TJ\ be the topology on 
A x w whose base is the union of all the earlier T p , and the 
induction hypothesis is clearly satisfied; in particular, (1) and 
(2) are satisfied because they were satisfied at all earlier stages 
of the induction. 

Case 2: A is of the form, + w where, E A. This case en
compasses all the remaining possibilities. We define Z", and 
W Coy, k) as explained earlier, letting a == sup( 1f~ A", ). [As 
usual, 1f1 is the canonical projection from WI Xw to WI.] J'here is 
no problem with doing this since X", is countable and metriz
able, and Q' x w is an open subset of X", while A", is closed 
whenever Z,,( 1= 0; similarly for W(" k). Of course, at most 
one of {Z"" W(" k)} is nonempty. We hold off defining the 
open sets G(" k) until after the neighborhoods of the points 
\, + m, n) have been defined. The definition begins by parti 
tioning the ladder L", into infinitely many infinite sllbsets. Let 
{~ (p, q, n) : (p, q, r~) E w3 

} be a one-to-one listing of L,,(. The 
local base at (, + p, q) will be defined using the sets 

D(p, q,i) == {(~(p, q, n ),i) : nEw} 

for which i ~ q. Since all the sets Za, G(a,j), and W(a,k) 
thus far defined are subsets of a X w with a < " and since 
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~(p, q, n) < (Y for at most finitely many triples of integers, it 
follows that at most finitely many points of each D(p, q, i) are 
in any of these Za, etc. Let {Em : mEw} list all sets of the 
form Za, W(a, k), and G(a,j) thus far defined. [The first two 
kinds have been defined for all a ::; ,; the third, for all a < ,.] 
Given x = (~(p,q,n),i) in L, xw, let N(x) be a neighborhood 
of x that misses all Em such that m ::; p +q +n and such that 
x is not in the closure of Em. [By induction hypothesis (3), the 
only way x could be in the closure of Em without being in Em 
itself is for Em to be either of the form G(a, j) with j ::; i or 
of the form lV(a, j) vvith j ::; i.] In this way, there are at most 
finitely many x E L, x w outside the closure of Em for which 
N(x) meets Em. 

Now L, X w is a closed discrete subspace of X, : this is 
clear from what induction hypothesis (3) says about the sets 
Vk ( (Y, m) and from the fact that L, is of order type w with 
supremum ,. Since X, is metrizable arid countable, there is 
a discrete-in-X, family of open sets {U (x) : x E L, X w} 
such that U(x) n (L, X w) = {x}. For each x E L, X w, we 
now let ]{(x) be a basic compact open neighborhood Vk(x) C 
N(x) n U(x). Let VO(, +p, q) be the union of {(, +p, q)} with 

U{K(x): x = (e(p,q,n),i) for some nEw, i ~ q} 

and define Vk(, + p, q) in the same way except with the re
quirement'that n ~ k. In this way, Vk ( 1+ p, q) is the one-point 
compactification of the locally compact subspace 

U{K(x) : x = (e(p,q,n),i) for some n ~ k, i ~ q} 

of X,. For each natural number k, let V(A, k) = {Vk (, +p, q) : 
(p, q) E w2

} and let V,\ be the union of all the V('\, k) (k E w). 
The topology T,\ on X,\ is the one whose base is T, U V,\. In) 
X,\, the family V('\,O) is easily seen to be a discrete family 
of clopen sets. So we simply let G(" k) be the complement 
in X,\ \ R("k) of U{Vk (, + p,q) : q < k}. It is easy to see 
that the induction hypotheses (1) through (3) continue to be 
satisfied for p = '\. As for (4): if Za = Em then only finitely 
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many ~ (p, q, n) are less than (j, and there are only finitely many 
points x == (~(p,q,n),i) with ,(p,q,n) 2: (j such that N(x) 
meets Z(J" because they all have to satisfy p + q + n < m; 
hence Z(J' remains clopen in X A' and the rest of (4) is similarly 
verified. 

The final topology 7 on WI X W is the one whose base is the 
union of the 7 p , P < WI. The resulting space X is locally count
able and first countable by (2) and (3) . It is locally compact 
and Hausdorff because (1) is satisfied at each stage. Its one
point compactification X + 1 is Frechet- Urysohn; that is, if a 
point p is in the closure of A C X + 1, then there is a sequence 
from A converging to p. This is obvious for the points of X by 
first countability. If p is the extra point of X + 1, then either 
cRx(A) is countable, in which case it is noncompact, or c£x(A) 
contains points from infinitely many Yn == WI X {n }-see 1.3. 
below. In either case, cRx(A) contains an infinite discrete sub
space that is closed in X. Now an infinite subset of X is closed 
in X and discrete if, and only if, some (hence every) one-to
one sequence from it converges to the extra point of X + 1: 
this phenomenon holds for all one-point compactifications of 
locally compact Hausdorff spaces. 

1.3. Proofs of key properties. The facts in the beginning of 
the third paragraph of 1.1 follow easily from (2) and (3) of 1.2, 
except for the fact that each set of the form [a, a + w) X {k} 
has R(a + w, k) as its derived set. This is a consequence of 
the following crucial property, which is also the key to showing 
that each horizontal line Yk is a sub-Ostaszewski space: 

(*) (~, m) is in the closure of L,.., X {k} whenever 

~ 2:: , and m 2:: k. 

Since all but finitely many points of L,.., x {k} are also in 
[a, a +w) X {k} whenever, == a +w, it is immediate from (*) 
that [a,a+w) X {k} has all of R(a+w) in its closure. On the 
other. hand, every point of X \ R( a +w, k) has a neighborhood 
that contains at most finitely many points of [a, a +w) X {k}: 
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this is immediate from (3) of 1.2. The sub-Ostaszewski prop
erty of each Yk is an easy consequence of (*) and the fact 
that the ladder system (LA : A E A) witnesses 6: if Y is an 
uncountable subset of Yk , then the projection of Y into WI con
tains some L"Y; in other words, L'1 X {k} is a subset of Y, and 
hence (WI \ ,) X {k} is a subset of the closure of Y; and thus 
every uncountable closed-in-Yk subset of Yk is co-countable. 

Proof of (*) All it takes is a simple transfinite induction. The 
construction in 1.2. insures that all of [", + w) X (w \ k) is 
in the closure of L'1 x {k}. Given any limit ordinal A > " if 
[" A) x (w \ k) is in the closure of L'1 x {k}, then all but finitely 
many points of LA x {k} are in the closure~ and therefore all 
of [A, A+w) X (w \ k) is in the closure of L", x {k}. If A is a 
limit of limit ordinals and [" 8) x (w \ k) is in the closure of 
L'1 x {k} for all 8 < A, then so is the union of these subspaces, 
namely ["A) x (w\ k). Hence this also holds when A == WI, 

giving us all of R(" k). 0 

The proof of hereditary normality, as explained earlier, con
sists of showing all open sets to be normal. Countable open 
sets are no problem, of course, while the co-countable case fol
lows easily from normality of ..tY [already shown in 1.1] and the 
fact that every countable closed set is a subset of some Za: if [1 

is a co-countable open subset of X, its complement is a subset 
of some clopen Za, and any two disjoint closed su bsets of [I 

can only have their closures in X meeting in the metrizable 
Za, where their traces can easiy be put into disjoint open sets. 
The remaining open sets fall into two cases. 

Case 1. U meets some horizontal line Yk in a countable set. 
Then if U meets }j in an uncountable set, it follows that j < k: 
if i < j then any open set containing U n }j must meet Yi in 
an unbounded set. Thus there exists mEw such that U meets 
the first m horizontal lines in a co-countable set aIld the rest 
in a cOllntable set. Let 

Q == sup{e: (e,n) E U for some n ~ m} 
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and use G(0', m) to break U into two relatively clopen sets. 
One of them is G(0', m) itself, which is countable, and so the 
traces on it of any pair of relatively closed disjoint subsets of 
[J can easily be put into disjoint open sets there. The other, 
U \ G(0', m ), falls into our remaining case. 

Case 2. U is a co-countable subset of Yo U 11 U ... LJ Yk for 
so'me k < w. This is handled similarly to the co-countable 
open subsets of X itself, using the sets W( 0", k) in the same 
way the sets Z(j were used in that earlier case. 

2. A R,EFINEMENT 

There are various properties of compact spaces related to the 
Frechet- Urysohn property. One of the most interesting ones is 
the property of being 0'1' 

2.1. Definition. A point p of a space y" is an (J:1-pol:nt if, 
whenever {O"n : nEw} is a countable family of sequences in 
Y converging to p, then there is a sequence 0" converging to p 

such that ran( O"n) ~* ran( 0") for all n. A space is an 0'1 -spact' 

if every point is an O'I-point. 

As usual, A ~* B means that A \ B is finite. A sin1ple di
agonal construction shows that every first countable space is 
an O'I-space. In this section, we will add some details to the 
basic <) construction in order to make the one-point compact
ification X + 1 of X an O'I-space. Our argument generalizes 
without cha.nge to the more general construction in [3], since 
we only make use of the sets Z(j and not the sets G( 0'" k) nor 
W('\, k). The following theorem from [2] tells us that ,¥e can
not weaken <) to CH if ,ve want to construct such a space, even 
if we do not ask for hereditary normality or even normality. 

Theorem A. The CH is compatl:ble UJith the state'ment that 
every locally co'mpact T2 , Frechet- Urysohn 0'1 -space is either 
first countable or contains the one-point compactl~fication of an 
uncountable discrete space. 
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In [2] we will see much more general theorems which show 
that such a version of our space cannot be obtained using CH 
alone, for example: 

Theorem. Modulo large cardinal axioms, CH is compatible 
with the statement that every locally compact Hausdorff space 
satisfying wD must satisfy either (i) or (ii) below, if the extra 
point in the one-point compactijication X + 1 of X is an 0'1

point: 

(i)	 X is countably metacompact and is the countable unlon 
of closed countably compact subspaces; or 

(ii)	 X has an uncountable closed discrete subspace. 

If one wishes to do without large cardinals, the extra hy
pothesis that X can be covered by N1 relatively compact open 
sets does the trick. The <) construction we will now describe 
satisfies the hypotheses of this theorem along with this extra 
one, but does not satisfy either conclusion. The additional de
tails in the construction of this X consist of defining, after the 
construction of each individual X'Y' a clopen set H'Y C X'Y such 
that: 

(1)	 Z'Y c H'Y; 
(2) for each p < " there is a compact clopen subset C(p, ,) 

of X'Y such that Hp \ C(p, ,) c H'Y; 
(3)	 {x E L'Y x {i} : J«x) n H'Y =I 0} is finite for all i E w; and 
(4)	 if p < , then H p is a clopen subset of X'Y' 

Any version of our space X that possesses such a sequence 
{Ha : a E A} has a one-point compactification X + 1 which is 
an aI-space. To see this, it is clearly enough to take care of the 
extra point 00 of X +1. Let an be a sequence converging to 00 

for each n. We may assume ran( an) C X for all n. Then since 
ran(a) is closed in X, there exists an such that ran( an) C 

Zan C Han' Letting a == SUPnan, we have ran(an ) ~* Ha for 
all n, because every compact subset of ran(an) is finite. Since 
H a is clopen in X, the relative topology on H a U {oo} is the 
same as the one-point compactification topology. In the latter 
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topology, 00 is a point of first countability: let {Vn(n E w)} be 
a cover of of Ha by relatively open subsets of Ha with comI)act 
closures. The complements Gn of the sets va U · · · U Vn form 
a local base at 00 in Ha U {(X)} by the usual argument for the 
elementary fact that every Gs in a compact Hausdorff space is 
a point of first countability. Hence the desired a ----t 00 exists. 

2.2. Construction of the Ha • We begin by letting Hw == 0. 
If , == (3 + wand H(3 has been defined, let H..., == H(3 U Z...,. 
Clearly (1) through (4) hold if they held for (3 in place of ,. In 
defining the topology on X..." we require that N (x) miss not just 
the sets Za (a ~ ,) specified [in the preceding section, with the 
notation shift ,\ ----t " , ----t (3] but also the correspondiIlg larger 
set Ha when a < ,. We do this by altering the definitiol} of 
{En: nEw} so that Ha is substituted for Za whenever a <:: ,. 
Since we did not put any restrictions on how ~mall N(x) can 
be, this is still subsumed in the general construction. In this 
way, each Ha remains clopen in X..." assuming it was clopen in 
X(3. Also, if if ,\ is a limit of limit ordinals, the topology on X A 

is defined just as before, and if a < '\, then Ha remains clopen 
in X A if it was clopen in each earlier X p • 

If , is a limit of limit ordinals, we hold off defining H..., until 
TA has been defined for ,\ == ,+ w. Then we let {<k : k E w} 
list L..., in··ascending order. For each Q' < , and i E w, define 

M(Q', i) == {k E w: !{((ek,i)) n Ha # 0}. 

Sinee Ha C X a and Ha is elopen in X-\, it follows that at 
most finitely many (~k, i) are in the closure of H a for any given 
i. It therefore follows from the remark at the end of the first 
paragraph of 1.2, Case 2, that M( 0'-, i) is finite. Define fa': 
W ----t W by fa(i) == max(M(Q', i)), and now let f : w ----t w be 
eventually above all fa' Q' < ,; that is, whenever Q' < " then 
fa( i) < f( i) for all but finitely many i. For each i E w let 
H("i) == U{!{((<k,i)): k < f(i)} and let 

H-y = (X-y \ UVCr, 0)) U U{HCr, i) : i E w}. 
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Now, Xry \ (UV("O)) is a clopen subset of X A, and {H("i): 
i E w} is a discrete collection of compact open sets in ~X" A; 
hence Hry is clopen not just in Xry but also in X A• It is routine 
to verify that (1) through (4) of this section hold; in particular, 
(2) holds because f(7(i) < f(i) for all but finitely many i. 0 

In [5], we will relax the conditions on the H a , as well as the 
topological conditions on X, and still obtain the conclusion 
that such a space cannot be obtained using CH alone. 

3. A LOCALLY COMPACT ANTI-DoWKER, SPACE THAT IS 

HEREDITA;ElJLY COUNTABLY PARACOMPACT 

The remainder of this paper is devoted to a simple exam
ple of a locally compact non-normal space, construct~d using 
MA(Wl), which is hereditarily countably paracompact. The 
construction works whenever there is a Q-set-an uncountable 
subspace Q of IR such that every subset of Q is a G5 in the rel
ative topology of Q. A seminal result in set-theoretic topology 
is that MA(Wl) implies every subset of IR of cardinality ~l is a 
Q-set [6]. 

3.1 Example. In [8, pp57-58] it is shown that for any un
countable set of branches of the full binary tree of height w, 
there is a 2-coloring of each branch which is not uniformizable. 
That is, each point of B a is colored one of two ways, and it is 
impossible to color the points of the tree in such a way that 
the coloring agrees with the coloring of each branch En: on all 
but finitely many elements of Ba . 

" 
Now let X be the topological space wllose underlying set is 

the tree together with a pair of points p(a, i) (i E {O, I}) as
sociated with each Ba . Points of X are isolated while a neigh
borhood of p( a, i) is any set containing p( a, i) along with all 
but finitely many points of Ba that were colored with the color 
that goes with i. The resulting space is not normal~ because a 
pair of disjoint open sets containing the points p( Q!, 0) on the 
one hand and the points p( a, 1) on the other hand would give 
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a 2-coloring of the tree that would uniformize the 2-colorings 
of the branches. 

On the other hand, if the branches corresponding to a Q-set 
in the Cantor set are 2-colored, the resulting space is heredi
tarily countably paracompact. This follows routinely froIIL the 
well-known fact [6] that the quotient space obtained by identi
fying the points in each pair is hereditarily (indeed, perfectly) 
normal, and from the fact that countable paracompactness of 
any subspace of X only requires being able to expand any 
countable partition of the subspace of nonisolated points to a 
locally finite collection of open sets. 

The idea of the proof is this: given a partition, we may as 
well assume that each member Pn contains either only points 
p( (x, 0) or only points p( (x, 1). Then the partition members of 
the first kind can be expanded to a disjoint collection of open 
sets whose inlages are clopen in the quotient space-do the 
expansion in the quotient space using its normality as in [6]. 
If Vn is a member of the expansion then the only points in 
Vn \ Vn are the "twins" of the points in Vn itself; hence tlLis is 
a discrete expansion. Repeat the argument for the partition 
members of the second kind. The result is an expansion of all 
the Pn such that every point has a neighborhood meeting at 
most two Jnembers of the expansion. 
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