Topology Proceedings

//topology.auburn.edu/tp/
ology Proceedings
artment of Mathematics & Statistics
urn University, Alabama 36849, USA
log@auburn.edu
-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

COVERING PROPERTIES AND METRISATION OF MANIFOLDS 2

David Gauld^{*} and M.K. Vamanamurthy

Abstract

There are many conditions equivalent to metrisability for a topological manifold which are not equivalent to metrisability for topological spaces in general. What are the weakest such? We show that a number of weak covering properties which are equivalent to metrisability for a manifold, for example metaLindelöf, may be further weakened by considering only covers of cardinality the first uncountable ordinal. Extensions to higher cardinals are discussed.

1. Introduction and Definitions

By a topological manifold we mean a connected Hausdorff space each point of which has a neighbourhood homeomorphic to euclidean space. In [4] there is a list of over 50 conditions which are equivalent to metrisability for a manifold but not for a topological space in general. As one might expect, some of these conditions are strictly stronger than metrisability and some are strictly weaker than metrisability in a general space. In this paper we investigate just how weak covering properties can be made while still being equivalent to metrisability for a manifold.

^{*} Supported in part by a Marsden Fund Award, UOA611, from the Royal Society of New Zealand.

Mathematics Subject Classification: 03E75, 54D20, 54E35, 57N05, 57N15

Key words: $[\kappa, \lambda]$ -compact, linearly Lindelöf, ω_1 -Lindelöf, ω_1 -metaLindelöf, nearly linearly ω_1 -metaLindelöf, metrisable, manifold, property pp.

174

All cardinals are assumed infinite. We denote the cardinality of a set X by |X|. If $x \in X$ and \mathcal{F} is a family of subsets of X then $\operatorname{ord}(x, \mathcal{F})$ is the *order* of \mathcal{F} at x, ie $|\{F \in \mathcal{F} \mid x \in F\}|$. When X is a topological space, we denote by $\chi(x, X)$ the *character* of x in X, ie the least infinite cardinality of a local basis at x. A good reference for the set theory used in this paper is [10].

The following properties are studied in [1] where Theorem 4.1 states that every locally metrisable, linearly Lindelöf space is hereditarily Lindelöf. They observe that their proof may be modified to show that every locally metrisable ω_1 -Lindelöf space is hereditarily Lindelöf. (As noted in [1] and in Proposition 15 below, every linearly Lindelöf space is ω_1 -Lindelöf.) Setting $\kappa = \omega_1$ in Proposition 12 shows that local metrisability can be replaced by local hereditary Lindelöfness.

Definition 1. A space X is linearly Lindelöf provided that every open cover of X which is a chain has a countable subcover. A family \mathcal{F} of subsets of a set X is a chain provided that $\forall F, G \in \mathcal{F}$ either $F \subset G$ or $G \subset F$.

A space X is ω_1 -Lindelöf provided that every open cover of X of cardinality ω_1 has a countable subcover.

Recall also the following definition.

Definition 2. Let κ and λ be two cardinal numbers. A topological space X is $[\kappa, \lambda]$ -compact, [12], if and only if every open cover of X of cardinality at most λ has a subcover of cardinality less than κ .

If $\kappa = \omega$ then $[\kappa, \lambda]$ -compact is also called initially λ -compact. If $\lambda \geq |X|$ then $[\kappa, \lambda]$ -compact is also called finally κ -compact.

Motivated by these definitions we formulate the following definitions, where κ and λ are two cardinal numbers:

Definition 3. A space X is linearly $[\kappa, \lambda]$ -compact provided that every open cover \mathcal{U} of X which is a chain and satisfies $|\mathcal{U}| \leq \lambda$ has a subcover \mathcal{V} with $|\mathcal{V}| < \kappa$. A space X is (linearly) $[\kappa, \lambda]$ -metacompact provided that every open cover \mathcal{U} of X which (is a chain and) satisfies $|\mathcal{U}| \leq \lambda$ has an open refinement \mathcal{V} such that $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$. If $\lambda \geq |X|$ then $[\kappa, \lambda]$ -metacompact is also called finally κ -metacompact.

A space is nearly (linearly) $[\kappa, \lambda]$ -metacompact if we merely demand that $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each point x in some dense subset of X.

An $[\omega_1, \omega_1]$ -metacompact space may also be called an ω_1 -metaLindelöf space, and is a weak form of metaLindelöfness as it requires point-countability of a refinement only for open covers of cardinality ω_1 . Theorem 13 tells us that under appropriate conditions, which all manifolds satisfy, an ω_1 -metaLindelöf space is in fact metaLindelöf. (Nearly) linearly metaLindelöf and nearly ω_1 -metaLindelöf are defined analogously. The ultimate must be the following: a space is (nearly) linearly ω_1 -metaLindelöf provided that for every open cover \mathcal{U} which is a chain and which satisfies $|\mathcal{U}| \leq \omega_1$ there is an open refinement \mathcal{V} which is point-countable (on a dense subset).

Given a set X and a collection S of subsets of X, a *choice* function is a function $f : S \to X$ such that $f(S) \in S$ for each $S \in S$.

Definition 4. A space X has property (ω_1) pp, [7], provided that each open cover \mathcal{U} of X (with $|\mathcal{U}| = \omega_1$) has an open refinement \mathcal{V} such that for each choice function $f : \mathcal{V} \to X$ with $f(V) \in V$ for each $V \in \mathcal{V}$ the set $f(\mathcal{V})$ is closed and discrete in X.

The main result in this paper is the following.

Theorem 5. Let M be a manifold. Then the following are equivalent:

(a) M is metrisable;

(b) M is nearly linearly ω_1 -metaLindelöf;

- (c) for every open cover \mathcal{U} of M with $|\mathcal{U}| = \omega_1$ there is an open refinement \mathcal{V} such that for every choice function $f: \mathcal{V} \to M$ the set $f(\mathcal{V})$ is closed and discrete;
- (d) for every open cover \mathcal{U} of M with $|\mathcal{U}| = \omega_1$ there is an open refinement \mathcal{V} such that for every choice function $f : \mathcal{V} \to M$ the set $f(\mathcal{V})$ is closed;
- (e) for every open cover \mathcal{U} of M with $|\mathcal{U}| = \omega_1$ there is an open refinement \mathcal{V} such that for every choice function $f : \mathcal{V} \to M$ the set $f(\mathcal{V})$ is discrete.

Of course with the Continuum Hypothesis this tells us no more than what we already know from [4], ie that every (nearly) meta-Lindelöf manifold (equivalently, manifold with property pp) is metrisable, as every manifold has the cardinality of the continuum, by [9, Theorem 2.9].

2. Finally κ -metacompact Spaces

Recall that the *character* of a space X is the least cardinal κ for which every point of X has a local base of cardinality at most κ .

We say that a sequence $\langle V_{\alpha} \rangle$ of subsets of a space is *strongly* increasing provided that $\overline{V_{\alpha}} \subset V_{\alpha+1}$ for each α .

Lemma 6. Let κ be a regular cardinal. Suppose that X is a space such that $\chi(x, X) < \kappa$ for each $x \in X$ and $\langle V_{\alpha} \rangle$ is a strongly increasing κ -sequence of subsets of X. Then $\cup_{\alpha < \kappa} V_{\alpha}$ is closed in X.

Proof. Suppose that $x \in \overline{\bigcup_{\alpha < \kappa} V_{\alpha}}$. Let $\{U_{\beta} \mid \beta \leq \theta\}$ be a neighbourhood base at x, where $\theta < \kappa$. For each β we have $U_{\beta} \cap (\bigcup_{\alpha < \kappa} V_{\alpha}) \neq \emptyset$ so $U_{\beta} \cap V_{\alpha_{\beta}} \neq \emptyset$ for some $\alpha_{\beta} < \kappa$. Let $\alpha = \sup\{\alpha_{\beta} \mid \beta \leq \theta\}$. Then $\alpha < \kappa$ and $U_{\beta} \cap V_{\alpha} \neq \emptyset$ for all β , and hence $x \in V_{\alpha} \subset V_{\alpha+1}$. Thus $\overline{\bigcup_{\alpha < \kappa} V_{\alpha}} \subset \bigcup_{\alpha < \kappa} V_{\alpha}$.

176

Lemma 7. Let κ be a regular cardinal. Suppose that X is a connected space and that \mathcal{V} is an open cover of X such that $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$ and each member of \mathcal{V} has density $< \kappa$. Then $|\mathcal{V}| < \kappa$.

Proof. We may assume that $\emptyset \notin \mathcal{V}$.

Pick any $V_0 \in \mathcal{V}$ and set $\mathcal{V}_0 = \{V_0\}$. Assuming that $\mathcal{V}_i \subset \mathcal{V}$ has been defined, let $V_i = \bigcup \mathcal{V}_i$ and set $\mathcal{V}_{i+1} = \{V \in \mathcal{V} \mid V \cap V_i \neq \emptyset\}$. It suffices to show that $|\mathcal{V}_i| < \kappa$ and that $\mathcal{V} = \bigcup_{i=0}^{\infty} \mathcal{V}_i$.

- (i) We show that $|\mathcal{V}_i| < \kappa$ by induction on *i*, the result being trivial when i = 0. Suppose that $|\mathcal{V}_i| < \kappa$. Then because κ is regular, V_i has a dense subset, say D_i , with $|D_i| < \kappa$. For each $V \in \mathcal{V}_{i+1}$ we have $V \cap V_i \neq \emptyset$ so $V \cap D_i \neq \emptyset$. Again because κ is regular, $\mathcal{V}_{i+1} = \bigcup_{d \in D_i} \{V \in \mathcal{V} \mid d \in V\}$ has cardinality less than κ since $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$.
- (ii) $\mathcal{V} = \bigcup_{i=0}^{\infty} \mathcal{V}_i$ follows from connectedness via the fact that any two points of X are chained to each other by members of \mathcal{V} : thus for any $x \in V_0 \in \mathcal{V}$ and any $y \in V \in \mathcal{V}$ there is a finite sequence $\langle W_i \rangle$ of members of \mathcal{V} such that $x \in W_0, y \in W_n$ and $W_{i-1} \cap W_i \neq \emptyset$ for each $i = 0, \ldots n$. We may assume that $W_0 = V_0$ and $W_n = V$. Then for each $i, W_i \in \mathcal{V}_i$. In particular $V \in \mathcal{V}_n$.

Corollary 8. Let κ be a regular cardinal. Then any connected and finally κ -metacompact space which is locally of density $< \kappa$ is finally κ -compact.

In particular every connected, locally separable, metaLindelöf space is Lindelöf. We also obtain:

Corollary 9. Let κ be a regular cardinal and λ any cardinal. Every connected, $[\kappa, \lambda]$ -metacompact space of density $< \kappa$ is $[\kappa, \lambda]$ -compact. Proof. Suppose that X is a connected, $[\kappa, \lambda]$ -metacompact space of density $< \kappa$ and let \mathcal{U} be an open cover of X with $|\mathcal{U}| = \lambda$. Let \mathcal{V} be an open refinement of \mathcal{U} such that $\operatorname{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$. As an open subset of a space of density $< \kappa$, each member of \mathcal{V} has density $< \kappa$. By Lemma 7, $|\mathcal{V}| < \kappa$ and hence \mathcal{U} has a subcover of cardinality less than κ . \Box

Let X be a topological space and A a non-empty subset of X. A point $x \in X$ is a *point of complete accumulation* of A if and only if for every neighbourhood N of x we have $|A \cap N| = |A|$.

Proposition 10. [2, page 17] and [13, Theorem 1] Let κ be a regular cardinal. A space X is $[\kappa, \kappa]$ -compact if and only if every $A \subset X$ such that $|A| = \kappa$ has a point of complete accumulation.

Proposition 11. Let κ be a regular cardinal. Let X be a space which is not hereditarily finally κ -compact. Then there is a subspace $Y \subset X$ such that $|Y| = \kappa$ and that no subset $Z \subset Y$ of cardinality κ is finally κ -compact.

Proof. (cf [11, Theorem 3.1]). Because X is not hereditarily finally κ -compact there is a strictly increasing sequence $\langle U_{\alpha} \rangle_{\alpha < \kappa}$ of open sets. For each $\alpha < \kappa$ choose $y_{\alpha} \in U_{\alpha+1} - U_{\alpha}$ and set $Y = \{y_{\alpha} \mid \alpha < \kappa\}.$

The following result generalises [1, theorem 4.1]. The proof may be obtained by appropriate generalisation of the proof of that result using Propositions 10 and 11.

Proposition 12. Let κ be a regular cardinal. Every locally hereditarily finally κ -compact, $[\kappa, \kappa]$ -compact space is hereditarily finally κ -compact.

Theorem 13. Let κ be a regular cardinal. Suppose that X is a space which is of character $< \kappa$, is locally connected, locally hereditarily finally κ -compact and locally hereditarily of density $< \kappa$. If X is $[\kappa, \kappa]$ -metacompact then X is the topological direct sum of finally κ -compact spaces. *Proof.* As X is locally connected, every component is open so by looking at each component separately if necessary we may assume that X is connected also. We construct a strongly increasing κ -sequence $\langle V_{\alpha} \rangle$ of non-empty, connected, open and finally κ -compact subsets of X.

Because X is locally connected and locally hereditarily finally κ -compact we may begin by choosing any non-empty, connected, open, finally κ -compact subset $V_0 \subset X$. For any other limit ordinal α , if V_{β} has already been constructed for all $\beta < \alpha$, let $V_{\alpha} = \bigcup_{\beta < \alpha} V_{\beta}$.

Suppose that V_{α} has been constructed. Because V_{α} is finally κ -compact it also has a dense subset of cardinality $< \kappa$. Thus \bar{V}_{α} has a dense subset of cardinality $< \kappa$. \bar{V}_{α} is also connected as V_{α} is. Furthermore, as a closed subset of a $[\kappa, \kappa]$ -metacompact space \bar{V}_{α} is also $[\kappa, \kappa]$ -metacompact. Thus by Corollary 9 \bar{V}_{α} is $[\kappa, \kappa]$ -compact. It now follows from Proposition 12 that \bar{V}_{α} is finally κ -compact. For each $x \in \bar{V}_{\alpha} - V_{\alpha}$ choose $U_x \subset X$ open and finally κ -compact such that $x \in U_x$. Then $\{U_x \mid x \in \bar{V}_{\alpha} - V_{\alpha}\}$ is an open cover of the finally κ -compact subset $\bar{V}_{\alpha} - V_{\alpha}$ so has a subcover together with V_{α} is a collection consisting of this subcover together with V_{α} is a collection of fewer than κ many open finally κ -compact and contains \bar{V}_{α} . Let $V_{\alpha+1}$ be the component of this union containing V_{α} .

Suppose that \mathcal{U} is an open cover of X. Then for each $\alpha < \kappa, \mathcal{U}$ is also an open cover of the finally κ -compact set V_{α} : let \mathcal{U}_{α} be a subcover of cardinality $< \kappa$. Then $\bigcup_{\alpha < \kappa} \mathcal{U}_{\alpha}$ is a subfamily of \mathcal{U} of cardinality at most κ which covers $\bigcup_{\alpha < \kappa} V_{\alpha}$, hence the connected space X, by Lemma 6 because this union is non-empty, open and closed. As X is $[\kappa, \kappa]$ -metacompact it follows that this subfamily has an open refinement whose order at each point is less than κ and hence so does \mathcal{U} . Now it follows from Corollary 8 that X is finally κ -compact.

180

Remark. The three local properties 'of character $< \kappa$, locally hereditarily finally κ -compact and locally hereditarily of density $< \kappa$ ' of Theorem 13 are all implied by the single local property: locally of weight $< \kappa$. In the case where $\kappa = \omega_1$ these four properties are, respectively, first countable, locally hereditarily Lindelöf, locally hereditarily separable and locally second countable and in this case, Theorem 13 gives:

Corollary 14. Every connected, locally connected, locally second countable, ω_1 -metaLindelöf space is Lindelöf.

This corollary has an obvious generalisation to higher regular cardinal κ in place of ω_1 .

Proposition 15. (cf [1]) Every linearly ω_1 -(meta)Lindelöf space is ω_1 -(meta)Lindelöf.

Proof. We will just consider the metaLindelöf case. Let \mathcal{U} be an open cover of the linearly ω_1 -metaLindelöf space X such that $|\mathcal{U}| = \omega_1$. Then we can write $\mathcal{U} = \{U_\alpha \mid \alpha < \omega_1\}$. For each $\alpha < \omega_1$ let $V_\alpha = \bigcup \{U_\beta \mid \beta < \alpha\}$. Then $\mathcal{V} = \{V_\alpha \mid \alpha < \omega_1\}$ is an open cover of X which is a chain. Thus as X is linearly ω_1 -metaLindelöf it follows that there is a point-countable open refinement, say \mathcal{W} .

For each $W \in \mathcal{W}$ there is $\alpha(W) < \omega_1$ such that $W \subset V_{\alpha(W)}$. Let $\mathcal{S} = \{W \cap U_\beta \mid W \in \mathcal{W} \text{ and } \beta \leq \alpha(W)\}$. Then \mathcal{S} is a point-countable open refinement of \mathcal{U} .

Proof of the equivalence of (a) and (b) of Theorem 5

As every metrisable space is paracompact, it is also nearly linearly ω_1 -metaLindelöf so (a) \Rightarrow (b) in Theorem 5. For the converse, suppose that M is a nearly linearly ω_1 -metaLindelöf manifold. Clearly one can modify the proof of [5, Lemma 3.2] to conclude that M is linearly ω_1 -metaLindelöf. As every manifold is T₃, connected, locally connected and locally second countable, it follows from Corollary 14 and Proposition 15 that Mis Lindelöf, hence second countable and therefore metrisable by Urysohn's Metrisation Theorem. \Box

3. Spaces with Property pp

Lemma 16. A point $x \in X$ is a limit point of X if and only if for each collection \mathcal{V} of open sets containing x, with $|\mathcal{V}| \geq \chi(x, X)$, there exists a choice function $f : \mathcal{V} \to X$, such that $x \in \overline{f(\mathcal{V})} - f(\mathcal{V})$.

Proof. \Rightarrow : Suppose that \mathcal{V} is a collection of open sets containing x with $|\mathcal{V}| \geq \chi(x, X)$, say $\{V_{\alpha} \mid \alpha < \chi(x, X)\} \subset \mathcal{V}$ satisfies $V_{\alpha} \neq V_{\beta}$ whenever $\alpha \neq \beta$. Let $\{W_{\alpha} \mid \alpha < \chi(x, X)\}$ be a neighbourhood basis at x. Then we may define $f: \mathcal{V} \to X$ so that $f(\mathcal{V}) \in \mathcal{V} - \{x\}$ if $\mathcal{V} \neq V_{\alpha}$ for any $\alpha < \chi(x, X)$ and $f(V_{\alpha}) \in V_{\alpha} \cap W_{\alpha} - \{x\}$. Then $x \in \overline{f(\mathcal{V})} - f(\mathcal{V})$.

 \Leftarrow : Let U be any neighbourhood of x and take \mathcal{V} to be a collection of open neighbourhods of x forming a neighbourhood basis at x. Then $|\mathcal{V}| \geq \chi(x, X)$. Let $f : \mathcal{V} \to X$ be a choice function such that $x \in \overline{f(\mathcal{V})} - f(\mathcal{V})$. Then $f(U) \in U - \{x\}$, so x is a limit point of X. \Box

Lemma 17. Let \mathcal{V} be an open cover of a T_1 space X. Then the following are equivalent:

- (a) For every choice function $f : \mathcal{V} \to X$, the set $f(\mathcal{V})$ is closed and discrete;
- (b) For every choice function $f: \mathcal{V} \to X$, the set $f(\mathcal{V})$ is closed;
- (c) For every choice function $f : \mathcal{V} \to X$, the set $f(\mathcal{V})$ is discrete.

Proof. It suffices to show that (b) and (c) are equivalent.

(b) \Rightarrow (c). Suppose that $f: \mathcal{V} \to X$ is a choice function but $f(\mathcal{V})$ is not discrete. Then there is $x \in f(\mathcal{V})$ every neighbourhood of which meets $f(\mathcal{V})$ in some point other than x. Define $g: \mathcal{V} \to X$ by $g(V) = \underline{f(V)}$ if $f(V) \neq x$ and $g(V) \in V - \{x\}$ if f(V) = x. Then $x \in \underline{g(V)} - g(\mathcal{V})$ so $g(\mathcal{V})$ is not closed. (c) \Rightarrow (b). Suppose that $f: \mathcal{V} \to X$ is a choice function but $f(\mathcal{V})$ is not closed, say $x \in \overline{f(\mathcal{V})} - f(\mathcal{V})$. Pick $V_x \in \mathcal{V}$ such that $x \in V_x$. Define $g: \mathcal{V} \to X$ by $g(\mathcal{V}) = f(\mathcal{V})$ unless $\mathcal{V} = V_x$ and let $g(V_x) = x$. Because X is T_1 it follows that every neighbourhood of x meets $g(\mathcal{V})$ in some point other than x so $g(\mathcal{V})$ is not discrete. \Box

Proposition 18. Let κ be a cardinal. Suppose that X has character at most κ and has no isolated points, and that every open cover \mathcal{U} of X with $|\mathcal{U}| = \kappa^+$ has an open refinement \mathcal{V} such that for every choice function $f: \mathcal{V} \to X$ the set $f(\mathcal{V})$ is closed. Then X is $[\kappa^+, \kappa^+]$ -metacompact.

Proof. Let \mathcal{U} be an open cover of X with $|\mathcal{U}| = \kappa^+$. Apply Lemma 16 to the open refinement \mathcal{V} given by hypothesis: then $\operatorname{ord}(x, \mathcal{V}) < \kappa < \kappa^+$ for each $x \in X$.

We can now complete the proof of Theorem 5.

By Lemma 17 (c), (d) and (e) are equivalent. By Proposition 18 with $\kappa = \omega$, (d) implies (b). Finally every metrisable manifold is pp and hence satisfies (c).

4. Some Questions

Are there even weaker covering conditions which are equivalent to metrisability for a manifold?

Using [6, Theorems 1 and 2] (or see [3, Theorem 8.11]) and [9, Theorem 2.5] we find that the following conditions are each equivalent to metrisability for a manifold:

- M is normal and θ -refinable;
- *M* is normal and subparacompact.

Let X be a space.

X is θ -refinable ([14]) (also called submetacompact) if every open cover can be refined to an open θ -cover, i.e. a cover \mathcal{U} which can be expressed as $\bigcup_{n \in \omega} \mathcal{U}_n$ where each \mathcal{U}_n covers X and for each $x \in X$ there is n such that $ord(x, \mathcal{U}_n) < \omega$.

182

X is subparacompact, [8] (where it is called F_{σ} -screenable), if every open cover has a σ -discrete closed refinement.

Our theme suggests the following definition.

Definition 19. Say that X is ω_1 - θ -refinable if every open cover \mathcal{U} of X with $|\mathcal{U}| = \omega_1$ has a θ -refinement.

Question 20. Is every ω_1 - θ -refinable manifold θ -refinable?

Question 21. Must a manifold be metrisable if it is normal and every open cover of cardinality at most ω_1 has an open θ -refinement?

Question 22. Must a manifold be metrisable if it is normal and every open cover of cardinality at most ω_1 has a σ -discrete closed refinement?

Comparing Corollary 8 with Corollary 9 leads to the following question.

Question 23. Let κ be a regular cardinal. Must every connected and $[\kappa, \kappa]$ -metacompact space which is locally of density $< \kappa$ be $[\kappa, \kappa]$ -compact?

Note that in Proposition 18 we have only concluded that X is $[\kappa^+, \kappa^+]$ -metacompact rather than $[\kappa, \kappa^+]$ -metacompact even though the open cover of size κ^+ has been refined to an open cover of order less than κ : we did not carry out a similar reduction of an open cover of cardinality κ because we did not need to. This raises the following question.

Question 24. Is there a space X with character at most κ and having no isolated points such that every open cover of size κ^+ has an open refinement \mathcal{V} whose order at each point is less than κ but X is not $[\kappa, \kappa^+]$ -metacompact?

Acknowledgement. The authors thank the referee for a number of suggestions which have improved the exposition of this paper.

References

- A V Arhangel'skii and R Z Buzyakova, On some properties of linearly Lindelöf spaces, Topology Proceedings, 23(Summer 1998), 1-11.
- [2] P Alexandrov and P Urysohn, Memoire sur les Espaces Topologiques Compacts, Verh. Kon. Akad. van Weten. te Amsterdam, 14(1929), 1-96.
- [3] Dennis K Burke, Covering Properties, in K Kunen and J Vaughan, eds, "Handbook of Set-Theoretic Topology" (Elsevier, 1984), 347-422.
- [4] David Gauld, *Metrisability of Manifolds*, (to appear).
- [5] David Gauld, Covering properties and Metrisation of Manifolds, Topology Proceedings, 23(Summer 1998), 127-141.
- [6] Gary Gruenhage, Paracompactness in Normal, Locally Connected, Locally Compact Spaces, Topology Proceedings, 4(1979), 393-405.
- [7] M V Matveev, Some Questions on Property (a), Q & A in General Topology, 15(1997), 103-111.
- [8] L F McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc., 9(1958), 796-799.
- [9] Peter Nyikos, The Theory of Nonmetrizable Manifolds, in K Kunen and J Vaughan, eds, "Handbook of Set-Theoretic Topology" (Elsevier, 1984), 633-684.
- [10] Judith Roitman, Introduction to Modern Set Theory, Wiley-Interscience (1990).
- [11] Judy Roitman, Basic S and L, in K Kunen and J Vaughan, eds, "Handbook of Set-Theoretic Topology" (Elsevier, 1984), 295-326.
- [12] R M Stephenson Jr, Initially κ-compact and related spaces, in K Kunen and J Vaughan, eds, "Handbook of Set-Theoretic Topology" (Elsevier, 1984), 603-632.

184

- [13] J E Vaughan, Some Recent Results in the Theory of [a, b]-Compactness, in R A Alò, R W Heath and J Nagata, eds, "TOPO 72 - General Topology and its Applications", Springer Lecture Notes in Mathematics **378**(1974), 534-550.
- [14] J M Worrell Jr and H H Wicke, Characterizations of developable spaces, Canad. J. Math., 17(1965), 820-830.

The Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland, New Zealand

E-mail address: gauld@math.auckland.ac.nz

E-mail address: vamanamu@math.auckland.ac.nz