
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



Topology Proceedings
Volume 24, Summer 1999, 173–185

COVERING PROPERTIES AND METRISATION
OF MANIFOLDS 2

David Gauld∗ and M.K. Vamanamurthy

Abstract

There are many conditions equivalent to metris-
ability for a topological manifold which are not
equivalent to metrisability for topological spaces
in general. What are the weakest such? We show
that a number of weak covering properties which
are equivalent to metrisability for a manifold, for
example metaLindelöf, may be further weakened
by considering only covers of cardinality the first
uncountable ordinal. Extensions to higher cardi-
nals are discussed.

1. Introduction and Definitions

By a topological manifold we mean a connected Hausdorff space
each point of which has a neighbourhood homeomorphic to euclid-
ean space. In [4] there is a list of over 50 conditions which are
equivalent to metrisability for a manifold but not for a topo-
logical space in general. As one might expect, some of these
conditions are strictly stronger than metrisability and some are
strictly weaker than metrisability in a general space. In this
paper we investigate just how weak covering properties can be
made while still being equivalent to metrisability for a manifold.
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All cardinals are assumed infinite. We denote the cardinality
of a set X by |X|. If x ∈ X and F is a family of subsets of X then
ord(x,F) is the order of F at x, ie |{F ∈ F | x ∈ F}|. When
X is a topological space, we denote by χ(x,X) the character of
x in X, ie the least infinite cardinality of a local basis at x. A
good reference for the set theory used in this paper is [10].

The following properties are studied in [1] where Theorem
4.1 states that every locally metrisable, linearly Lindelöf space
is hereditarily Lindelöf. They observe that their proof may be
modified to show that every locally metrisable ω1-Lindelöf space
is hereditarily Lindelöf. (As noted in [1] and in Proposition
15 below, every linearly Lindelöf space is ω1-Lindelöf.) Setting
κ = ω1 in Proposition 12 shows that local metrisability can be
replaced by local hereditary Lindelöfness.

Definition 1. A space X is linearly Lindelöf provided that every
open cover of X which is a chain has a countable subcover. A
family F of subsets of a set X is a chain provided that ∀F,G ∈ F
either F ⊂ G or G ⊂ F .

A space X is ω1-Lindelöf provided that every open cover of
X of cardinality ω1 has a countable subcover.

Recall also the following definition.

Definition 2. Let κ and λ be two cardinal numbers. A topo-
logical space X is [κ, λ]-compact, [12], if and only if every open
cover of X of cardinality at most λ has a subcover of cardinality
less than κ.

If κ = ω then [κ, λ]-compact is also called initially λ-compact.
If λ ≥ |X| then [κ, λ]-compact is also called finally κ-compact.

Motivated by these definitions we formulate the following de-
finitions, where κ and λ are two cardinal numbers:

Definition 3. A space X is linearly [κ, λ]-compact provided that
every open cover U of X which is a chain and satisfies |U| ≤ λ
has a subcover V with |V| < κ.
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A space X is (linearly) [κ, λ]-metacompact provided that every
open cover U of X which (is a chain and) satisfies |U| ≤ λ
has an open refinement V such that ord(x,V) < κ for each
x ∈ X. If λ ≥ |X| then [κ, λ]-metacompact is also called fi-
nally κ-metacompact.

A space is nearly (linearly) [κ, λ]-metacompact if we merely
demand that ord(x,V) < κ for each point x in some dense subset
of X.

An [ω1, ω1]-metacompact space may also be called an
ω1-metaLindelöf space, and is a weak form of metaLindelöfness
as it requires point-countability of a refinement only for open
covers of cardinality ω1. Theorem 13 tells us that under appro-
priate conditions, which all manifolds satisfy, an ω1-metaLindelöf
space is in fact metaLindelöf. (Nearly) linearly metaLindelöf
and nearly ω1-metaLindelöf are defined analogously. The ulti-
mate must be the following: a space is (nearly) linearly
ω1-metaLindelöf provided that for every open cover U which is
a chain and which satisfies |U| ≤ ω1 there is an open refinement
V which is point-countable (on a dense subset).

Given a set X and a collection S of subsets of X, a choice
function is a function f : S → X such that f(S) ∈ S for each
S ∈ S.

Definition 4. A space X has property (ω1)pp, [7], provided
that each open cover U of X (with |U| = ω1) has an open re-
finement V such that for each choice function f : V → X with
f(V ) ∈ V for each V ∈ V the set f(V) is closed and discrete in
X.

The main result in this paper is the following.

Theorem 5. Let M be a manifold. Then the following are
equivalent:

(a) M is metrisable;

(b) M is nearly linearly ω1-metaLindelöf;
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(c) for every open cover U of M with |U| = ω1 there is an open
refinement V such that for every choice function f : V → M
the set f(V) is closed and discrete;

(d) for every open cover U of M with |U| = ω1 there is an open
refinement V such that for every choice function f : V → M
the set f(V) is closed;

(e) for every open cover U of M with |U| = ω1 there is an open
refinement V such that for every choice function f : V → M
the set f(V) is discrete.

Of course with the Continuum Hypothesis this tells us no
more than what we already know from [4], ie that every (nearly)
meta-Lindelöf manifold (equivalently, manifold with property
pp) is metrisable, as every manifold has the cardinality of the
continuum, by [9, Theorem 2.9].

2. Finally κ-metacompact Spaces

Recall that the character of a space X is the least cardinal κ for
which every point of X has a local base of cardinality at most
κ.

We say that a sequence 〈Vα〉 of subsets of a space is strongly
increasing provided that Vα ⊂ Vα+1 for each α.

Lemma 6. Let κ be a regular cardinal. Suppose that X is a
space such that χ(x,X) < κ for each x ∈ X and 〈Vα〉 is a
strongly increasing κ-sequence of subsets of X. Then ∪α<κVα is
closed in X.

Proof. Suppose that x ∈ ∪α<κVα. Let {Uβ | β ≤ θ} be a
neighbourhood base at x, where θ < κ. For each β we have
Uβ ∩ (∪α<κVα) 6= ∅ so Uβ ∩ Vαβ

6= ∅ for some αβ < κ. Let
α = sup{αβ | β ≤ θ}. Then α < κ and Uβ ∩ Vα 6= ∅ for all β,
and hence x ∈ V̄α ⊂ Vα+1. Thus ∪α<κVα ⊂ ∪α<κVα. 2
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Lemma 7. Let κ be a regular cardinal. Suppose that X is a
connected space and that V is an open cover of X such that
ord(x,V) < κ for each x ∈ X and each member of V has density
< κ. Then |V| < κ.

Proof. We may assume that ∅ /∈ V.
Pick any V0 ∈ V and set V0 = {V0}. Assuming that Vi ⊂ V

has been defined, let Vi = ∪Vi and set Vi+1 = {V ∈ V | V ∩Vi 6=
∅}. It suffices to show that |Vi| < κ and that V = ∪∞

i=0Vi.

(i) We show that |Vi| < κ by induction on i, the result being
trivial when i = 0. Suppose that |Vi| < κ. Then because κ
is regular, Vi has a dense subset, say Di, with |Di| < κ. For
each V ∈ Vi+1 we have V ∩ Vi 6= ∅ so V ∩ Di 6= ∅. Again
because κ is regular, Vi+1 = ∪d∈Di{V ∈ V | d ∈ V } has
cardinality less than κ since ord(x,V) < κ for each x ∈ X.

(ii) V = ∪∞
i=0Vi follows from connectedness via the fact that any

two points of X are chained to each other by members of V:
thus for any x ∈ V0 ∈ V and any y ∈ V ∈ V there is a finite
sequence 〈Wi〉 of members of V such that x ∈ W0, y ∈ Wn

and Wi−1 ∩ Wi 6= ∅ for each i = 0, . . . n. We may assume
that W0 = V0 and Wn = V . Then for each i, Wi ∈ Vi. In
particular V ∈ Vn. 2

Corollary 8. Let κ be a regular cardinal. Then any connected
and finally κ-metacompact space which is locally of density < κ
is finally κ-compact.

In particular every connected, locally separable, metaLindelöf
space is Lindelöf. We also obtain:

Corollary 9. Let κ be a regular cardinal and λ any cardinal.
Every connected, [κ, λ]-metacompact space of density < κ is
[κ, λ]-compact.
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Proof. Suppose that X is a connected, [κ, λ]-metacompact space
of density < κ and let U be an open cover of X with |U| = λ.
Let V be an open refinement of U such that ord(x,V) < κ for
each x ∈ X. As an open subset of a space of density < κ, each
member of V has density < κ. By Lemma 7, |V| < κ and hence
U has a subcover of cardinality less than κ. 2

Let X be a topological space and A a non-empty subset of X.
A point x ∈ X is a point of complete accumulation of A if and
only if for every neighbourhood N of x we have |A ∩ N | = |A|.

Proposition 10. [2, page 17] and [13, Theorem 1] Let κ be a
regular cardinal. A space X is [κ, κ]-compact if and only if every
A ⊂ X such that |A| = κ has a point of complete accumulation.

Proposition 11. Let κ be a regular cardinal. Let X be a space
which is not hereditarily finally κ-compact. Then there is a sub-
space Y ⊂ X such that |Y | = κ and that no subset Z ⊂ Y of
cardinality κ is finally κ-compact.

Proof. (cf [11, Theorem 3.1]). Because X is not hereditarily
finally κ-compact there is a strictly increasing sequence 〈Uα〉α<κ

of open sets. For each α < κ choose yα ∈ Uα+1 − Uα and set
Y = {yα | α < κ}. 2

The following result generalises [1, theorem 4.1]. The proof
may be obtained by appropriate generalisation of the proof of
that result using Propositions 10 and 11.

Proposition 12. Let κ be a regular cardinal. Every locally
hereditarily finally κ-compact, [κ, κ]-compact space is hereditar-
ily finally κ-compact.

Theorem 13. Let κ be a regular cardinal. Suppose that X is
a space which is of character < κ, is locally connected, locally
hereditarily finally κ-compact and locally hereditarily of density
< κ. If X is [κ, κ]-metacompact then X is the topological direct
sum of finally κ-compact spaces.
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Proof. As X is locally connected, every component is open so by
looking at each component separately if necessary we may as-
sume that X is connected also. We construct a strongly increas-
ing κ-sequence 〈Vα〉 of non-empty, connected, open and finally
κ-compact subsets of X.

Because X is locally connected and locally hereditarily finally
κ-compact we may begin by choosing any non-empty, connected,
open, finally κ-compact subset V0 ⊂ X. For any other limit
ordinal α, if Vβ has already been constructed for all β < α, let
Vα = ∪β<αVβ.

Suppose that Vα has been constructed. Because Vα is finally
κ-compact it also has a dense subset of cardinality < κ. Thus
V̄α has a dense subset of cardinality < κ. V̄α is also connected as
Vα is. Furthermore, as a closed subset of a [κ, κ]-metacompact
space V̄α is also [κ, κ]-metacompact. Thus by Corollary 9 V̄α

is [κ, κ]-compact. It now follows from Proposition 12 that V̄α is
finally κ-compact. For each x ∈ V̄α−Vα choose Ux ⊂ X open and
finally κ-compact such that x ∈ Ux. Then {Ux | x ∈ V̄α − Vα}
is an open cover of the finally κ-compact subset V̄α − Vα so
has a subcover of cardinality < κ. The collection consisting of
this subcover together with Vα is a collection of fewer than κ
many open finally κ-compact subsets of X so their union is also
open and finally κ-compact and contains V̄α. Let Vα+1 be the
component of this union containing Vα.

Suppose that U is an open cover of X. Then for each α < κ, U
is also an open cover of the finally κ-compact set Vα: let Uα be a
subcover of cardinality < κ. Then ∪α<κUα is a subfamily of U of
cardinality at most κ which covers ∪α<κVα, hence the connected
space X, by Lemma 6 because this union is non-empty, open and
closed. As X is [κ, κ]-metacompact it follows that this subfamily
has an open refinement whose order at each point is less than κ
and hence so does U . Now it follows from Corollary 8 that X is
finally κ-compact. 2
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Remark. The three local properties ‘of character < κ, locally
hereditarily finally κ-compact and locally hereditarily of density
< κ’ of Theorem 13 are all implied by the single local prop-
erty: locally of weight < κ. In the case where κ = ω1 these
four properties are, respectively, first countable, locally heredi-
tarily Lindelöf, locally hereditarily separable and locally second
countable and in this case, Theorem 13 gives:

Corollary 14. Every connected, locally connected, locally sec-
ond countable, ω1-metaLindelöf space is Lindelöf.

This corollary has an obvious generalisation to higher regular
cardinal κ in place of ω1.

Proposition 15. (cf [1]) Every linearly ω1-(meta)Lindelöf space
is ω1-(meta)Lindelöf.

Proof. We will just consider the metaLindelöf case. Let U be an
open cover of the linearly ω1-metaLindelöf space X such that
|U| = ω1. Then we can write U = {Uα | α < ω1}. For each
α < ω1 let Vα = ∪{Uβ | β < α}. Then V = {Vα | α < ω1}
is an open cover of X which is a chain. Thus as X is linearly
ω1-metaLindelöf it follows that there is a point-countable open
refinement, say W.

For each W ∈ W there is α(W ) < ω1 such that W ⊂ Vα(W ).
Let S = {W ∩ Uβ | W ∈ W and β ≤ α(W )}. Then S is a
point-countable open refinement of U . 2

Proof of the equivalence of (a) and (b) of Theorem 5
As every metrisable space is paracompact, it is also nearly
linearly ω1-metaLindelöf so (a)⇒(b) in Theorem 5. For the
converse, suppose that M is a nearly linearly ω1-metaLindelöf
manifold. Clearly one can modify the proof of [5, Lemma 3.2] to
conclude that M is linearly ω1-metaLindelöf. As every manifold
is T3, connected, locally connected and locally second count-
able, it follows from Corollary 14 and Proposition 15 that M
is Lindelöf, hence second countable and therefore metrisable by
Urysohn’s Metrisation Theorem. 2
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3. Spaces with Property pp

Lemma 16. A point x ∈ X is a limit point of X if and only
if for each collection V of open sets containing x, with |V| ≥
χ(x,X), there exists a choice function f : V → X, such that
x ∈ f(V) − f(V).

Proof. ⇒: Suppose that V is a collection of open sets containing
x with |V| ≥ χ(x,X), say {Vα | α < χ(x,X)} ⊂ V satisfies Vα 6=
Vβ whenever α 6= β. Let {Wα |α < χ(x,X)} be a neighbourhood
basis at x. Then we may define f : V → X so that f(V ) ∈ V −
{x} if V 6= Vα for any α < χ(x,X) and f(Vα) ∈ Vα ∩Wα −{x}.
Then x ∈ f(V) − f(V).

⇐: Let U be any neighbourhood of x and take V to be a
collection of open neighbourhhods of x forming a neighbourhood
basis at x. Then |V| ≥ χ(x,X). Let f : V → X be a choice
function such that x ∈ f(V) − f(V). Then f(U) ∈ U − {x}, so
x is a limit point of X. 2

Lemma 17. Let V be an open cover of a T1 space X. Then the
following are equivalent:

(a) For every choice function f : V → X, the set f(V) is closed
and discrete;

(b) For every choice function f : V → X, the set f(V) is closed;

(c) For every choice function f : V → X, the set f(V) is dis-
crete.

Proof. It suffices to show that (b) and (c) are equivalent.
(b)⇒(c). Suppose that f : V → X is a choice function but f(V)
is not discrete. Then there is x ∈ f(V) every neighbourhood of
which meets f(V) in some point other than x. Define g : V → X
by g(V ) = f(V ) if f(V ) 6= x and g(V ) ∈ V − {x} if f(V ) = x.
Then x ∈ g(V) − g(V) so g(V) is not closed.
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(c)⇒(b). Suppose that f : V → X is a choice function but
f(V) is not closed, say x ∈ f(V) − f(V). Pick Vx ∈ V such
that x ∈ Vx. Define g : V → X by g(V ) = f(V ) unless V =
Vx and let g(Vx) = x. Because X is T1 it follows that every
neighbourhood of x meets g(V) in some point other than x so
g(V) is not discrete. 2

Proposition 18. Let κ be a cardinal. Suppose that X has char-
acter at most κ and has no isolated points, and that every open
cover U of X with |U| = κ+ has an open refinement V such
that for every choice function f : V → X the set f(V) is closed.
Then X is [κ+, κ+]-metacompact.

Proof. Let U be an open cover of X with |U| = κ+. Apply
Lemma 16 to the open refinement V given by hypothesis: then
ord(x,V) < κ < κ+ for each x ∈ X. 2

We can now complete the proof of Theorem 5.
By Lemma 17 (c), (d) and (e) are equivalent. By Proposi-

tion 18 with κ = ω, (d) implies (b). Finally every metrisable
manifold is pp and hence satisfies (c).

4. Some Questions

Are there even weaker covering conditions which are equivalent
to metrisability for a manifold?

Using [6, Theorems 1 and 2] (or see [3, Theorem 8.11]) and
[9, Theorem 2.5] we find that the following conditions are each
equivalent to metrisability for a manifold:

• M is normal and θ-refinable;

• M is normal and subparacompact.

Let X be a space.
X is θ-refinable ([14]) (also called submetacompact) if every

open cover can be refined to an open θ-cover, i.e. a cover U
which can be expressed as ∪n∈ωUn where each Un covers X and
for each x ∈ X there is n such that ord(x,Un) < ω.
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X is subparacompact, [8] (where it is called Fσ-screenable), if
every open cover has a σ-discrete closed refinement.

Our theme suggests the following definition.

Definition 19. Say that X is ω1-θ-refinable if every open cover
U of X with |U| = ω1 has a θ-refinement.

Question 20. Is every ω1-θ-refinable manifold θ-refinable?

Question 21. Must a manifold be metrisable if it is normal
and every open cover of cardinality at most ω1 has an open
θ-refinement?

Question 22. Must a manifold be metrisable if it is normal and
every open cover of cardinality at most ω1 has a σ-discrete closed
refinement?

Comparing Corollary 8 with Corollary 9 leads to the following
question.

Question 23. Let κ be a regular cardinal. Must every connected
and [κ, κ]-metacompact space which is locally of density < κ be
[κ, κ]-compact?

Note that in Proposition 18 we have only concluded that X
is [κ+, κ+]-metacompact rather than [κ, κ+]-metacompact even
though the open cover of size κ+ has been refined to an open
cover of order less than κ: we did not carry out a similar reduc-
tion of an open cover of cardinality κ because we did not need
to. This raises the following question.

Question 24. Is there a space X with character at most κ and
having no isolated points such that every open cover of size κ+

has an open refinement V whose order at each point is less than
κ but X is not [κ, κ+]-metacompact?

Acknowledgement. The authors thank the referee for a num-
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paper.
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