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ON BOOLEAN ALGEBRAS OF MANY-VALUED
MAPPINGS

S.A. Peregudov

Abstract

Two Boolean algebras of many-valued mappings
are examined. Automorphisms relatively which a
free set is an invariant are defined. A number of
notions proves to be in duality. Some results are
applied to topology.

A set-mapping is a many-valued mapping f: X — P(X), where
X is a set, P(X) is the family of all subsets of X, and = ¢ f(x)
for each € X. A subset X' C X is called a
free set relatively f if © ¢ f(y) for each z,y € X'. A set-
mapping f is called Ty — separating (resp. T) — separating)
if for every different points =,y € X there is z € X such that
|f(z) N {z,y}[ =1 (resp. f(z) N {z,y} = {z}).

Denote by F the set of all set-mappings on a set X. Define
binary operations A , V, and an unary operation C' on F by the
formulas

fin fo(z) = fi(z) N fol), f1V fa(z)
= fi(r)U fa(z), Cf(x)
= (X\ {z})\ f(2)

Theorem 1. The algebra (F,V,A\,C) is a complete Boolean

algebra with the null element fx(x) = () and the identity element
fu(x) = X\ {x} for each z € X.
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A proof of the theorem is a simple check of a realization of
axioms of a Boolean algebra, and we omit this step.

Define a mapping ~: F — F by the formula

flz)={y: 2z € f(y)}.

It is evidently that f: X — P(X) and x ¢ f(xz).

Theorem 2. The mapping ~—: F — F is an automorphism of
the Boolean algebra F.

Proof. We have the equality f A g = f A 7. Indeed,

FAglx) ={y:zefrgy}
={y:z e fly)ngly}
={y:z e fy)}n{y: x €9y}

= f(z)Nng(x)
= [Ag(x).

Analogously the equality fV ¢ = f V g is proved. Further,
fal@) =A{y:x € faly)} = 0. Hence f, = fa. Besides f,(z) =
{yrz e fMy)} ={y:z € X\ {y}} = X\ {z}. Thus the
mapping ~: F — F is a homomorphism. But f(z) = {y: = €
f)}y={y: y € f(x)} = f(z). Hence it is a bijection . It follows
that =: F — F is an automorphism. O

Theorem 3. Let X bea set. Let F and ~ : F — F are de fined
as above. Let f € F and let k be a cardinal number. Then the
following assertions are ful filled.

(1) Free sets are invariants of the automorphism —: F — F.

(2) The Ty-separation and injectiveness are dual properties
with respect to the automorphism =~ : F — F.

(3) The Ti-separation and an incomparability (by the set —
theoretic inclusion) are dual properties with respect to the
automorphism™: F — F.
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(4) The statement |f(x)| = k is dual to the statement
Hy e X:x € f(y)} =k relative to —: F — F.

(5) The statement |f(x) N f(y)| < K is dual tothe statement
{z e X:{z,y} C f(2)}| < k relativeto ~: F — F.

Proof. We shall prove assertion (1). Let X’ C X and let X’
is free relatively f. Let z,y € X’ and x # y. Then z ¢ f(y)
and y ¢ f(z). But f(z) = {2: 2 € f(2)} and f(y) = {2:y €
f(2)}. Hence y ¢ f(z) and = ¢ f(y). Consequently X' is a
free set relatively f. We shall now prove assertion (3). Let f is
T)-separating. Then there are z; and zy such that x € f(z1),
v ¢ f(), o ¢ f() and y € f(z2). But F(a) = {u:z € flu)}
and F(y) = {u: y € f()}. Hence € F(z), 22 ¢ F(x), 2 €
f(y) and 21 ¢ f(y). Therefore f(z) and f(y) are incomparable.
Conversely, let f(z) and f(y) are incomparable. Then there are
z1 and zo such that z; € f(z)\ f(y) and z2 € f(y)\ f(z).
But f(z1) = {u: 21 € f(u)} and f(22) = {u: 22 € f(u)}. Hence
v € f(z1) and y & f(21). Alsox & f(22) and y € f(z2). To prove
assertion (4) we note that f(z) = f(z) = {y: € f(y)}. Hence
\f(z)| = [{y: # € f(y)}|. Analogously we can prove assertions
(2) and (5). O

A. Hajnal proved in [1] the following statement:

Theorem 4 [GCH]. Let X be a set, |X| = wat1 and w, be a
regular cardinal number. Then there exists a set-mapping f
such that

(o) |f(x)] = wq for each x € X.

(00) |f(x) N f(y)| < wa for every x,y € X under x # y.

(ooo) The cardinality of each free set relatively f is less
than way1.

In view of Theorem 3 the following theorem is equivalent to
Theorem 4.
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Theorem 5 [GCH]. Let X be a set, |X| = wat1 and w, be a
regular cardinal number. Then there exists a set-mapping f
such that

(x) lye X:z € f(y)}| = wa for each x € X.

(xx) {z € X:{z,y} C f(2)} < wa for every uz,
y € X under x #y.

(x x x) The cardinality of each free set relatively f is less
than way1.

Under [CH] two corresponding assertions are obtained.

Theorem 4+ [CH|. Let X be a set, | X|= wy. Thenthere exists
a set-mapping f such that

(o) |f(x)] =w for each x € X.

(00) |f(x) N f(y)| <w for every x,y € X under x # y.

(o0o) The cardinality of each free set relatively f is less
than w;.

Theorem 5+ [CH|. Let X be a set, | X|= wy. Thenthere exists
a set-mapping f such that

(X)) fye Xz € f(y)} =w for each xz € X.

(xx){z € X:{z,y} C f(2)}| <w for everyz,y € X under

(x x x) The cardinality of each free set relatively f is less
than w;.

Continuum hypothesis is essential for last theorems. Indeed,
assume that properties (o) and (co) of Theorem 4+ are fulfilled.
Under [MA + — CH] by Theorem of M. Wage [3] there exists
an uncountable set B C X such that |B N f(z)| < w for each
r € X. By A-System Lemma there is an uncountable set A C B
such that f(x) N A = F for each x € A, where F is a constant
finite set. Then the set A\ F' is an uncountable set, which is free
relatively f, i.e., property (o o o) is not fulfilled.

In a way analogous to this proof the following more general
statement can be proved.
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Theorem 4* [MA]. Let k be a regular cardinal number such
that w < Kk < 2¥ and let X be a set of the cardinality k. Let f
be a set-mapping on X such that

(o) |f(x)] = w for each x € X.

(00) |f(x) N f(y)| <w for every x,y € X under x # y.

Then there exists a subset of X of the cardinality xk which is
free relatively f.

Formulate the dual statement.

Theorem 5* [MA]. Let k be a regular cardinal number such
that w < Kk < 2¥ and let X be a set of the cardinality k. Let f
be a set-mapping on X such that

(X)) fye X:z € f(y)} =w for each x € X.

(xx){z € X:{z,y} C f(2)}| <w for everyz,y € X under
Then there exists a subset of X of the cardinality k which is
free relatively f.

We consider also the set of all mappings f: X — P(X) with-
out the requirement x ¢ f(z). Denote this set by R. Define
binary operations fV g and f A g by the formulas f V g(z) =
f(z)Ug(z) and fAg(z) = f(x)Ng(x) respectively, and an unary
operation C'f by the formula C f(z) = X \ f(z) on the set R.

Consider a mapping ~: R — R, which is similar to the map-

ping ~: F — F. More exactly, we set f(x) = {y: x € f(y)}.
There are the following analogs of Theorems 1-3.

Theorem 6. The algebra (R,V,A,C) is a complete Boolean
algebra with thenull element fr(x) = 0 and the identity ele-
ment fy(z) = X.

Theorem 7. The mapping ~: R — R is an automorphism of
the Boolean algebra R .

A mapping h: R — F defined by the formula h(f)(z) =
f(z)\ {x} is a homomorphism of Boolean algebras.

The Boolean algebras F and R are isomorphic and their

Stone's space is 3 X, where X is taken with the discrete top-
ology (we concider only in finite X).
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Proof.  First conclusion of the theorem is proved in just the
same way as Theorem 2. Second one is trivial. Let us prove the
last conclusion of the theorem. Consider the function

0, if z# x;
(z,9) —
fo0) {{y}, if z=u.

The function is evidently an atom of R, and it is an atom
of F under z # y. It is obvious that there are no other atoms
of R and F. Hence the Boolean algebras F and R are atomic,
and the cardinalities of the sets of all atoms of F and R coin-
cide and are equal to the cardinality of X. Then by theorem of
Lindenbaum - Tarski [4] the Boolean algebras F, R and P(X)
are isomorphic. Thus, X is Stone’s space of F, R and P(X)
to within a homeomorphism. O

Theorem 8. Let X bea set. Let R and ~: R — R are de fined
as above. Let f € R and let k be a cardinal number. Then the
following assertions are ful filled.

(1) Free sets are invariants of the automorphism ~: R —
R.

(2) The Ty-separation and injectiveness are dual proper-
ties with respect to the automorphism ~: R — R.

(3) The Ti-separation and an incomparability (by the set-
theoretic inclusion) are dual properties with respect to the
automorphism”™: R — R.

(4) The statement |f(x)| = k is dual to the statement
Hye X:z € f(y)}| =k relative to ~: R — R.

(5) The statement | f(z)N f(y)| < k is dual to the statement
{z € X:{z,y} C f(2)}| <k relativeto ~: R — R.

(6) Let |X| = k. Then the statement | | X \ U{f(z): = €
X'} <k for each X' C X under | X'| = k| is an invariant of
the automorphism ~: R — R .
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Proof. Only claim (6) need be proved, the others can be proved
as above, in Theorem 3. Prove claim 6. Let | X| = &, f € R, and
let | X \ U{f(x): z € X'}| < k for each X' C X under |X'| = k.
Let us assume that there exists a set X’ C X of the cardinal-

ity x such that | X \ U{f(z): x € X'}| = k. It follows that

X\ UWfly):y € X\ U{f(x): 2z € X'}}| < k. It is easy to

see that y € X\ U{f(z): 2 € X"} iff f(y) N X" = 0. Hence

X c X\ UWfly):y e X\ U{f(x): x € X'}}. Therefore
| X'| < K, a contradiction. O

A. Hajnal proved in [1] the following statement:

Theorem 9 [GCH]. Let X be a set, |X| = wat1 and w, be a
reqular cardinal number. Then there exists a family
S C P(X) such that the following assertions are ful filled.
(+) 8] = s
(++) |S| = wa for each S € S.
(+ 4+ +) [S1NS2| < wa for every Sy, S € S under Sy # Ss.
(+4+++) I[f S C S and |S'| = way1, then | X\ US| < wat1.
Because |X| = |S], the theorem can be formulated in the
following way.

Theorem 10 [GCH]. Let X be a set, | X| = wa41 and w, be a
reqular cardinal number. Then there exists f € R such that
the following assertions are ful filled.
(1) |f(x)] = wa for each z € X.
(2) |f(x) N f(y)| < wa for every x,y € X under x # y.
(3) If X' C X and | X'| = was1, then
|IX\ U{f(2): z € X'}| < wai1.

Theorem 4 is an immediate consequence of Theorem 10. In
a different way A. Hajnal proved that Theorem 4 followed from
Theorem 9 [1]. By Theorem 8 the following statement is equiv-
alent to Theorem 10.

Theorem 11 [GCH]. Let X be a set, | X| = wa41 and w, be a
regular cardinal number. Then there exists f € R such that
the following assertions are ful filled.
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(1) lye X:z € f(y)}| = wa for each z € X.
(17) [{z € X: {x,y} C f(2)} < wq for everyz,y € X under
(vii) If X' C X and |X'| = way1, then
IX\ U{f(z): z € X'} < way1-
The following theorem follows from Theorem 11.

Theorem 12 [GCH]. Let X be a set, | X| = wat1 and w, be a
reqular cardinal number. Then there are f € R and a set
Y C X of the cardinality wa..1 such that the following
assertions are ful filled.

(1) {f(y): = € f(y)}| = wa for eachz €Y.

(2) {f(y): y €Y} = was1.

(3) {f(2): {z,y} C f(2)} < wa for every z,y € X under

(4) If X' C X and | X'| = way1, then

|1 X\ U{f(2): z € X'}| < wai1.

Proof. We only have to prove claims (1) and (2). Denote by D
theset {x € X: (Jy € X) f(y) = {x} }. It follows from Theorem
11 (iii) that |D| < w,. Hence by Theorem 11 (i) |[{y € X: f(y)N
D # 0} < w,. Then |[{y € X: f(y)ND = 0}| = wat1. Therefore
by Theorem 11 (iii) the set X \ U{f(y): f(y) N D = 0} has the
cardinality less than w,1. It follows that the set U{f(y): f(y)N
D = (} has the cardinality wo41. Put Y =U{f(y): f(y)N D =
0}. In view of Theorem 11 (i) and (iii) the cardinality of the set
f1(f(y)) is at most w, (Theorem 11 (iii) is used for the case
f(y) =0 ). Hence |{f(y): y € Y}| = wat1. Thus claim (2) is
fulfilled. Now let z € Y. By definition Y N D = (). Then f(y)
has at least two points whenever x € f(y). In view of Theorem
11 (ii) the set f~'(f(y)) has the cardinality less than w, for
each point y whose image has at least two points. Since w, is
a regular cardinal number, from Theorem 11 (i) follows that
H{f(y): x € f(y)}| = wa. Claim (1) is proved. O

The last theorem can be formulated in the following way.
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Theorem 13 [GCH]. Let X be a set, | X| = wa41 and w, be a
reqular cardinal number. Then there exists a family
C C P(X) such that the following assertions are fulfilled.

(1) 1C] = wss.

(2) {C €C: z € C}| = wq for each x € UC.

(3) {C € C: {z,y} C C}| < wy for every xz,y € X under

(4)if C" CC and |C'| = way1, then | X\ UC| < wair-

We now prove that Theorem 12 implies Theorem 9. Choose a
set X’ C X such that f/X’ would be a bijection with
rng(f/X’) = rng(f). It is obvious that |X'| = way1. Choos-
ing a bijection a: X’ — X, we obtain the numbering of X by
elements of X', ie., X = {a,: v € X'}, where a, # a, un-
der x # y. Define a mapping g: X — P(X) by the formula
g(az) = f(x). By definition we have

9laz) = {ay: az € glay)} = {ay: az € f(y)}.
Show that the family {g(a,): a, € Y} satisfies Theorem 9.

19(az)| = Hay: az € f(y)}]
= Hye X' a, € f(y)}|
= {f(y): az € f(y)}].

By Theorem 12 (1) it follows that |g(a,)| = ws. Hence property
(++) of Theorem 9 is fulfilled. Further,

9(az) Nglay) ={a:: {as, a,} C f(2)}.
But

{az: {az, 0y} C ()} = Hz € X' {aa, 0y} C f(2)}]
= [{f(2): {aw, ay} C f(2)}].

By Theorem 12 (3) it follows that [g(a;) N g(ay)| < w, un-
der a, # a,. Hence property (+-++) of Theorem 9 is fulfilled.
Because Y has the cardinality wa.1, from (++) and (+++) fol-
lows that property (+) of Theorem 9 is fulfilled. Indeed, from
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(++) and (+++) follows that g(a,) # g(a,) under a, # a,.
Let now Y’ C Y and let |Y’'| = wai1. Consider the set Z =
{r € X't a, € Y'}. Then |Z| = woq1 and V' = {a,: z € Z}.
a, € X\ Wglay): x € Z} iff a, ¢ g(a,) for each x € Z, i.e.,
a, ¢ {ay: ay € g(ay)} for each x € Z or, that is the same,
a, ¢ f(z) for each x € Z. Hence {a,: x € Z} N f(z) = for
each z such that a, € X\ U{g(a,): v € Z}. Then {a,: = €
Z¥INU{f(y): ay € (X\ U{g(as): = € Z})} = 0. Let us assume
that | X \ U{g(a.): z € Z}| = wat1. Then by Theorem 12 (4)
we have | X \ U{f(y): ay, € (X \ U{g(as): x € Z})}| < wat1.
But {a,: x € Z} C X\ U{f(y):ay, € (X\ U{g(as): x € Z})}.
Therefore |Y'| < wq+1, contradiction. Hence | X \ U{g(a,): = €
Z}| < wat1 and property (++++) of Theorem 9 is fulfilled.

So it has been shown that Theorems 9 <+ 13 are equivalent.
In fact, we have proved that statements of Theorems 9 + 13
are equivalent in ZFC provided w, is a regular cardinal number.
Select two special cases equivalent theorems.

Theorem 9-+[CH]. Let X bea set, | X| = wy. Thenthereexists
a family S C P(X) such that the following assertions are ful-
filled.

(++) [S] = wr.

(++) |S| =w for each S € S.

(+4+) [S1 N Sa| <w for every Sy, S, € S under Sy # Ss.

(++++)If S CSand|S'| = wy, then | X\ US| < w;.

Theorem 13+ [CH]. Let X be a set, | X| = wy. Then there
exists a family C C P(X) such that the following assertions
are ful filled.

(1) IC] = wr.

(2) {CelC:zeC} =w for each x € UC.

(3) HC € C: {z,y} C C}| < w for every z,y € X under

(4)if C" CC and |C'| = wy, then | X\ UC'| < w.



ON BOOLEAN ALGEBRAS OF MANY-VALUED MAPPINGS 417

Either of these theorems implies Theorem 4+ and Theorem
5+ because, as we have observed above, a statement of Theorem
4 follows from a statement of Theorem 10. In view of Theorems
4* and 5* statements of Theorems 9+ and 13+ are false under
MA + -CH.

Finally we consider a topological aspect . A base B for a
topological space X is a weakly uni form base if no two points of
X belong to infinitely many members of B. More generally, any
family of sets with this property is called weakly uniform ( also
known as a pair- finite family ). A further generalization of the
weakly uniform base is obtained if in the definition, ”infinitely”
is replaced by "uncountably”. These notions were introduced in
[2] by R.W.Heath and W.F.Lindgren in 1976 year, and they have
been investigated in General Topology since then.

Corollary 1 [CH|. There exists a Hausdorff space Y with a
point-countable weakly uniform subbase H such that the
following conditions are ful filled.

(a) [H| = wi.

(b) for every Z C 'Y each point-finite subfamily of the
family H/Z is countable.

(c) for every Z CY each cover of Z by elements of H/Z
contains a countable subcover.

It 1s evidently that this space has a point-countable weakly
unt form base and is not separable.

Proof. Use Theorem 134. Put Y = UC. It is obvious that
Y| = wy. Identify Y with the real numbers. Let R be a count-
able uniform base for the usual topology of real line. Consider
the topology 7 that is defined by the subbase H = C U R. It
is obvious that (Y, 7)) is a Hausdorff nonseparable space with a
point-countable weakly uniform base. Condition (a) is fulfilled
by construction. (¢) = (b) follows from A-System Lemma. It re-
mains to prove assertion (c). Let £ be an uncountable cover of a
set Z C Y and € C C/Z. Suppose that any countable subfamily
of £ is not a cover of Z. Pick a point z( € Z. Because the family
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&y, 1s not a cover of Z, there is a point x; € Z\ UE,,. The set
&y U &, 1s also not a cover of Z. Continuing by induction, we
construct an wi-sequence < z¢: £ € wy > of points of Z such
that z¢ ¢ UE,, under { # 1. Choose E¢ € 5%. Existence of the
uncountable family {E¢: & € w;} contradicts to Theorem 13+
(4). O

Theorem 14 [MA+ —CH]. Let X be a set and S be a point-
countable weakly uniform family of subsets of X. If for
every Y C X each point-finite subfamily of the family S/Y
1s countable, then S is countable.

Proof. Suppose § is uncountable. Pick a point x¢o € X. Be-
cause S, is countable, there exists a point z; € X such that
Se, \ Siy # 0. Continuing by induction, we construct an wi-
sequence < T¢: § € wy > points of X such that S, \ U{S,,: v <
¢} # 0 for each £ € wy. Denote by Y the set {z¢: & € wi}. It
is obvious that | U {S,,: ¢ € Y}| = wi. Besides we may as-
sume that |S;,| = w for each { € w;. Since x¢ # w, under
¢ # nand S is weakly uniform, |S,, N'S,,| < w. Use Wage’s
theorem that has been used above. By this theorem there exists
S C U{Ss: € € wi} such that |§') = wi and [8'N S, | < w
for each £ € wy. Then &’ is point-finite on Y. Consequently, by
the supposition, the family §’/Y is countable. If S € S, then
S NY # () because there is £ € w; such that S € S,,. Then,
being point-countable, the family S’ is countable; so, we have a
contradiction. O

Corollary 2 [MA+ —CH]. There is no a space Y with a
point-countable weakly uni form subbase H such that the prop-
erties (a), (b), and (c) of corollary 1 are ful filled.

Corollary 3 [MA+ —CH]. If X is a hereditarily Lindelof
Ti-space that has a weakly uni form base, then X is separable.
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