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Abstract

After surveying recent work and new techniques
in domain theoretic models of spaces, we intro-
duce a new topological concept called recurrence,
and consider some of its applications to the model
problem.

1. Introduction

To every compact metric space X, we may assign a continuous
dcpo, or domain, by forming the collection UX of all nonempty
closed subsets of X, and then ordering them under reverse in-
clusion. A continuous dcpo is a partially ordered set carrying
intrinsic notions of approximation and completeness. As such, it
also carries an intrinsic topology, known as the Scott topology.
In the case of the upper space UX , as it is called, one finds that
X may be recovered from UX via

X ' maxUX = {{x} : x ∈ X} ⊆ UX

where the topology on maxUX ⊆ UX is the relative Scott
topology inherited from UX . Because of this homeomorphism,
we say that UX is a model of the space X.
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In [4], Abbas Edalat used only this link to the classical world
to define a generalization of the Riemann integral for bounded
functions f : X → R on a compact metric space X. Once it was
observed that X could be represented as the maximal elements
of the continuous dcpo UX , all other details were handled using
domain theory. Naturally, if all we need to do to define an
integral is represent a space in this manner, one wonders about
exactly which spaces have models.

This paper is intended to be entirely self-contained. It is
about the model problem above and it introduces many new
techniques that have been used to make substantial progress on
the question. Among them, we find a little descriptive set the-
ory, the relationship between the Baire property and topological
completeness, one of Choquet’s infamous games, and a new idea,
a rare form of denseness called recurrence.

In the next section, we tell the reader what a domain is and
discuss the Scott topology in detail, pointing out that while it
is only a T0 topology, it still has many properties that may be
taken advantage of. In the next, we consider the model question
and review the work which has been done on it. This leads
to the hierarchy for countably based models: There are four
classes of models, two of them are completely solved, one is well-
understood, and the last, the class of all countably based models,
remains an enigma. However, after introducing recurrence, we
gain a lot of insight about spaces with models, and actually end
up learning something about them in general: They are all Baire
spaces.

2. Background

In this section we review some basic ideas and results that will
be needed throughout the course of this paper.
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2.1. Domain Theory

2.1.1. Order
The reader unfamiliar with the basics of domain theory will
find [1] valuable. We touch on certain basic aspects which are
not quoted very often.

Definition 2.1. A partially ordered set (P,v) is a set P to-
gether with a binary relation v ⊆ P 2 which is

(i) reflexive: ( ∀x ∈ P ) x v x,

(ii) antisymmetric: ( ∀x, y ∈ P ) x v y & y v x ⇒ x = y, and

(iii) transitive: ( ∀x, y, z ∈ P ) x v y & y v z ⇒ x v z.

We refer to partially ordered sets as posets.

Definition 2.2. A least element in a poset (P,v) is an element
⊥ ∈ P such that ⊥ v x for all x ∈ P . Such an element is unique
and is called a bottom element. An element x ∈ P is maximal
if (∀y ∈ P ) x v y ⇒ x = y. The set of maximal elements in a
poset is written maxP . Similarly, one has the notions of greatest
element and minimal element.

Definition 2.3. Let (P,v) be a poset. A nonempty subset S ⊆
P is directed if (∀x, y ∈ S)(∃z ∈ S) x, y v z. The supremum of
a subset S ⊆ P is the least of all its upper bounds provided it
exists. This is written

⊔
S.

A poset (P,v) is abbreviated to P , just as in topology, where
one writes X for the topological space (X, τ ).

Definition 2.4. In a poset (P,v), a � x iff for all directed
subsets S ⊆ P which have a supremum,

x v
⊔

S ⇒ (∃s ∈ S) a v s.

We say that a is an approximation of x whenever a � x. The
set of all approximations of x is written ↓↓x. An element x ∈ P
is compact if x � x. The set of compact elements in a poset P
is written K(P ).
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Definition 2.5. A poset P is continuous if ↓↓x is directed with
supremum x for all x ∈ P .

It is usually easier to find a basis for a poset.

Definition 2.6. A subset B of a poset P is a basis for P if
B ∩ ↓↓x contains a directed subset with supremum x, for each
x ∈ P .

Lemma 2.7. A poset is continuous iff it has a basis.

Definition 2.8. A poset is algebraic if its compact elements
form a basis. A poset is ω-continuous if it has a countable basis.

Continuity provides a definite notion of approximation for posets.

Proposition 2.9 (Zhang [24]). Continuous posets have the in-
terpolation property: x � y ⇒ (∃z) x � z � y.

A useful form of completeness is offered by a dcpo.

Definition 2.10. A poset is a dcpo if every directed subset has
a supremum.

Domains possess both approximation and completeness.

Definition 2.11. A domain is a continuous poset which is also
a dcpo. A domain is also called a continuous dcpo.

2.1.2. The Topological Aspect
One of the interesting things about a domain is that its order-
theoretic structure is rich enough to support the derivation of
intrinsically defined topologies. The most important of these is
the Scott topology.
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Definition 2.12. A subset U of a poset P is Scott open if

(i) U is an upper set: x ∈ U & x v y ⇒ y ∈ U , and

(ii) U is inaccessible by directed suprema: For every directed
S ⊆ P which has a supremum,

⊔
S ∈ U ⇒ S ∩ U 6= ∅.

The collection of all Scott open sets on P is called the Scott
topology. It is denoted σP .

Proposition 2.13 (Zhang [24]). The collection { ↑↑x : x ∈ P }
is a basis for the Scott topology on a continuous poset P .

Unless explicitly stated otherwise, all topological statements
about posets are made with respect to the Scott topology.

Proposition 2.14. A function f : P → Q between posets is
continuous iff

(i) f is monotone: x v y ⇒ f(x) v f(y).

(ii) f preserves directed suprema: For every directed S ⊆ P
which has a supremum,

⊔
f(S) exists & f (

⊔
S ) =

⊔
f (S ).

Definition 2.15. The Lawson topology on a continuous poset
P has as a basis all sets of the form ↑↑x \ ↑F where x ∈ P and
F ⊆ P is finite.

Proposition 2.16 (Jung [14]). The Lawson topology on a con-
tinuous dcpo is compact iff it is Scott compact and the intersec-
tion of any two Scott compact upper sets is Scott compact.

Definition 2.17. A Scott domain is a continuous dcpo with
least element ⊥ in which each pair of elements bounded from
above has a supremum.
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Notice that we have not required Scott domains to be ω-algebraic.

Proposition 2.18. Every Scott domain has compact Lawson
topology.

Domains with compact Lawson topology have a property that
will interest us later on.

Proposition 2.19. If D is a domain with compact Lawson topol-
ogy, then the relative Scott and Lawson topologies on maxD
agree.

2.2. Topology

We review topological ideas that have proven to be indispensable
in the study of models.

2.2.1. Locally Compact Sober Spaces
The standard reference on locally compact sober spaces is [13].

Definition 2.20. A subset of a space is compact if each of its
open covers has a finite subcover.

Definition 2.21. A topological space X is locally compact if it
has a basis of compact neighborhoods, that is, given a point
x ∈ X and an open set U ⊆ X containing x, there is a compact
set K ⊆ X and an open set V ⊆ X such that x ∈ V ⊆ K ⊆ U.

Definition 2.22. The saturation of a set K in a topological
space X is

sat K =
⋂

{U : K ⊆ Uopen}.

A subset K ⊆ X is saturated if K = sat K, that is, if it is the
intersection of all open sets containing it.

All sets in a T1 space are saturated. On the other hand, the
saturated subsets of a poset with its Scott topology are merely
the upper sets.
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Lemma 2.23. Let X be a topological space and K ⊆ X. Then

(i) The set sat K is saturated.

(ii) The set K is compact iff sat K is compact.

Corollary 2.24. A locally compact space has a basis of compact
saturated neighborhoods.

Locally compact spaces on their own are difficult to understand.

Definition 2.25. A closed subset of a space is irreducible if it
is nonempty and cannot be written as the union of two closed
proper subsets. A T0 space is sober if every irreducible closed
set is the closure of a unique point.

Domains topologically are locally compact sober spaces [1].

Theorem 2.26. The Scott topology on a continuous dcpo is lo-
cally compact and sober.

More generally, the Scott topology on a continuous poset is lo-
cally compact, in which case sobriety can then be viewed as a
form of completeness.

Proposition 2.27 (Zhang [24]). A continuous poset is a dcpo
iff its Scott topology is sober.

However, outside the realm of locally compact spaces, sobriety is
probably best understood as being an appropriate substitute for
the Hausdorff axiom. This is clearly illustrated by the Hofmann-
Mislove theorem.

Theorem 2.28 (Hofmann-Mislove [13]). In a sober space, the
class of nonempty compact saturated sets is closed under filtered
intersections.
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As every Hausdorff space is sober and all sets in a T1 space are
saturated, an easy corollary of Theorem 2.28 is that the filtered
intersection of nonempty compact sets in a Hausdorff space is
nonempty and compact. And so we see that sobriety is a useful
generalization of the Hausdorff axiom.

Anyone familiar with locally compact sober spaces knows the
value of the Hofmann-Mislove theorem. However, for all of its
popularity, one of its most basic implications was missed until
very recently: It asserts the topological completeness of locally
compact sober spaces.

2.2.2. The Choquet Phenomenon
One of Choquet’s original motivations for introducing the spaces
we call Choquet complete (called strong Choquet in [15]) was to
provide an elegant and unified approach to the classical Baire
category arguments of analysis. Despite the success of the idea,
it remains largely unknown to many. The Choquet phenomenon
is this: Not only are the Baire spaces of analysis Choquet com-
plete, but so too are the non-Hausdorff spaces of theoretical
computer science, i.e., domains in their Scott topology.

Definition 2.29. Let (X, τ ) be a space and τ∗ = {(U, x) : x ∈
U ∈ τ}. (X, τ ) is Choquet complete if there is a sequence (an)n≥1

of functions
an : τn

∗ → τ

such that
(i) For each ((U1, x1), · · · , (Un, xn)) ∈ dom(an),

xn ∈ an((U1, x1), · · · , (Un, xn)) ⊆ Un,

and

(ii) For any sequence (Vn, xn) in τ∗ with Vn+1 ⊆ an((V1, x1), · · · ,
(Vn, xn)), for all n ≥ 1, we have

⋂

n≥1

Vn 6= ∅.
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By definition, the function an maps nonempty open sets to
nonempty open sets. Choquet complete spaces possess abstract
notions of the two fundamentals of computation: (i) approxima-
tion and (ii) completeness.

Theorem 2.30. We have the following standard facts:

(i) A Choquet complete space is Baire.

(ii) A locally compact Hausdorff space is Choquet complete.

(iii) A metric space is Choquet complete iff it is completely metriz-
able.

(iv) A Gδ subset of a Choquet complete space is Choquet com-
plete.

A proof of (iv) appears in [9], while the others are all due to
Choquet [2]. Interestingly, Choquet’s completeness includes the
most well-known form of completeness in topology.

Corollary 2.31. Every Čech-complete space is Choquet com-
plete.

Proof. A Čech-complete space is a Gδ subset of a compact Haus-
dorff space. The result now follows by applying Prop. 2.30(ii)
and then Prop. 2.30(iv). 2

Notice, however, that while Čech-completeness requires spaces
to be Tychonoff, Choquet completeness allows for the possibility
of no separation whatsoever. The importance of this is made
certain by the next result, a straightforward generalization of
one first given in [21].
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Theorem 2.32. Every locally compact sober space is Choquet
complete.

Proof. Let (X, τ ) be locally compact sober. Define the approxi-
mation scheme

a : {(U, x) : x ∈ U ∈ τ} → τ

as follows: Given an open set U and a point x ∈ U , use Corol-
lary 2.24 to choose an open set V and a compact saturated set
K such that

x ∈ V ⊆ K ⊆ U.

Then set a(U, x) = V . In this way, we know that for all (U, x) ∈
dom(a), there is a compact saturated set K with x ∈ a(U, x) ⊆
K ⊆ U.

Finally, given elements (Un, xn) ∈ dom(a) with Un+1 ⊆
a(Un, xn) ⊆ Un, for all n ≥ 1, we immediately obtain a decreas-
ing sequence of nonempty compact saturated sets (Kn) with

⋂

n≥1

Un =
⋂

n≥1

Kn.

But this intersection is nonempty by the Hofmann-Mislove the-
orem.

Setting an((U1, x1), · · · , (Un, xn)) = a(Un, xn) finishes the
proof. 2

The last result gives a new and simple proof of the following.

Corollary 2.33. A locally compact sober space is Baire.

Proof. All Choquet complete spaces are Baire. 2

We have several times now informally referred to domains as be-
ing “complete.” The attentive reader will have noticed that until
now this statement has been without topological justification.



NONCLASSICAL TECHNIQUES FOR MODELS OF ... 385

Corollary 2.34. The Scott topology on a continuous dcpo is
Choquet complete.

Proof. A continuous dcpo in its Scott topology is a locally com-
pact sober space. 2

Thus, complete metric spaces, locally compact Hausdorff spaces
and domains in their Scott topology all possess the same notion
of topological completeness.

2.2.3. The Baire Property
Another topological idea whose importance in domain theory
has been undervalued is the Baire property: A space is Baire if
the intersection of countably many open dense sets is dense.

Definition 2.35. A space is completely Baire if all of its closed
subsets are Baire.

The terminology “completely Baire” is from Kechris [15]. In [10],
they are called Baire spaces in the strong sense, where a proof
of the following may be found.

Proposition 2.36. If X is a completely Baire space, then every
Gδ subset of X is completely Baire.

The relevance to domains is as follows.

Proposition 2.37. A locally compact sober space is completely
Baire.

Proof. If C is a closed subset of a locally compact sober space
X, then C is locally compact and sober in its relative topology,
as each of these properties are hereditary for closed sets. But
then C is Baire by Corollary 2.33. 2

In fact, sometimes the topological completeness of a second
countable space is equivalent to its being completely Baire, pro-
vided one carries a weak additional assumption (like local com-
pactness, for example).
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Theorem 2.38 (Hofmann [12]). For a second countable, locally
compact space X, the following are equivalent:

(i) The space X is sober.

(ii) Every closed subset of X is Baire.

Here is another example from descriptive set theory that we will
have the opportunity to use later.

Definition 2.39. A space is analytic if it is separable, metriz-
able and is the continuous image of a Polish space.

For example, if (X, τ1) is a separable metric space, and there is
a Polish topology τ2 on X such that τ1 ⊆ τ2, then (X, τ1) is an
analytic space.

Theorem 2.40 (Σ1
1 Determinacy [15]). An analytic space is Pol-

ish iff all of its closed subsets are Baire.

The notation “Σ1
1 Determinacy,” a convention borrowed from [15],

means that the last result depends on the assumption of ana-
lytic determinacy, the principle that all analytic games on N are
determined.

3. Models of Spaces

We review the notion of a model in domain theory, consider the
classical examples, and discuss the major results in the area.

3.1. The Definition of Model

The purpose of a model is to isolate a topological space within
a domain in a useful way.

Definition 3.1. A model of a space X is a continuous dcpo D
together with a homeomorphism

φ : X → maxD

where maxD carries its relative Scott topology inherited from
D.
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Here are some examples.

Example 3.2. A model of the real line. The collection of com-
pact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] v [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo. The supremum of a directed set S ⊆
IR is

⋂
S, while the approximation relation is characterized by

I � J ⇔ J ⊆ int(I). A countable basis for IR is given by
{[p, q] : p, q ∈ Q & p ≤ q}.

The domain IR is called the interval domain and it is a model
of the real line since max IR = {[x] : x ∈ R} ' R.

There is also an elegant model of the irrationals using partial
mappings on the naturals.

Definition 3.3. A partial function f : X ⇀ Y between sets X
and Y is a function f : A → Y defined on a subset A ⊆ X. We
write dom f = A for the domain of a partial map f : X ⇀ Y .

Example 3.4. A model of the irrationals. The set of partial
mappings on the naturals

[N ⇀ N] = { f | f : N ⇀ N is a partial map }

becomes an ω-algebraic dcpo when ordered by extension

f v g ⇔ dom f ⊆ dom g & f = g on dom f.

The supremum of a directed set S ⊆ [N ⇀ N] is
⋃

S, under
the view that functions are certain subsets of N × N, while the
approximation relation is

f � g ⇔ f v g & dom f is finite.
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The maximal elements of [N ⇀ N] are the total functions, that
is, those functions f with dom f = N.

It is easy to see that as a space in its relative Scott topology
we have

max [N ⇀ N] ' NN

where N has the discrete topology. Of course, NN ' R \ Q, so
we have a model of the irrationals.

Example 3.5. A model of the Cantor set. The collection of
functions

Σ∞ = { s | s : {1, . . . , n} → {0, 1}, 0 ≤ n ≤ ∞ }

is also an ω-algebraic dcpo under the extension order

s v t ⇔ |s| ≤ |t| & ( ∀ 1 ≤ i ≤ |s| ) s(i) = t(i),

where |s| is written for the cardinality of dom s. The supre-
mum of a directed set S ⊆ Σ∞ is

⋃
S, while the approximation

relation is

s � t ⇔ s v t & |s| < ∞.

The extension order in this special case is usually called the
prefix order. The elements s ∈ Σ∞ are called strings over {0, 1}.
The quantity |s| is called the length of a string s. The empty
string ε is the unique string with length zero. It is the least
element ⊥ of Σ∞.

We call Σ∞ the Cantor set model since maxΣ∞ = {s : |s| =
∞} is homeomorphic to the Cantor set.

Example 3.6. A model for locally compact Hausdorff spaces.
If X is a locally compact Hausdorff space, its upper space

UX = {∅ 6= K ⊆ X : K is compact}

ordered under reverse inclusion

A v B ⇔ B ⊆ A
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is a continuous dcpo. The supremum of a directed set S ⊆ UX
is

⋂
S and the approximation relation is A � B ⇔ B ⊆ int(A).

The upper space is a model of X because maxUX = {{x} : x ∈
X} ' X.

Example 3.7. A model for complete metric spaces. Given a
metric space (X, d), the formal ball model [5]

BX = X × [0,∞)

is a poset when ordered via

(x, r) v (y, s) ⇔ d(x, y) ≤ r − s.

The approximation relation is characterized by

(x, r) � (y, s) ⇔ d(x, y) < r − s.

The poset BX is continuous. However, BX is a dcpo iff the
metric d is complete. In addition, BX has a countable basis iff
X is a separable metric space. Finally, maxBX = {(x, 0) : x ∈
X} ' X, so BX is a model of X.

A conceptually simpler model of complete metric spaces is given
in [21]. However, we have listed the formal ball model here
because of its elegance.

From these examples, we see that the spaces of interest in
mathematics, classically speaking, all have models. The model
question in domain theory calls for the characterization of pre-
cisely those spaces which possess a model.

3.2. Countably Based Models

The Scott topology on a continuous dcpo D is second countable
iff D is ω-continuous [8].

Definition 3.8. A countably based model of a space X is a
model

(D,φ : X ' maxD)

in which the continuous dcpo D is ω-continuous.
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Lawson proved that a certain subset of countably based models
capture exactly the Polish spaces.

Theorem 3.9 (Lawson [17]). For a topological space X, the fol-
lowing are equivalent:

(i) The space X is Polish.

(ii) There is an ω-continuous dcpo D whose relative Scott and
Lawson topologies on maxD agree such that X ' maxD.

In [18], the author asked whether or not every Polish space had
a model by a Scott domain. The reason was that earlier Flagg
and Kopperman [7] had proven it for zero-dimensional Polish
spaces.

Theorem 3.10 (Ciesielski, Flagg & Kopperman [3]). Every Pol-
ish space is homeomorphic to the maximal elements of an
ω-continuous Scott domain.

The converse, in view of Prop. 2.19, follows from Lawson’s the-
orem. Finally, we confront the real issue at hand: Which metric
spaces have countably based models?

Theorem 3.11 (Martin [21]). The maximal elements of an
ω-continuous dcpo are regular iff Polish.

As the formal ball model BX provides a countably based model
for any Polish space X, we arrive at the following.

Corollary 3.12. A regular space has a countably based model
iff it is Polish.

In addition, Lawson’s theorem is now a trivial consequence of
the proof of the last corollary: If the relative Scott and Lawson
topologies on maxD agree, then maxD is regular in its rela-
tive Scott topology. But more importantly, we learn something
about the nature of countably based domains in general.
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Corollary 3.13. There is no countably based model of the ra-
tionals.

There is a simpler way to explain our inability to model the
rationals that we will see later. Perhaps a better example of
a space without a countably based model, one for which Theo-
rem 3.11 must be used, is given by a subset of the real line which
is completely Baire but not Polish ([15], p.161).

3.3. Measurement

The set [0,∞)∗ is the domain of nonnegative reals in their op-
posite order.

Definition 3.14. A Scott continuous map µ : P → [0,∞)∗ on
a continuous poset P induces the Scott topology near X ⊆ P iff
for all x ∈ X, if (xn) is a sequence in ↓↓x with limµxn = µx,
then (xn) is directed with supremum x.

If µ : P → [0,∞)∗ is a function, its kernel is kerµ =
{x ∈ P : µx = 0}.

Definition 3.15. A Scott continuous map µ : P → [0,∞)∗ on
a continuous poset P is called a measurement if it induces the
Scott topology near its kernel.

Knowing that µ is a measurement ensures that computational
observations made using µ are reliable. For instance, Defini-
tion 3.14 says that if we observe that a sequence (xn) of ap-
proximations calculate x, then they actually do calculate x. For
much more on this, see [19] and [20].

Example 3.16. Domains and their standard measurements.

(i) (IR, µ) the interval domain with the length measurement
µ[a, b] = b − a.
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(ii) ([N ⇀ N], µ) the partial functions on the naturals with

µf = |dom f |

where | · | : Pω → [0,∞)∗ is the measurement on the alge-
braic lattice Pω given by

|x| = 1 −
∑

n∈x

1

2n+1
.

(iii) (Σ∞, 1/2|·|) the Cantor set model where | · | : Σ∞ → [0,∞)∗

is the length of a string.

(iv) (UX ,diam) the upper space of a locally compact metric
space (X, d) with

diamK = sup{d(x, y) : x, y ∈ K}.

(v) (BX,π) the formal ball model of a complete metric space
(X, d) with π(x, r) = r.

In each example above, we have a measurement µ : D → [0,∞)∗

on a domain with kerµ = maxD.

Proposition 3.17 (Martin [19],[20]). If µ : P → [0,∞)∗ is a
measurement on a continuous poset P , then

(i) The objects in kerµ are maximal elements, that is, kerµ ⊆
maxP.

(ii) The kerµ is a Gδ subset of P in the Scott topology.

Though we only have kerµ ⊆ maxP in general, it can be
shown that there always exists a continuous poset Pµ such that
maxPµ ' kerµ. In addition, if P is a dcpo, so is Pµ. Thus,
studying the topological structure of the kernel of a measure-
ment is related to the model problem.
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Definition 3.18. A sequence of open covers {Un}∞n=0 of a space
X is called a development provided that {St(x,Un) : n ≥ 0} is a
basis at x where

St(x,Un) =
⋃

{A : x ∈ A ∈ Un}.

A space with a development is termed developable.

Theorem 3.19 (Martin & Reed [22]). A space is developable
and T1 iff it is the kernel of a measurement on a continuous
poset.

For the case of a continuous dcpo, see [22]. In addition, one may
capture metric spaces and complete metric spaces using a special
class of measurements called Lebesgue measurements: A space
is metrizable iff it is the kernel of a Lebesgue measurement on a
continuous poset; it is completely metrizable iff it is the kernel
of a Lebesgue measurement on a continuous dcpo [19].

However, the reason for studying Lebesgue measurements has
little to do with topology: They are precisely the measurements
which extend to the convex powerdomain. As one studies com-
putation on a space X using a model D, they study the com-
putation of its compact subsets using the convex powerdomain
CD. Such ideas explain, for example, Edalat and Heckmann’s
treatment of fractals [5].

4. The Hierarchy for Countably Based Models

In the study of countably based models, a natural hierarchy has
emerged:

maxD regular =⇒ maxD measurement =⇒ maxD Gδ =⇒ maxD.

At first glance, all of these implications are obvious except the
first. However, by Theorem 3.11, a regular space with a count-
ably based model is Polish, and by Example 3.16(v), a Polish
space X can be modelled with the formal ball model (BX,π)
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as X ' kerπ = maxBX. Thus, a Polish space is the kernel of
a measurement on a countably based domain, and so the first
implication holds.

Then our real question must be this: Why is Theorem 3.11
true? First, an observation long overdue.

Proposition 4.1. For a metric space X, the following are equiv-
alent:

(i) X is completely metrizable.

(ii) X is a Gδ subset of a locally compact sober space.

(iii) X is a Gδ subset of a continuous dcpo.

(iv) X is a Gδ subset of its metric completion X̂.

(v) X is a Gδ subset of a compact Hausdorff space.

Proof. We need only establish the equivalence of (i), (ii) and
(iii). See the masterful text by Engelking [6] for the others.

(i) ⇒ (iii): Example 3.16(v) gives a model (BX,π) of a com-
plete metric space X with X ' kerπ = maxBX. As the kernel
of a measurement, X ' maxBX is a Gδ subset of the continuous
dcpo BX.

(iii) ⇒ (ii): A continuous dcpo is both locally compact and
sober in its Scott topology by Theorem 2.26.

(ii) ⇒ (i): A locally compact sober space is Choquet complete
by Theorem 2.32, and since Choquet completeness is inherited
by Gδ sets (Theorem 2.30(iv)), such a metric space must be
Choquet complete and hence completely metrizable by Theo-
rem 2.30(iii). 2

Thus, to prove Theorem 3.11, we need only show that maxD is
a Gδ subset of D when maxD is regular. And in fact, this is
exactly what one can do. But the reason it can be done is an
interesting bit of topological magic worth emphasizing.
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5. Recurrence

Recall that a subset of a space is saturated if it is the intersection
of open sets.

Definition 5.1. A subset of a space is recurrent if it intersects
every nonempty saturated set.

We denote spaces by ∂ and their recurrent subsets by d. The
intuition is that elements in ∂ \ d are partial, while those in d
are total, or ideal.

Recurrence is an extreme form of denseness for which the
Baire property is actually hereditary.

Theorem 5.2. A space is Baire iff all of its recurrent subsets
are Baire.

Proof. Let ∂ be a Baire space with a recurrent subset d. If
{Un ∩ d : n ≥ 1} is a countable collection of open dense subsets
of d, then

{Un : n ≥ 1} is a sequence of open dense subsets of ∂,

as d is a dense subset of ∂. But ∂ is a Baire space, so

⋂

n≥1

Un is a dense subset of ∂.

Now we claim that (
⋂

Un) ∩ d is a dense subset of d. Let U ∩ d
be a nonempty open subset of d. Then U is open in ∂ and so by
the density of

⋂
Un,

U ∩
⋂

n≥1

Un 6= ∅.

But this set is saturated, and so by the recurrence of d,

(U ∩
⋂

n≥1

Un) ∩ d = (
⋂

n≥1

Un ∩ d) ∩ (U ∩ d) 6= ∅.
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Thus, (
⋂

Un) ∩ d is a dense subset of d, which proves that d is
Baire.

The converse is trivial: Every space is a recurrent subset of
itself. 2

Because recurrent sets are dense, we also have that a space is
Baire iff it has a recurrent subset which is Baire. Another sur-
prising aspect is the existence of spaces which have smallest
recurrent sets.

Proposition 5.3. A space ∂ has a smallest recurrent set iff it
has a recurrent set d with sat{x} = {x} for all x ∈ d. In either
case, its smallest recurrent set is

d = {x ∈ ∂ : sat{x} = {x}},

and the relative topology on d is T1.

Proof. (⇒) Let d be the smallest recurrent subset of ∂ and x ∈ d.
To show that sat{x} = {x}, let y ∈ sat{x}. First we prove that
(d \ {x}) ∪ {y} is recurrent.

To this end, let A be a saturated subset of ∂. By the recur-
rence of d, choose z ∈ d∩A. If z 6= x, then ((d\{x})∪{y})∩A 6=
∅. Otherwise, x = z ∈ A. But now we have y ∈ sat{x} and
x ∈ A = sat A, which means

y ∈ sat{y} ⊆ sat{x} ⊆ sat A = A.

Either way, ((d \ {x}) ∪ {y}) ∩ A 6= ∅, for all saturated A ⊆ ∂,
which establishes the recurrence of (d \ {x}) ∪ {y}.

Finally, d is the smallest recurrent set, so x ∈ d ⊆ (d \ {x})∪
{y}, which gives x = y. Thus, sat{x} = {x}, for all x ∈ d.

(⇐) The set ∂+ = {x ∈ ∂ : sat{x} = {x}} is recurrent
because d ⊆ ∂+. Further, it is the smallest recurrent subset of
∂: If S ⊆ ∂ is any recurrent set and x ∈ ∂+, the recurrence of S
implies that S ∩ sat{x} 6= ∅ and hence that x ∈ S. 2
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Corollary 5.4. If ∂ is a T0 space and d ⊆ ∂, then d is the
smallest recurrent subset of ∂ iff it is recurrent and T1 in its
relative topology.

Proof. Let d be a recurrent subset of ∂ which is relatively T1.
By Prop. 5.3, it is enough to prove that sat{x} = {x}, for all
x ∈ d. If x ∈ d and y ∈ sat{x}, the recurrence of d implies that
d ∩ sat{y} 6= ∅. However, sat{y} ⊆ sat{x}, and so

∅ 6= d ∩ sat{y} ⊆ d ∩ sat{x} = {x},

where the equality on the right uses the fact that d is a T1 space.
But then x ∈ sat{y}, revealing that sat{x} = sat{y}. As ∂ is a
T0 space, we must have x = y, which proves sat{x} = {x}, as
desired. 2

Then even the slightest bit of separation makes a recurrent set
canonical.

Corollary 5.5. The only recurrent subset of a T1 space is itself.

But now we definitely need an example of a nontrivial recurrent
set.

Proposition 5.6. The smallest recurrent subset of a dcpo in its
Scott topology is the set of maximal elements.

Proof. In a poset P with its Scott topology, sat A = ↑A, for
A ⊆ P . By Zorn’s lemma, the maximal elements maxD of a
dcpo D are recurrent in the Scott topology. As it clear that
sat{x} = ↑ {x} = {x}, for all x ∈ maxD, they are also the
smallest recurrent subset of D by Prop. 5.3. 2

More generally, the maximal elements of a poset are recurrent
iff they are the smallest recurrent set. This gives the following
example.
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Example 5.7. The formal ball model BX of a metric space
(X, d) is a continuous poset. As a space in its Scott topology,
its smallest recurrent subset is maxBX = {(x, 0) : x ∈ X}.

For a space without a smallest recurrent set, consider the poset
(N,≤) in its Scott topology.

Theorem 5.8. Let ∂ be a second countable space with a smallest
recurrent subset d. If d is regular, then d is a Gδ subset of ∂.

Proof. Take a countable basis B = {Un : n ∈ N} for ∂ and use
it to define a countable index set

I := {(a, b) ∈ B2 : b̄ ∩ d ⊆ a ∩ d} ⊆ B2.

This set is nonempty by the regularity of d, as the closure of b∩d
in d is just b̄∩ d, by basic point set topology. To each (a, b) ∈ I,
we associate an open subset Uab of ∂ given by Uab = (∂ \ b̄) ∪ a.
We shall prove that

d =
⋂

(a,b)∈I

Uab.

As d ⊆ Uab for all (a, b) ∈ I, the inclusion d ⊆
⋂

Uab is trivial.
For the other, let x ∈

⋂
Uab. By the recurrence of d, choose

y ∈ sat{x} ∩ d. We claim that sat{x} ⊆ sat{y}. For if U is an
open set around y, there is (a, b) ∈ I with

y ∈ b̄ ∩ d ⊆ a ∩ d and a ⊆ U,

where we use that B is a basis for ∂, followed by the regularity
of d. Now since y ∈ sat{x} and y ∈ b̄, we must have x ∈ b̄;
otherwise, x ∈ ∂ \ b̄, which contradicts y ∈ sat{x}. But x ∈ Uab

and x ∈ b̄ imply that x ∈ a ⊆ U. Hence, sat{x} ⊆ sat{y}.
But d is the smallest recurrent subset of ∂, and since y ∈ d,

Prop. 5.3 ensures that sat{y} = {y}. Thus, x ∈ sat{x} =
sat{y} = {y}, which leaves us with x = y ∈ d, finishing the
proof. 2
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Traditionally we are taught that in order to prove that a sub-
space Y of a space X is a Gδ subset, we must know that X
is Hausdorff, that Y is dense, and more importantly, that Y is
complete in some sense, usually Čech-complete.

In Theorem 5.8, the larger space ∂ need not be Hausdorff,
the subspace d need not be complete, but we can nevertheless
conclude that d is a Gδ subset of ∂. For example, this implies
that the rationals are a Gδ subset of their formal ball model BQ,
a continuous poset whose Scott topology is not even sober, much
less Hausdorff. Recurrence is a rare form of denseness indeed.

6. Applications

We now apply the techniques discussed previously.

Theorem 6.1 (Lawson [16]). The Lawson topology on an
ω-continuous dcpo is Polish.

Proposition 6.2. Let D be an ω-continuous dcpo. If X ⊆
maxD is a Gδ subset of D, then

(i) X is a second countable, Choquet complete T1 space.

(ii) Every closed subset of X is Baire.

(iii) X is the continuous image of a Polish space.

Proof. (i) Domains are Choquet complete, and Choquet com-
pleteness is hereditary for Gδ sets. (ii) Domains are completely
Baire and this property is inherited by Gδ sets as well.

(iii) Consider X both as a space in its relative Lawson topol-
ogy, Xλ, and as one in its inherited Scott topology, Xσ. The
identity mapping

1 : Xλ → Xσ

is continuous because the Lawson topology contains the Scott
topology. However, the fact that all Scott open sets are Lawson
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open also means that Xλ is a Gδ set in the Lawson topology on
D. But D is Polish in the Lawson topology. Thus, Xλ is Polish,
and so Xσ is the continuous image of a Polish space. 2

Under the assumption of analytic determinacy, we can give a
very different, but interesting, “proof” of Theorem 3.11.

Corollary 6.3 (Σ1
1 Determinacy). The maximal elements of an

ω-continuous dcpo are regular iff Polish.

Proof. Let D be an ω-continuous dcpo with X = maxD. By
Prop 5.6, X is the smallest recurrent subset of a second count-
able space D. In addition, X is regular, so Theorem 5.8 implies
that X is a Gδ set. By Prop. 6.2, X is completely Baire and
the continuous image of a Polish space. However, as a regu-
lar second countable space, it is separable metrizable. Then
it is analytic and completely Baire. By Theorem 2.40, it is
Polish. 2

Our next application is a result about models in general, the
Baire theorem.

Proposition 6.4. The maximal elements of a continuous dcpo
are a Baire space in their relative Scott topology.

Proof. As the Scott topology on a continuous dcpo is Baire, the
maximal elements are a recurrent subset of a Baire space. By
Theorem 5.2 , they are Baire. 2

Corollary 6.5. There is no model of the rationals.

Proof. The rationals are not a Baire space. 2

And now we have a better explanation for the rationals: Not
only do they have no countably based model, they have no model
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period. In addition, the hierarchy for countably based models
improves as follows:

regularity =⇒ measurement =⇒ Gδ =⇒ Baire.

Finally, an application to classical topology: A new way to unify
the Baire theorems of analysis.

Corollary 6.6. All complete metric spaces and all locally com-
pact Hausdorff spaces are Baire.

Proof. A locally compact Hausdorff space X can be modelled
with its upper space UX , while a complete metric space X can
be modelled with its formal ball model BX. By Prop. 6.4, any
space with a model is Baire. 2

7. Closing Remarks

First, we now have several new techniques at our disposal for
studying models of spaces: The relationship between the com-
plete Baire property and topological completeness, that domains
are Choquet complete, and the fact that the maximal elements
form the smallest recurrent subset of a domain. All of these
properties should be regarded as fundamental.

Second, to topologists, the author urges you to take a look at
this area (there are some questions at the end of this paper). The
author is not a topologist, but still the following are very clear:
The questions in this area are interesting, and their solutions
involve new applications of certain classical ideas, applications
of essentially unknown topological ideas (that are often termed
“obscure”), and the introduction of new topological ideas, like
recurrence, which have no classical counterparts.

Finally, to domain theorists, we have seen that in order to
understand the topological structure of max D in its relative
Scott topology, it is sufficient to simply study the Scott topology.
In doing so, we obtain better results with proofs that are far
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simpler. Even in Corollary 6.3, where we explicitly make use of
the Lawson topology, we only do so to express a characteristic of
the Scott topology: The Scott topology has the property that it
may be extended to a Polish one. As the descriptive set theorists
have taught us (Theorem 2.40), this is a subtle but legitimate
topological property.

8. Questions

Please send email to kmartin@comlab.ox.ac.uk immediately if
you know the answer to any of these questions. Also, see
www.math.tulane.edu/̃ martin for much more.

(i) If X is a second countable, Choquet complete T1 space in
which all closed subsets are Baire, is X developable?

(ii) The rationals may not be embedded in a countably based
domain as the set of all maximal elements, though they can
be embedded as a dense subset of the maximals. Can the
rationals be embedded as a closed subset of maxD, for D
ω-continuous?

(iii) Let D be an ω-continuous dcpo. Prove that if maxD is
developable, then there is a measurement µ : D → [0,∞)∗

with kerµ = maxD.

(iv) Let D be an ω-continuous dcpo. Is maxD a Gδ subset of
D with respect to the Scott topology?

(v) If X is a space with a base of countable order, and Y is a Gδ

subset of X, then does Y have a base of countable order?

(vi) Let D be a continuous dcpo. Prove that if maxD is a
regular developable space (Moore space), then maxD is a
Gδ subset of D with respect to the Scott topology.

(vii) Prove that every Čech-complete space has a model by a
Scott domain.
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(viii) If we enlarge the usual topology on the real line, so as to in-
clude sets of the form U∩(R\Q), where U ⊆ R is a union of
open intervals, what is obtained is a second countable Haus-
dorff space RQ that is not regular, but is Choquet complete.
The space RQ cannot be a Gδ subset of a countably based
domain: It contains a closed copy of the rationals.

Does RQ have a countably based model?

(ix) If X ' maxD is a Gδ subset of an ω-continuous dcpo D,
must X be the kernel of a measurement on a countably
based domain? (It is known that the answer is no if D is a
first countable Scott domain.)

(x) Prove Theorem 5.8 without the assumption of regularity.
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