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OF MANIFOLDS 2

David Gauld* and M.K. Vamanamurthy

Abstract

There are many conditions equivalent to metris-
ability for a topological manifold which are not
equivalent to metrisability for topological spaces
in general. What are the weakest such? We show
that a number of weak covering properties which
are equivalent to metrisability for a manifold, for
example metaliindelof, may be further weakened
by considering only covers of cardinality the first
uncountable ordinal. Extensions to higher cardi-
nals are discussed.

1. Introduction and Definitions

By a topological manifold we mean a connected Hausdorff space
each point of which has a neighbourhood homeomorphic to euclid-
ean space. In [4] there is a list of over 50 conditions which are
equivalent to metrisability for a manifold but not for a topo-
logical space in general. As one might expect, some of these
conditions are strictly stronger than metrisability and some are
strictly weaker than metrisability in a general space. In this
paper we investigate just how weak covering properties can be
made while still being equivalent to metrisability for a manifold.
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All cardinals are assumed infinite. We denote the cardinality
of aset X by |X|. If z € X and F is a family of subsets of X then
ord(z, F) is the order of F at x, ie |{F € F | x € F'}|. When
X is a topological space, we denote by x(z, X) the character of
x in X, ie the least infinite cardinality of a local basis at x. A
good reference for the set theory used in this paper is [10].

The following properties are studied in [1] where Theorem
4.1 states that every locally metrisable, linearly Lindelof space
is hereditarily Lindelof. They observe that their proof may be
modified to show that every locally metrisable w;-Lindelof space
is hereditarily Lindelof. (As noted in [1] and in Proposition
15 below, every linearly Lindel6f space is wi-Lindeldf.) Setting
k = wy in Proposition 12 shows that local metrisability can be
replaced by local hereditary Lindel6fness.

Definition 1. A space X is linearly Lindelof provided that every
open cover of X which is a chain has a countable subcover. A
family F of subsets of a set X is a chain provided thatVF,G € F
either FC G or G C F.

A space X is wi-Lindelof provided that every open cover of
X of cardinality wy has a countable subcover.

Recall also the following definition.

Definition 2. Let k and \ be two cardinal numbers. A topo-
logical space X is [k, A]-compact, [12], if and only if every open
cover of X of cardinality at most A has a subcover of cardinality
less than k.

If k = w then [k, \]-compact is also called initially A-compact.
If A > | X| then [k, \]-compact is also called finally k-compact.

Motivated by these definitions we formulate the following de-
finitions, where x and A are two cardinal numbers:

Definition 3. A space X is linearly [k, A]-compact provided that
every open cover U of X which is a chain and satisfies |[U| < A
has a subcover V with |V| < k.
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A space X is (linearly) [k, A\]-metacompact provided that every
open cover U of X which (is a chain and) satisfies [U| < A
has an open refinement V such that ord(x,V) < k for each
x € X. If X > |X| then [k, \|-metacompact is also called fi-
nally k-metacompact.

A space is nearly (linearly) [k, A]-metacompact if we merely
demand that ord(z, V) < K for each point x in some dense subset
of X.

An [wy,w|-metacompact space may also be called an
wi-metaLindeléf space, and is a weak form of metalindelofness
as it requires point-countability of a refinement only for open
covers of cardinality w;. Theorem 13 tells us that under appro-
priate conditions, which all manifolds satisfy, an w;-metaLindelof
space is in fact metaLindelof. (Nearly) linearly metaLindelof
and nearly wy-metalLindelof are defined analogously. The ulti-
mate must be the following: a space is (nearly) linearly
wi-metaLindeléf provided that for every open cover U which is
a chain and which satisfies || < w; there is an open refinement
V which is point-countable (on a dense subset).

Given a set X and a collection S of subsets of X, a choice
function is a function f : S — X such that f(S5) € S for each
Ses.

Definition 4. A space X has property (w1)pp, [7], provided
that each open cover U of X (with |U| = wy) has an open re-
finement V such that for each choice function f :V — X with
f(V) eV foreach VeV the set f(V) is closed and discrete in
X.

The main result in this paper is the following.

Theorem 5. Let M be a manifold. Then the following are
equivalent:

(a) M is metrisable;

(b) M is nearly linearly wy-metaLindeldf;
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(c) for every open cover U of M with |U| = wy there is an open
refinement V such that for every choice function f :V — M
the set f(V) is closed and discrete;

(d) for every open cover U of M with |[U| = w; there is an open
refinement V such that for every choice function f :V — M
the set f(V) is closed;

(e) for every open cover U of M with |U| = wy there is an open
refinement V such that for every choice function f :V — M
the set f(V) is discrete.

Of course with the Continuum Hypothesis this tells us no
more than what we already know from [4], ie that every (nearly)
meta-Lindeléf manifold (equivalently, manifold with property
pp) is metrisable, as every manifold has the cardinality of the
continuum, by [9, Theorem 2.9].

2. Finally k-metacompact Spaces

Recall that the character of a space X is the least cardinal « for
which every point of X has a local base of cardinality at most
K.

We say that a sequence_(Va> of subsets of a space is strongly
increasing provided that V,, C V., for each a.

Lemma 6. Let k be a regqular cardinal. Suppose that X is a
space such that x(x,X) < k for each v € X and (V,) is a
strongly increasing k-sequence of subsets of X. Then Uy« Ve 1S
closed in X.

Proof. Suppose that © € Uy<yxVa. Let {Ug | B < 6} be a
neighbourhood base at x, where § < k. For each 3 we have
Us N (UacikVa) # D s0 Ug NV, # @ for some ag < k. Let
a =sup{ag | B < 0}. Then a < k and Uz NV, # @ for all 3,
and hence z € V,, C Viy1. Thus UgerViy C Uger Va. O




COVERING PROPERTIES AND METRISATION OF ... 177

Lemma 7. Let k be a regular cardinal. Suppose that X is a
connected space and that V is an open cover of X such that
ord(z,V) < k for each x € X and each member of V has density
< k. Then |V| < k.

Proof. We may assume that @ ¢ V.

Pick any Vy € V and set Vy = {Vo}. Assuming that V; C V
has been defined, let V; = UV; and set V;.; = {V € V | VNV, #
@}. It suffices to show that |V;| < k and that V = U2, V.

(i) We show that |V;| < k by induction on 4, the result being
trivial when ¢ = 0. Suppose that |V;| < k. Then because k
is regular, V; has a dense subset, say D;, with |D;| < k. For
each V € V;; wehave VNV, # & so VND;, #@. Again
because k is regular, Vi1 = Ugep,{V € V | d € V} has
cardinality less than k since ord(z, V) < k for each x € X.

(il) V = U2, V; follows from connectedness via the fact that any
two points of X are chained to each other by members of V:
thus for any x € Vy € V and any y € V' € V there is a finite
sequence (W;) of members of V such that z € Wy, y € W,
and W,y NW; # @ for each i = 0,...n. We may assume
that Wy = Vo and W,, = V. Then for each i, W; € V;. In
particular V € V,. O

Corollary 8. Let k be a reqular cardinal. Then any connected
and finally k-metacompact space which s locally of density < k
s finally k-compact.

In particular every connected, locally separable, metalLindelof
space is Lindelof. We also obtain:

Corollary 9. Let k be a reqular cardinal and X any cardinal.
FEvery connected, [k, \|-metacompact space of density < K is
[k, \]-compact.
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Proof. Suppose that X is a connected, [k, A]-metacompact space
of density < x and let & be an open cover of X with [U| = A.
Let V be an open refinement of U such that ord(z,V) < k for
each z € X. As an open subset of a space of density < k, each
member of V has density < k. By Lemma 7, |V| < k and hence
U has a subcover of cardinality less than k. O

Let X be a topological space and A a non-empty subset of X.
A point x € X is a point of complete accumulation of A if and
only if for every neighbourhood N of z we have |A N N| = |A].

Proposition 10. [2, page 17| and [13, Theorem 1] Let k be a
reqular cardinal. A space X is [k, k|-compact if and only if every
A C X such that |A| = k has a point of complete accumulation.

Proposition 11. Let k be a reqular cardinal. Let X be a space
which is not hereditarily finally k-compact. Then there is a sub-
space Y C X such that |Y| = k and that no subset Z C Y of
cardinality k is finally k-compact.

Proof. (cf [11, Theorem 3.1]). Because X is not hereditarily
finally k-compact there is a strictly increasing sequence (Ug)a<x
of open sets. For each a < k choose y, € Uyi1 — U, and set
Y ={ya | @ < K} O

The following result generalises [1, theorem 4.1]. The proof
may be obtained by appropriate generalisation of the proof of
that result using Propositions 10 and 11.

Proposition 12. Let xk be a reqular cardinal. Fvery locally
hereditarily finally k-compact, [k, k]-compact space is hereditar-
ily finally k-compact.

Theorem 13. Let k be a reqular cardinal. Suppose that X 1is
a space which is of character < k, s locally connected, locally
hereditarily finally k-compact and locally hereditarily of density
< k. If X is [k, k]-metacompact then X is the topological direct
sum of finally k-compact spaces.
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Proof. As X is locally connected, every component is open so by
looking at each component separately if necessary we may as-
sume that X is connected also. We construct a strongly increas-
ing xk-sequence (V) of non-empty, connected, open and finally
k-compact subsets of X.

Because X is locally connected and locally hereditarily finally
rk-compact we may begin by choosing any non-empty, connected,
open, finally x-compact subset Vj; C X. For any other limit
ordinal «, if V3 has already been constructed for all 8 < «, let
Vo = Up<a V3.

Suppose that V, has been constructed. Because V,, is finally
r-compact it also has a dense subset of cardinality < x. Thus
V., has a dense subset of cardinality < . V, is also connected as
V, is. Furthermore, as a closed subset of a [k, k]-metacompact
space V, is also [k, k]-metacompact. Thus by Corollary 9 V,
is [k, k]-compact. It now follows from Proposition 12 that V,, is
finally k-compact. For each z € V,,—V,, choose U, C X open and
finally x-compact such that € U,. Then {U, | x € V,, — V,,}
is an open cover of the finally s-compact subset V, — Vi, so
has a subcover of cardinality < . The collection consisting of
this subcover together with V, is a collection of fewer than s
many open finally xk-compact subsets of X so their union is also
open and finally s-compact and contains V,. Let V,,; be the
component of this union containing V.

Suppose that U is an open cover of X. Then for each a < Kk, U
is also an open cover of the finally x-compact set V,,: let U, be a
subcover of cardinality < k. Then U, .U, is a subfamily of U of
cardinality at most x which covers U, V,, hence the connected
space X, by Lemma 6 because this union is non-empty, open and
closed. As X is [k, k]-metacompact it follows that this subfamily
has an open refinement whose order at each point is less than s
and hence so does U. Now it follows from Corollary 8 that X is
finally k-compact. O
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Remark. The three local properties ‘of character < &, locally
hereditarily finally x-compact and locally hereditarily of density
< Kk’ of Theorem 13 are all implied by the single local prop-
erty: locally of weight < k. In the case where x = w; these
four properties are, respectively, first countable, locally heredi-
tarily Lindelof, locally hereditarily separable and locally second
countable and in this case, Theorem 13 gives:

Corollary 14. Every connected, locally connected, locally sec-
ond countable, wy-metalLindelof space is Lindeldf.

This corollary has an obvious generalisation to higher regular
cardinal x in place of wy.

Proposition 15. (cf[1]) Every linearly wi -(meta)Lindeldf space
is w1 -(meta)Lindelof.

Proof. We will just consider the metalLindelof case. Let U be an
open cover of the linearly w;-metalindelof space X such that
U] = w;. Then we can write U = {U, | @ < wy}. For each
a<wletV, =U{Usz | <a}l. ThenV ={V, | @ < wi}
is an open cover of X which is a chain. Thus as X is linearly
wi-metaliindelof it follows that there is a point-countable open
refinement, say W.

For each W € W there is a(W) < wy such that W C V.
Let S = {WnUsg | W € Wandf < oW)}. Then S is a
point-countable open refinement of . O

Proof of the equivalence of (a) and (b) of Theorem 5

As every metrisable space is paracompact, it is also nearly
linearly w;-metalindeléf so (a)=-(b) in Theorem 5. For the
converse, suppose that M is a nearly linearly w;-metalindelof
manifold. Clearly one can modify the proof of [5, Lemma 3.2] to
conclude that M is linearly wi-metaLindelof. As every manifold
is T3, connected, locally connected and locally second count-
able, it follows from Corollary 14 and Proposition 15 that M
is Lindelof, hence second countable and therefore metrisable by
Urysohn’s Metrisation Theorem. O
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3. Spaces with Property pp

Lemma 16. A point x € X is a limit point of X if and only
if for each collection V of open sets containing x, with |V| >
x(z, X), there exists a choice function f :V — X, such that

ze f(V)—fv).

Proof. =: Suppose that V is a collection of open sets containing
x with |V| > x(x, X), say {V,, | a < x(z, X)} C V satisfies V,, #
Vs whenever a # (3. Let {W, |a < x(x, X)} be a neighbourhood
basis at z. Then we may define f: V — X so that f(V) eV —
{z}if V £V, for any a < x(z, X) and f(V,) € V,NW, —{z}.
Then z € f(V) — f(V).

«<: Let U be any neighbourhood of x and take V to be a
collection of open neighbourhhods of x forming a neighbourhood
basis at x. Then |V| > x(#,X). Let f : V — X be a choice

function such that = € f(V) — f(V). Then f(U) € U — {x}, so
x is a limit point of X. O

Lemma 17. LetV be an open cover of a Ty space X. Then the
following are equivalent:

(a) For every choice function f:V — X, the set f(V) is closed
and discrete;

(b) For every choice function f :V — X, the set f(V) is closed;

(c) For every choice function f :V — X, the set f(V) is dis-
crete.

Proof. 1t suffices to show that (b) and (c) are equivalent.
(b)=-(c). Suppose that f:V — X is a choice function but f(V)
is not discrete. Then there is € f(V) every neighbourhood of
which meets f(V) in some point other than z. Define g : V — X
by g(V) = f(V)if f(V)#xzand g(V) € V — {z} if (V) = 2.
Then z € g(V) — g(V) so ¢g(V) is not closed.
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(¢)=-(b). Suppose that f:V — X is a choice function but
f(V) is not closed, say z € f(V) — f(V). Pick V, € V such
that € V. Define g : V — X by g(V) = f(V) unless V =
V, and let g(V,) = x. Because X is T, it follows that every
neighbourhood of = meets g(V) in some point other than x so

g(V) is not discrete. 0

Proposition 18. Let k be a cardinal. Suppose that X has char-
acter at most k and has no isolated points, and that every open
cover U of X with |U| = k% has an open refinement V such
that for every choice function f:V — X the set f(V) is closed.
Then X is [T, kT|-metacompact.

Proof. Let U be an open cover of X with || = «T. Apply
Lemma 16 to the open refinement V' given by hypothesis: then
ord(x,V) < k < kT for each x € X. O

We can now complete the proof of Theorem 5.

By Lemma 17 (c), (d) and (e) are equivalent. By Proposi-
tion 18 with k = w, (d) implies (b). Finally every metrisable
manifold is pp and hence satisfies (c).

4. Some Questions

Are there even weaker covering conditions which are equivalent
to metrisability for a manifold?

Using [6, Theorems 1 and 2| (or see [3, Theorem 8.11]) and
[9, Theorem 2.5] we find that the following conditions are each
equivalent to metrisability for a manifold:

e M is normal and #-refinable;

e ) is normal and subparacompact.

Let X be a space.

X is f-refinable ([14]) (also called submetacompact) if every
open cover can be refined to an open #-cover, i.e. a cover U
which can be expressed as U,c.,U, where each U, covers X and
for each x € X there is n such that ord(z,U,) < w.
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X is subparacompact, [8] (where it is called F,-screenable), if
every open cover has a o-discrete closed refinement.
Our theme suggests the following definition.

Definition 19. Say that X is wi-0-refinable if every open cover
U of X with [U| = wy has a O-refinement.

Question 20. Is every wy-0-refinable manifold O-refinable?

Question 21. Must a manifold be metrisable if it is normal
and every open cover of cardinality at most wy has an open
O-refinement?

Question 22. Must a manifold be metrisable if it is normal and
every open cover of cardinality at most wy has a o-discrete closed
refinement?

Comparing Corollary 8 with Corollary 9 leads to the following
question.

Question 23. Let k be a reqular cardinal. Must every connected
and [k, k|-metacompact space which is locally of density < k be
[k, K]-compact?

Note that in Proposition 18 we have only concluded that X
is [kT, kT]-metacompact rather than [x, k™]-metacompact even
though the open cover of size k* has been refined to an open
cover of order less than k: we did not carry out a similar reduc-
tion of an open cover of cardinality x because we did not need
to. This raises the following question.

Question 24. Is there a space X with character at most k and
having no isolated points such that every open cover of size k™
has an open refinement V whose order at each point is less than
k but X is not [k, kT]-metacompact?
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