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BANACH SPACES OVER NONARCHIMEDEAN
VALUED FIELDS

Wim H. Schikhof

Abstract

In this survey note we present the state of the art
on the theory of Banach and Hilbert spaces over
complete valued scalar fields that are not isomor-
phic to R or C. For convenience we treat ‘classical’
theorems (such as Hahn-Banach Theorem, Closed
Range Theorem, Riesz Representation Theorem,
Eberlein-Smulian’s Theorem, Krein-Milman The-
orem) and discuss whether or not they remain
valid in this new context, thereby stating some-
times strong negations or strong improvements.
Meanwhile several concepts are being introduced
(such as norm orthogonality, spherical complete-
ness, compactoidity, modules over valuation rings)
leading to results that do not have -or at least
have less important- counterparts in the classical
theory.

1. The Scalar Field K
1.1. Non-archimedean Valued Fields and Their
Topologies

In many branches of mathematics and its applications the valued
fields of the real numbers R and the complex numbers C play a
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fundamental role. For quite some time one has been discussing
the consequences of replacing in those theories R or C -at first-
by the more general object of a valued field (K,| |)i.e. a com-
mutative field K, together with a wvaluation | | : K — [0, 00)
satisfying |A| = 0 iff A = 0, |A+p| < |A|[+|pl, [A| = |A] @] for all
A, i € K. Then, as in the real or complex case, (A, u) — |A—p|
is a metric on K making K into a topological field (i.e. addition,
subtraction, multiplication and division are continuous opera-
tions). The following theorem essentially separates the absolute
value on R or C from all other valuations enabling us to avoid
carrying out mere generalizations.

Theorem 1. ([5],p.127) Let (K,| |) be a valued field. Then
either

(i) K is (isomorphic to) a subfield of C and the valuation induces
the restriction topology on K, or

(ii) the valuation on K is non-archimedean (n.a.) i.e. it satisfies
the strong triangle inequality

(Atul <max([Al[ul) (A p e K).

So, by excluding C and its subfields one obtains in return the
strong triangle inequality (implying obviously the ‘ordinary’ tri-
angle inequality), which will change the picture of Functional
Analysis completely. As a first case in point notice that for each
A€ KandneN

[nAl < max([A[, [A] -5 A < A

contrasting the Archimedean axiom ‘N is unbounded’, explain-
ing at the same time the expression ‘non-archimedean’.

The metric (A, u) — d(\, 1) := |[A—pl is a so-called ultrametric
ie. it satisfies the strong triangle inequality d(\,v) <
max(d()\,,u), d(u, 1/)) The following properties formulated for
general ultrametric spaces illustrate the deviation from ‘classi-
cal theory’ (by this expression we hereafter indicate the mathe-
matics in and over R and C). They are quite easy to prove and
well-known.
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Proposition 2. Let (X, d) be an ultrametric space.

(i) For each a € X and r > 0 the ‘closed” ball B(a,r) :=
{r € X : d(xz,a) < r} and the ‘open’ ball B(a,r~) =
{r € X : d(x,a) < r} are clopen (i.e. closed-and-open). The
topology of X s zero-dimensional, hence totally disconnected.
(ii) Each point of any ball in X is a center.

(iii) Two balls in X are either disjoint or one is a subset of the
other.

(iv) (Isosceles Triangle Principle) Let x,y,z € X. Then the
‘triangle’ {x,y, z} is isosceles. In fact, among d(zx,y), d(z,z),
d(y, z) the largest and second largest distances are equal.

1.2. Examples of n.a. Valuations

1. The trivial valuation can be put on any field and is defined by
|IA| = 1iff A # 0. It leads to the trivial metric and the discrete
topology. To avoid having to continually make exceptions we
exclude it from now on.

2. The most important and famous n.a. valuation is without
any doubt the so-called p-adic valuation, defined on Q for any
prime p by [0[, := 0 and

t _
S R
n p
where t,n, k € Z, t,n # 0, gcd(t,p) = gced(n,p) = 1. The com-
pletion of (Q,| |)) is in a natural way again a n.a. valued field

Qp, the p-adic number field. According to Ostrowski’s Theorem
([59],10.1) each valuation on Q is (equivalent to) either the ab-
solute value function or (to) some p-adic one. Thus the various
Q,, being completions of the rationals, can be viewed as possible
alternatives to R: all @, are nonisomorphic as fields ([59],33B),
no Q, is isomorphic to R ([59],16.7).

3. The field C, of p-adic complex numbers. @Q, is not alge-
braically closed. In fact, its algebraic closure Q is infinite-
dimensional over Q,([59],16.7). By a theorem of Krull | | can
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be uniquely extended to a n.a. valuation on Qg ([59],14.1,14.2).
Although Q¢ is not metrically complete ([59],16.6), fortunately
its completion C, is algebraically closed by Krasner’s Theorem
([59],17.1). It is reasonable to call C, the field of the p-adic
complex numbers.

4.  Rational function fields. Let F be any field. For f =
ap+ a1 X + -+ +a, X" € F[X], set |f| :=2"if a, # 0, |0] := 0.
The function | | extends uniquely to a n.a. valuation on the
quotient field F'(X). It is a way to obtain n.a. valued fields of
nonzero characteristic.

1.3. A Few More Non-archimedean Features

FROM NOW ON IN THIS NOTE K = (K,| |)IS A COM-
PLETE N.A. VALUED FIELD. WE PUT |K| := {|A| : A € K}

The set | K|\{0} is a multiplicative group, called the value group
of K. It need not be all of (0,00). In fact, the value group of
Qp is {p™ : n € Z}. (See 1.2.2. Completion does not alter the
value group!) Even the value group of C, (1.2.3), {p" : r € Q},
is not equal to (0, 00), according to a theorem ([59],16.2) stating
that the value group of the algebraic closure of K is the divisible
hull of the value group of K. We will call the valuation discrete
or dense accordingly as the value group is discrete or dense in
(0, 00).

By the strong triangle inequality the closed unit disk Bx =
{\ € K :|\| <1} is an additive group and therefore a subring
of K containing 1. The open unit disk B;; :={\ € K : |\] < 1}
(but recall that Bx and By are clopen see 1.1) is a maximal
ideal in Bk since By \Bj consists of invertible elements. The
quotient k := Bg /By is called the residue class field of K.
Even though it is an algebraic object it plays a key role in p-
adic analysis (e.g. maximum principle for analytic functions,
orthogonality theory). The residue class field of Q,, is the field I,
of p elements; the residue class field of C,, is the algebraic closure
of F, ([59],16.4). The following noteworthy result characterizes
local compactness of K.
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Theorem 3. ([59],12.2) K is locally compact iff its residue class
field is finite and its value group is discrete.

Q, is locally compact; C, is not.

(K,| ) is called mazimally complete if for any valued field ex-
tension (L,| |) D (K,| |), for which K and L have the same
value group and (naturally) isomorphic residue class fields, it
follows that L = K. An ultrametric space is called spherically
complete if each nested sequence By D By D ... of balls has a
nonempty intersection. Unlike ordinary completeness, there is
no requirement that the diameters of the balls B; approach 0.
Spherical completeness of K is equivalent to maximal complete-
ness ([57],4.47). Clearly spherical completeness implies ordinary
completeness and locally compact, more generally, discretely val-
ued complete fields are spherically complete. C, is complete
but not spherically complete ([59],20.6). Each (K,| |) admits

a spherical completion (K,| |) i.e. a, in some natural sense,
‘smallest’ spherically complete field extension of (K| |), see
([57],4.49).

1.4. Outlook

The fields R and C are separable, locally compact and connected.
R is ordered and C is algebraically closed. Our n.a. valued fields
K in general have none of those properties. On the other hand
we do have the strong triangle inequality which is responsible
for exciting deviations from classical theory.

Non-archimedean theories have been developed in many areas
such as Elementary Calculus, Number Theory, Algebraic Num-
ber Theory, Algebraic Geometry, the Theory of Analytic Func-
tions in one or several variables and Functional Analysis. For an
impression we refer to the Mathematics Subject Classification of
the Mathematical Reviews. In this note we focus on Functional
Analysis (MR 46510, 47510), in particular the theory of Banach
spaces.



552 Wim H. Schikhof

In this context we mention briefly a connection with theoretical
physics. In 1987 I. Volovich [80] discussed the question as to
whether at Planck distances (< 1073* ¢cm) space must be disor-
dered or disconnected. He suggested the use of p-adic numbers
to build adequate mathematical models. It brought about a se-
quence of publications by several authors. See [79] (Hamiltonian
equations on p-adic spaces), [29] (Cauchy problems, distribution
theory, Fourier and Laplace transform), [30] (p-adic Quantum
Mechanics and Hilbert spaces) for an impression of proposed
applications of p-adic analysis to theoretical physics. See also
the ‘forerunning’ papers [17] and [78].

2. Banach Spaces

2.1. Definition and Examples

Throughout §2 scalars are elements of a complete n.a. valued
field K = (K,| |). A norm on a K-vector space E is a map
|- £ —[0,00) satisfying [lz]| = 0 iff 2 = 0, [[Az]| = |A] [|]],
|lz+y|| < max(||z|],||y||) for all z,y € E, A € K. (One may con-
sider ‘norms’ that do not satisfy the strong triangle inequality,
for example the obvious translations of ¢P-spaces (1 < p < 00).
However, such ‘norms’, called A-norms by some authors, see
[37], [38], [39], are pathological from the viewpoint of duality
theory and will therefore be ignored in this note.)

We often write E to indicate the normed space (E,| - [|). A
complete normed space is, as usual, called a Banach space.

The spaces c¢g, ¢, £*° consisting of all null, convergent, bounded
sequences in K respectively, more generally the space BC'(X)
of all bounded K-valued continuous functions on a topological
space X and closed subspaces of BC'(X), equipped with the sup
norm are obvious examples of Banach spaces. It is a curious
fact that ‘most’ norms encountered in non-archimedean daily
life turn out to be sup norms. Be that as it may, we provide two
examples of norms of different nature.
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1. Let L be a complete valued field containing K as a valued
subfield. Then L is in a natural way a Banach space (even
a normed division algebra) over K. Thus, C, is an infinite-
dimensional Banach space over Q,. Observe that |C,| strictly
contains |Q,| showing that nonzero vectors cannot always be
normalized. This leads to the question as to whether one can
find on any Banach space an equivalent norm with values in | K]|.
This is still an open problem. For some discussion and partial
solutions, see [55] II, [74].

2. A rather ‘exotic’ example of a Banach space over Q, can be
constructed as follows. Let L be an algebraically closed complete
valued field with characteristic p # 0. One proves without pain
that G := {x € L : |1—z| < 1} is a multiplicative group (!) that
is divisible and torsion free. For each x € G the map r — x”"
(r € Q) is therefore well-defined; it extends by p-adic uniform
continuity to a continuous function Q, — G, written as A — 2.
Now let (z,y) — zy (z,y € G) act as addition, let (\,z) — 2*
(A € Qp,z € G) be the scalar multiplication, and let the norm
be defined by ||z|| := —(log|1—x|)~! if # # 1, ||1|| := 0. Then
this way G' becomes a QQ,-Banach space. (It is used in [61] to
obtain results on character groups.)

2.2. Local Convexity

In the above spirit one defines seminorms and locally convex
spaces over K i.e. vector spaces whose topology is induced by
a collection of seminorms satisfying the strong triangle inequal-
ity in the usual way. For each seminorm p and € > 0 the sets
{z:p(x) <e} and {x : p(x) < €} are absolutely conver i.e. they
are modules over the ring By (see 1.3). A subset C of a K-vector
space is called convex if z,y,2 € C, A\, u,v € Bg, \Mpu+v =1
implies A\x +py+vz € C. 1t is easily proved that C' is convex iff
C' is either empty or an additive coset of an absolutely convex
set.
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Locally convex spaces will not be our main concern here; see
[77], [60], [12] for some basic theory. But we will use the fact that
absolutely convex sets, being Bx-modules, carry a richer alge-
braic structure than their archimedean counterparts (see 2.17).
A natural generalization is the study of normed or locally con-
vex Bi-modules, see [47]. The quotient A/B of two closed ab-
solutely convex sets B C A in a Banach space is a meaningful
object (Banach Bgx-module) in n.a. theory!

2.3. Basics on Banach Spaces

For Banach spaces E, F' let L(E, F') be the space of all contin-
uous linear maps F — F. Each T € L(FE, F) is Lipschitz in the
sense that there exists a Lipschitz constant M > 0 such that
|Tz|| < M||z|| for all x € E; let ||T'|| be the smallest Lipschitz
constant. Then T — ||T'|| is a norm making £(F, F) into a Ba-
nach space. As is customary, we write L(E) for L(E, E) and
E' for L(E,K). The natural map jgp : £ — E” is defined as
in the classical case. E is reflexive if jp is a bijective isometry.
We will see in 2.7 that jr need not be injective in general due
to the restricted validity of the Hahn-Banach Theorem. In a
finite-dimensional space all norms are equivalent (most classical
proofs carry over). The Uniform Boundedness Principle, the Ba-
nach Steinhaus Theorem, the Closed Graph Theorem, the Open
Mapping Theorem all rest on the Baire Category Theorem and
some linearity considerations and therefore remain valid in our
theory ([57],3.5,3.11,3.12, [18]).

A sequence xq,rs,... in a Banach space is summable iff
lim,, o 2, = 0 (this follows readily from the strong triangle in-
equality). As summability is automatically unconditional, this
opens the way to defining, in a natural manner, sums over ar-
bitrary indexing sets. Absolute summability plays no a role in
n.a. analysis.
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2.4. Orthogonality

The finest examples of classical Banach spaces are Hilbert spaces
so one may look for a non-archimedean pendant. A complete
discussion will take place in Section 3 from which we single out
one particular, negative, result.

Theorem 4. Let (, ) be a bilinear (or Hermitean) form on a
Banach space E such that |(z,z)| = ||z||* for all x € E. Suppose
that each closed subspace admits an orthogonal projection. Then
FE is finite-dimensional.

Even though Hilbert-like spaces may be absent in our the-
ory (but see Section 3), we do have a powerful typically non-
archimedean concept, valid in any Banach space. We say that a
vector x is (norm)orthogonal to a vector y if the distance of x to
the space Ky is just ||z]|. Of course this notion is also meaning-
ful in classical theory but there it is rarely symmetric (actually
only in Hilbert space and there it is equivalent to ‘form’ orthog-
onality in the usual sense). From our strong triangle inequality
it follows easily that orthogonality is always symmetric. In fact,
x and y are orthogonal iff for all A\, y € K

Az + pyl| = max([[ Az, [[uyl)-

This formula can naturally be extended so as to define orthog-
onality for an arbitrary collection of vectors.

All maximal orthogonal systems have the same cardinality
(([57],5.2); the proof uses ‘reduction’ to vector spaces over the
residue class field, see 1.3). Orthogonality is stable for small per-
turbations ([57],5.B), showing the contrast with form orthogo-
nality in Hilbert space. An orthogonal system (e;);c; of nonzero
vectors, for some index set I, is called an orthogonal base of a
Banach space I if each v € E can be expanded as ), ; \ie;
(see 2.3) where \; € K. This representation is unique and
||| = max;er [|Nies|| ([57],pp. 170,171 ).
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Examples. The unit vectors
e1=(1,0,0,...), e2=(0,1,0,...),...

form an orthonormal base of cgy, i.e. ey, eq,... is an orthogonal
base and ||e,|| = 1 for each n. Mahler proved that the binomial
polynomials e,, : z +— (Z) (n=0,1,2,...) form an orthonormal
base of C'(Z, — C,), the space of all continuous (automatically
bounded) functions with domain the (compact) unit disk Z, of
Q, and range C,. ([59],51.1). If K is algebraically closed the
functions z +— 2" (n = 0,1,2,...) on Bk form an orthonormal
base of the space of analytic functions Bx — K ([59],42.1). (For
the theory of n.a. analytic functions, see [16], [8], [9].) If K has
a dense valuation, then /> does not have an orthogonal base
([57],5.19).

Spaces with an orthogonal base act like projective objects in the
category of Banach spaces as the following theorem illustrates.
A linear surjection T of a Banach space E to a Banach space F'is
called strict if for each a € E, r :== min{||z|| : x € E,Tx = Ta}
exists and || Tal| = ||T||r.

Theorem 5. ([57],5.7,5.8) (i) Each Banach space is the quotient
of some space with an orthogonal base by a closed subspace.

(ii) A closed subspace of a space with an orthogonal base has also
an orthogonal base.

(iii) A Banach space E has an orthogonal base iff it is projective
in the following sense. For each Banach space X and strict
linear surjection T : X — E there is an S € L(E, X) such that
TS is the identity on E and ||T|| ||S]] < 1.

2.5. Schauder Bases

The classical definition of separability is not suitable in n.a. the-
ory, as K itself may not be separable. Therefore we ‘linearize’
this notion so as to obtain a convenient concept as follows. We
say that a Banach space E is of countable type if there is a
countable set in £ whose linear hull is dense in F. It is easily
seen that it coincides with separability in case K is separable.
Like in the classical theory we say that a sequence x1, xs,... is
a Schauder base for E if each x € E has a unique expansion
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T =Y " Ay, where \, € K. By unconditional convergence
(2.3), for every permutation o of N the sequence Z,(1y, To(2); - - -
is a Schauder base.

As usual one applies the Open Mapping Theorem to show that
the coordinate functions x — \,, are continuous. The follow-
ing striking results show the simplicity of the non-archimedean

theory.

Theorem 6. Fach Banach space of countable type has a
Schauder base.

The proof consists of carrying out a norm version of the
Gram-Schmidt process and leads to a much stronger result
([57],5.5,3.16). In fact, if K is spherically complete one can
choose the Schauder base to be orthogonal. In general one can
find ‘almost’ orthogonal bases in the sense that for each ¢t € (0, 1)
there is a Schauder base ey, e, ... such that ||  Ae,| >
t max,, [|[A\ne,| for allm e Ny Ay, ... )\, € K.

Theorem 7. ([57],3.7) Each Schauder base is orthogonal with
respect to an equivalent norm.

Corollary 8. All infinite-dimensional Banach spaces of count-
able type are linearly homeomorphic (to c).

The theory of Schauder bases is becoming more varied in the
context of locally convex spaces [11] or when the scalars are from
an infinite rank valued field ([45],3.2-3.4).

2.6. C(X)

For a compact topological (Hausdorff) space X, let C'(X) be the
Banach space of all continuous functions X — K with the norm
= flly =max{|f(z)| : ® € X}. We assume X to be zerodi-
mensional in the sense that the clopen sets form a base for the
topology; this demand is natural since it is equivalent to separa-
tion of points by continuous functions ([57],5.23). It is proved in
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[57],5.22, that C'(X) has an orthonormal base consisting of K-
valued characteristic functions of clopen subsets. It is not hard
to show that C'(X) is of countable type iff X is ultra-metrizable.
The Stone-Weierstrass Theorem (a unitary subalgebra of C'(X)
separating the points of X is dense in C'(X)) holds ([57],6.15);
see [51] for wide generalizations as well as [4].

Let Y be a second zerodimensional Hausdorff compact space.
As in the classical theory, a ring isomorphism between C'(X)
and C(Y) induces a homeomorphism between Y and X. But
the Banach-Stone Theorem (if C'(X) and C(Y') are isomorphic
Banach spaces then X and Y are homeomorphic) does not hold
in our theory, since C(X) is linearly isometric to ¢y for all infi-
nite metrizable X. This failure gave rise to the study of so-called
Banach-Stone maps C(X) — C(Y) i.e. maps that induce home-
omorphisms Y — X, see [2] and [6] for this interesting theory.
A measure on X is a bounded additive map p : 2 — K, where
2 is the ring of clopen subsets of X. (Requiring o-additivity on,
say, the class of Borel sets leads to trivialities, see ([59],A.5).)
A measure p induces naturally an integral [ + fdu, first for ‘step
functions’ f (linear combinations of characteristic functions of
clopen sets), next by continuity for continuous f. For integra-
tion theory, such as construction of L', measurable functions,
also for more general X, see [57],Ch.7. Under obvious opera-
tions and the norm g +— ||| := max{|u(V)|: V € Q} the mea-
sures form a Banach space M(X). The non-archimedean Riesz
Representation Theorem (see [57],7.18, also for generalizations)
asserts that the map assigning to each p € M(X) its integral
f — [ fdp is an isometrical bijection M(X) — C(X)". Its
proof, however, is much simpler than in the archimedean case.
We consider an Ascoli type theorem in 2.13.

2.7. The Hahn-Banach Theorem

The proof of the Hahn-Banach Theorem for real scalars uses the
fact that a collection of closed intervals with the finite intersec-
tion property has a non-empty intersection. In our case we need
spherical completeness.
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Theorem 9. ([59],A.8) Let K be spherically complete, and let
D be a subspace of a Banach space E. Then every [ € D’ can
be extended to an f € E' such that ||f]| = || f]|-

If K is allowed to be non-spherically complete we have the
following.

Theorem 10. ((1 + ¢)-Hahn-Banach [57],3.16vi.) Let E be
a Banach space of countable type, let D be a subspace of F,
feD, ande > 0. Then f can be extended to an f € E' such
that || Il < (1+¢)||f|-

It is a corollary of the fact that closed subspaces of spaces of
countable type have ‘almost’ orthogonal (closed) complements,
see ([57],3.16v).

One cannot take ¢ = 0 in the above setting; there exist two-
dimensional counterexamples ([57],p.68). If E is no longer of
countable type the conclusion fails as well. For example the
map (a1, as,...) — > a, is in ¢ but cannot be extended to
an element of (¢>°)" if K is not spherically complete ([57],4.15).
Even worse, the dual of (> /¢q is {0}! ([57],4.3).

The converse of the above theorem —for nonspherically complete
K, does the (14¢)-Hahn-Banach property imply that F is of
countable type?— is a long-standing open problem in n.a. anal-
ysis.

To deal properly with the limited validity of the Hahn-Banach
Theorem we define a Banach space E to be (norm)polar if for
each x € E, ||z|| = sup{|f(x)| : f € F} for some collection
F C E'. Polarity is equivalent with the (14+¢) Hahn-Banach
property for finite-dimensional subspaces D and also with the
isometrical property of jp : E — E”. The category of polar
spaces is well-behaved with respect to duality theory; see [60].
Function spaces with the sup norm (such as BC(X), (>, E’)
are polar.

Sometimes a property, stronger than polarness, is needed, called

property (x):
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‘For each subspace D of countable type each f € D’ can be
extended to an f € E”.

Banach spaces with an (orthogonal) base have (x). The con-
verse is an open problem, see ([55],Ch.V).

For geometrical versions of the Hahn-Banach Theorem (separa-
tion of convex sets by hyperplanes), see [56].

2.8. Spherically Complete Banach Spaces

Spherically complete Banach spaces play the role of injective ob-
jects; compare the dual properties of spaces with an orthogonal
base in 2.4.

Theorem 11. (i) Fach Banach space has a ‘spherical comple-
tion’ ([57],4.43).

(ii) Quotients of spherically complete Banach spaces are spheri-
cally complete ([57],4.2).

(iii) A Banach space E is spherically complete iff it is injective
in the following sense. For each Banach space X and linear
isometry T : E — X, there is an S € L(X, E) such that ST is
the identity on E ([57],4.H).

Further Properties. K is spherically complete iff > is spher-
ically complete ([57],4.A). For every K the space > /¢ is spher-
ically complete ([57],4.1). If E is spherically complete and K is
not, then £’ = {0} ([57],4.3). For any K, if > is a subspace of
a polar Banach space E and € > 0, then there is a projection
E — (> of norm < 1+4¢ ([67],1.2).

2.9. The Closed Range Theorem

For T' € L(E, F), where E, F' are Banach spaces, we define as
usual its range R(T) by TE and its adjoint 77 € L(F', E’) by
T'(f) :== foT. The weak topology on E and the weak* topology
on F’ are defined as usual. The Hahn-Banach Theorem 9 can
be applied to derive a direct translation of the classical Closed
Range Theorem.



BANACH SPACES OVER NONARCHIMEDEAN VALUED ... 561

Theorem 12. ([70],6.7, [28]) Let K be spherically complete, let
E, F be Banach spaces. For any T € L(E, F) the following are
equivalent.

(o) R(T) is closed.

(6) R(T) is weakly closed.

(v) R(T") is closed.

(0) R(T") is weak*-closed.

If K is not spherically complete, one has to impose severe re-
strictions; even (o) = ([3) is not always true as ¢y is not weakly
closed in ¢*°, but weakly dense! ([57],4.15). The conclusion of
Theorem 12 remains true if F, F' are of countable type. The
failure in the general case is demonstrated by an example of a
Banach space F, with an orthogonal base, and a closed subspace
D such that for the embedding 7' : D — E we have that R(T)
is weakly closed; R(7") is not even norm closed while R(T") is
w*-closed ([70],6.8,6.12).

2.10. Reflexivity

One might expect a rich theory of reflexivity for spherically com-
plete K as linear functions are well-behaved in this case (Hahn-
Banach Theorem 9, Closed Range Theorem 12). Alas, we have
the following disappointing fact.

Theorem 13. ([57],4.16) Let K be spherically complete. Then
the only reflexive Banach spaces are the finite-dimensional ones.

Even more astonishing is the existence of infinite-dimensional
reflexive spaces when K is not spherically complete. Classically
the dual of ¢y is !. The strong triangle inequality is responsible
for the fact that in our case ¢ = (> (for any K).

Theorem 14. ([57],4.17,4.18) Let K be not spherically com-
plete. Then

(i) co and £ are reflexive; they are in a natural way each other’s
dual,

(ii) each Banach space of countable type is reflexive.
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The n.a. theory of reflexivity is far from complete. One can
extend (i) to natural generalizations ¢o(/) and ¢*°(I) provided [
is of nonmeasurable cardinal ([57],4.21). If E is reflexive, then
so is £ ([57],4.L). If E” is reflexive, then so is £ ([57],4.25).
However, van Rooij constructed a non-reflexive closed subspace
of the reflexive space ¢ over a non-spherically complete K
([57],4.J). The completed tensor product &, with the usual
m-norm is not reflexive ([50],2.3). For some time it was conjec-
tured that every dual space with nonmeasurable cardinality over
a nonspherically complete field is reflexive, but a counterexam-
ple was given in [15],7.33.

With the help of Goldstine’s Theorem (see 2.17) one proves eas-
ily that a Banach space is reflexive iff its closed unit ball is
weakly complete. For more, see 2.17.

In locally convex theory reflexivity is more varied. For example
Fréchet spaces of countable type (K not spherically complete),
Montel spaces (all K), and certain inductive limits are reflexive
([60], [12]).

2.11. Eberlein-Smulian Theory [31]

For a subset X of a Banach space E, consider the following
statements.

(o) X is weakly compact.

(6) X is weakly sequentially compact.

(v) X is weakly countably compact.

The classical Eberlein-Smulian Theorem states that (a), (3),
and () are equivalent, the interesting implications being (v) =
(o) and () = () (since (o) = () and () = () are true
in general). In the n.a. case we have:

Theorem 15. Let X be a subset of a normpolar Banach space
E. If either (i) K is spherically complete or (ii) E has (x) (see
2.7) or (iii) E' is of countable type or (iv) [ X] (the Banach space
generated by X) is of countable type, then (o), (), () are equiv-
alent. Moreover, each weakly convergent sequence in E is norm
convergent and E is weakly sequentially complete.
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But the story does not stop here; there are strong improve-
ments: If, in addition, K is not locally compact then X is
weakly compact iff f(X) is compact for every f € E’. That
this peculiar result does not hold for locally compact K (nei-
ther in the archimedean case) is easily seen by taking F := K2,
X ={x e E:0<|z] <1}. If (i) or (ii), then X is weakly
compact iff X is norm compact! If neither (i), (ii), (iii), nor
(iv) are satisfied, the conclusion of the Theorem fails. There are
counterexamples to () = () and to () = («).

2.12. The Banach-Dieudonné and Krein-Smulian
Theorem

Let E be a metrizable locally convex space. Let 7 be the strongest
topology on E’ that coincides on equicontinuous sets with the
w*-topology. Let 7,. be the topology on E’ of uniform conver-
gence on precompact subsets of F.

The classical Banach-Dieudonné theorem states that 7 = 7.
Now let us consider the n.a. case. The conclusion 7 = 7, holds
if K is locally compact ([49],1.2). For non-locally compact K
there are Fréchet counterexamples, where 7 is not even a linear
topology ([49],2.7,2.8). A Banach counterexample is not known.
But we do have:

Theorem 16. ([25],4.5, [49],1.5) Let E be a polar metrizable lo-
cally convex space (i.e. the topology is generated by some collec-
tion of polar seminorms). Let 1y be the strongest linear topology
on E' coinciding on equicontinuous sets with the w*-topology.
Then 1y = Tpe.

As a corollary we obtain for polar Banach spaces F that an
absolutely convex set A in E’ is 7p.-open iff AN B is w*-open in
B for each ball B in E’. But also we have the n.a. version of
the Krein-Smulian Theorem.

Theorem 17. ([49],1.6) Let E be a Banach space, let K be
spherically complete. Let A C E' be absolutely convex. If AN B
is w*-closed in E' for each ball B in E' then A is w*-closed.
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The conclusion fails if K is not spherically complete and E’ is
infinite-dimensional. But it does hold if F is of countable type
and for edged absolutely convex A (for an absolute convex A
we define A° := A if the valuation of K is discrete, A® :=
{MA : )\ € K |\ > 1} otherwise. A is called edged if A = A°),
and also in general polar Banach spaces for subspaces A of finite
codimension ([49],1.10, [68],3.1).

2.13. Compactoids

Convex sets (see 2.2) consisting of at least two points contain
line segments which are homeomorphic to the unit ball B of
K. Thus, if K is not locally compact, convex compact sets in
Banach spaces are trivial. To overcome this difficulty we ‘con-
vexify’ the concept of (pre)compactness as follows. Recall that
a set X in a (Hausdorff) locally convex space E is precompact
if for each zero neighbourhood U there exists a finite set F' in
E such that X C U + F. We say that X is (a) compactoid
in F if the above is true, where X C U + F' is replaced by
X C U+ co F. Here co F, the absolutely convex hull of F,
equals {> " Nz, :n €N, zy,...,x, € F, \,...,\, € Bi}.
It is easily seen that, if K is locally compact, compactoidity is
the same as precompactness. Also, in the above we may choose
F in the linear span of X [22] so that compactoidity does not
depend on the embedding space E. The crucial property mak-
ing this concept useful is that compactoidity of X implies com-
pactoidity of co X. Intuitively (complete) compactoids should
assume the role played by (compact) precompact sets in classical
analysis.

The following properties are straightforward to prove. The clo-
sure of a compactoid is a compactoid. Its linear hull is of count-
able type. Bounded finite-dimensional sets are compactoid. If E
has a compactoid zero neighbourhood then F is finite-dimension-
al. Compactoids are bounded.

The next results are somewhat more involved and show the
analogy with the classical theory.
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Theorem 18. Let X be a subset of a Banach space E.

(1) ([57],4.37) X is a compactoid iff there is a sequence ey, ea, . ..
tending to 0 such that X C co{ey,eq,...} (the bar indicating
topological closure).

(i) ([57],4.38) If X is absolutely conver and compactoid and
A € K, |\ > 1, then there is a sequence ey, eg, ... in AX tending
to 0 such that X C co{ey,eq,...}. If K is spherically complete
ey, es,... can be chosen to be orthogonal.

(iil) ([69],2.5,2.6) If X is a closed compactoid then any Hausdorff
locally convex topology on E weaker than the norm topology co-
incides with that norm topology on X. If T € L(E, F') for some
Banach space F and X 1is in addition absolutely convex then
(TX)¢ (see 2.12) is closed. (In general TX is not closed.)

(iv) X is a compactoid iff each basic sequence in X tends to 0
[65]. (A sequence is called basic sequence if it is a Schauder base
of its closed linear span.)

Theorem 19. ([72],3.1) (Non-archimedean Alaoglu Theorem.)
Let E be a polar Banach space. Then the unit ball of E' is, for
the w*-topology, a complete edged (see 2.12) compactoid.

Theorem 20. ([35],Cor.3) (Non-archimedean Ascoli Theorem.)
Let X be a compact topological space. A subset of C(X) is com-
pactoid iff it is pointwise bounded and equicontinuous.

In connection with compactoids, we should mention the study
on Kolmogorov diameters of [15], [24], volume function [55], [56],
and almost periodic functions [66], [14], [13]. A theory of com-
pactoids in the context of locally convex By-modules can be
found in [47].

2.14. C-Compactness

For spherically complete K the analogy between ‘complete con-
vex compactoid’ and the classical ‘compact convex’ becomes par-
ticularly striking. We say [76] that a closed convex subset X of
a locally convex space E is c-compact if every collection of closed



566 Wim H. Schikhof

convex subsets of X with the finite intersection property has a
nonempty intersection. This is, indeed, a ‘convexification’ of the
definition of compactness by closed sets. However, since K is
c-compact if and only if K is spherically complete, this notion
is useful only for spherically complete K. The connection with
2.13 was first given by Gruson in [20]:

Theorem 21. ([56],6.15, [62],2.2) Let X be a bounded abso-
lutely convex subset of a locally convex space E over a spheri-
cally complete field K. Then X is c-compact iff it is a complete
compactoid.

C-compact sets behave slightly better than general complete
compactoids. For example, the continuous linear image of a
c-compact set is c-compact (compare (iii) of Theorem 18). If
x1,Ta,... 1S a compactoid sequence in a Banach space over a
spherically complete K, then there exist a,, in the convex hull of
{Zn, Tpy1, ...} suchthat aq,as, ... converges ([10],Prop.2). This
is not true if K is not spherically complete: let B;1 D By, D ...
be balls in K with empty intersection, choose x,, € B,\Bp1-

2.15. Compact Operators [74], [28], [64], [22]

Let £ and F be Banach spaces. We call an operator T €
L(E,F) compact if the image of the unit ball of F is a com-
pactoid (see 2.13). As in the classical theory the compact oper-
ators £ — E form a closed two-sided ideal C'(F) in the algebra
L(E), containing the finite rank operators. We even have that
T € L(F) is compact iff it is the (norm) limit of a sequence of
finite rank operators.

The Riesz theory on compact operators can pretty well be ex-
tended. The spectrum o(T') := {\ € K : T—\I is not invertible}
of a compact operator is not only compact, it is at most count-
able with 0 as its only possible accumulation point; moreover,
each nonzero element of the spectrum is an eigenvalue. One also
has the Fredholm alternative. For polar Banach spaces F and
compact T' € L(FE) we have the spectral formula max{|\| : A €
o(T)} = inf, ||A"||% in case K is algebraically closed.
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For further studies, see e.g. [40], [41] (connection with semi-
Fredholm operators), [48] (Calkin algebra L(E)/C(E)).

Note. There is almost nothing known on spectral theory for
non-compact 7" € L(E). The spectral formula does not hold,
some operators have empty spectrum, some do not even have
non-trivial closed invariant subspaces [58].

2.16. The Krein-Milman Theorem

For a compact convex set A in a real locally convex space, the
set ext A of extreme points (points a in A such that A\{a}
is convex) has the following remarkable properties. First, the
closed convex hull of ext A is again A (Krein-Milman Theorem)
and second, it is minimal in the sense that if A is the closed
convex hull of some closed set X, then X D ext A.

Attempts to formulate a n.a. Krein-Milman Theorem have met
with little success([36], [7]) . To explain the difficulties, consider
the closed unit ball Bx of K. Not only is it the closed convex
hull of the points 0 and 1, but also of any two points «, 3 € Bk
provided |a — | = 1, since for each v € Bg we have 7 =
ﬂa + %ﬁ. So there seems to be no way to select two unique
points with special geometrical or algebraic properties that act
like extreme points as in the classical case. However, by using
the module structure for absolutely convex sets, we have the
following ‘Krein-Milman-type’ results.

Let us define an absolutely convex set A in a locally convex space
E to be a Krein-Milman (K M-) compactoid if A is complete and
A =7coX, where X is compact. If the valuation of K is discrete,
every closed absolutely convex compactoid is K M; otherwise,
A := B,; is complete but not KM.

Theorem 22. [63] Let A be an absolutely convex set in a lo-
cally convex space E. Then A is KM iff A is isomorphic as
a topological module to some power of Bi. If E is a Banach
space then A is KM iff there exists a basic sequence ey, es, . . .
tending to 0 such that A = co{ey,es,...}. Then {0,e1,ea,...}
1s a minimal element among the compact sets Y with A=7co Y.
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Theorem 23. (Proof to be published elsewere.) Let A =co X
be a KM -compactoid in a polar locally convex space E (i.e. the
topology is generated by a family of polar seminorms), where X
is compact. Let p be a measure on X (see 2.6), where ||u| =
|u(X)| = 1. Then there exists a unique z, € E such that f(z,) =
fX fdu for all f € E'. This z, lies in A (and may be called the
pu-barycenter of X).

For related work on Silov boundaries, see [3)].

2.17. The Anti-equivalence [71]

For a polar Banach space FE, let Bgs be the closed unit ball of E’.
Equipped with the w*-topology Bg: is a topological Bx-module
that is complete, edged and compactoid by the Alaoglu Theo-
rem 19. The category C of those modules is, surprisingly, equal
to the category of all complete edged compactoid subsets of lo-
cally convex spaces. There is also a more abstract description
of C, see [70]. For polar Banach spaces E, F and T € L(E, F),
7] < 1, its adjoint 7" : F' — E’ induces, by restriction a
(w*-) continuous Bg-module map T¢ : B — Bg. But con-
versely, each continuous Bx-module map Brr — Bpg: is of the
form T? for some unique contraction T € L(E,F). For the
proof Goldstine’s Theorem: jgp : E — E” is a homeomorphism
(E,w) — (E",w*) with dense image, jp(Bg) is w*-dense in
Bpgr, and some properties of the bounded w*-topology are used.
Thus the category B of polar Banach spaces is anti-equivalent to
C. For any statement on Banach spaces, there exists therefore a
‘dual’, equivalent, statement on compactoids and conversely.

A few examples. F is of countable type iff Bgs is metrizable.
FE has an orthogonal base iff Bg is a K M-compactoid. FE is
reflexive iff each homomorphism Bg — A is automatically con-
tinuous for each A € C.

The theory is by no means finished. Of course the results gener-
ate new interest in the general theory of topological Bx-modules,
see [47].
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3. Exotic Hilbert Spaces
3.1. Valuations of Arbitrary Rank

When looking at the requirements in 1.1 for a non-archimedean
valuation, one notices that, unlike for the archimedean triangle
inequality, addition of real numbers does not play a role; one
only needs multiplication and ordering. This leads to the fol-
lowing generalization. Let G be a commutative multiplicative
totally ordered group i.e. one has the compatibility requirement
that ¢ < go implies hg; < hgy for all h,g1,92 € G. Adjoin
an element 0 and put 0- g =¢g-0=0-0=0, 0 < g for all
g € G. A (Krull) valuation on a field K is a surjective map
| |1 K — G U{0} satisfying |A| = 0 iff A = 0, [N+ pu] <
max(|A|, [p]), || = |A||p| for all A, u € K. (Note. In most
text books G is additively written.) To indicate the impact of
this generalization, let us define a subset X of G to be convex
(this has nothing to do with the convexity of 2.2) if g1, 92 € X,
h e G, gg6 <h< gy impliesh € X. The set of convex sub-
groups # {1} of G is linearly ordered by inclusion. If it is finite,
its cardinality is called the rank of G (or the valuation), oth-
erwise the rank is called infinite. A basic result is that G has
rank 1 iff G is isomorphic, as an ordered group, to a subgroup
of (0,00) ([5],3.4). Then the corresponding valuation is real-
valued as in Sections 1 and 2. An example of an infinite rank
group is given by G = @, .yGn Where each G, is a (multi-
plicative) copy of Z with the antilexicographic ordering. The
proper convex subgroups # {1} form a chain H; C Hy C ...
where H,, = @nm:lGn for each m. To show how G may act
as a value group, let F' := R(Xy, Xs,...) be the field of ra-
tional functions with real coefficients in countably many vari-
ables X1, Xs,.... The requirements |r| = 1 if » € R\{0} and
1 X, = (1,1,... ,00,1,1,...) € G, where, for each n, g, is the
generator of G, , g, > 1, determine a Krull valuation on F with
value group G. The completion of F' has the same value group.
TO SIMPLIFY MATTERS FROM NOW ON K = (K,| |)
DENOTES THIS COMPLETE VALUED FIELD.
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3.2. Exotic Hilbert Spaces, an Algebraic Introduction

Let F' be a field, let A — A* be an involution in F' (i.e. an
automorphism of order 2 or the identity). An inner product on
an F-vector space E assigns to every ordered pair x,y in FE a
number (z,y) in F' such that (z,z) = 0iff x = 0, for eacha € E
the map x — (x, a) is linear, (z,y) = (y,x)* for all z,y € E. For
each X C F we denote as usual {y € F:(y,z)=0 for all z€ X}
by X*. E is called an orthomodular space if for any subspace D

of £ D=D' «s E— Do D"

Notice the purely algebraic character of this definition. Of course
classical Hilbert spaces are orthomodular. The existence of
infinite-dimensional non-classical orthomodular spaces has been
open for quite some time but A. Keller found one in 1980 [26];
see 3.3.

Such spaces must be kind of weird according to the following
theorem of M.P. Soler [75]: Let E be an orthomodular space,
and suppose it contains an orthonormal sequence ey, es, ... (in
the sense of the inner product). Then the base field is R or C
and E s a classical Hilbert space.

3.3. Exotic Hilbert Spaces

In Keller’s example (see 3.2 above) the base field is the valued
field K described in 3.1 and D+ = D for every subspace D.
Also, the map x — |(z, x)| satisfies the strong triangle inequal-
ity. So, one may define a n.a. norm by = — +/|(z,x)|. Its
values are in G U {0} where VG := @, yV/Gn, and, for each

n, VG, is the free group generated by gb/?, with, like in 3.1,
gn the generator of G,, that is > 1. v/G is in a natural way an
ordered group containing GG. Concretely, Keller’s example con-
sists of all sequences (7;);>0 in K for which "2 n?X; converges
(here Xy := 1 and X;, Xy,... are as in 3.1) with componen-
twise operations. The inner product is defined as follows. If
r = (Oéi)iz(], Yy = (ﬁi)izo then (l’,y) = Zazﬁqu the norm is
z > +/|(x, )] = max;>o |a;|/] Xi| € VGU{0}. Here K has the

trivial involution.
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So let us define an orthomodular space F over K to be an ezotic
Hilbert space (also called G-K-K space in [46] or form Hilbert
space in [45]), if x +— +/|(z, )| is a norm and D+ = D for every
subspace D. We have the following version of Soler’s Theorem.

Theorem 24. ([45],4.3.7) Every bounded orthogonal sequence
in an exotic Hilbert space tends to 0.

It is unknown whether this conclusion holds for orthomodular
spaces in general. The reason for this ‘strange’ behaviour of or-
thogonal sequences lies in the following property of V/G. Let
yi = (% 1,1,...) € VG, y = (1,¢/%1,...) € VG,...
and let vy, vs,... € G be such that v,y, < 1 for all n. Then
inf,, v,y, = 0.

The above theorem holds -mutatis mutandis- for any n.a. val-
ued scalar field. If it has rank 1, we can multiply elements of
an orthogonal sequence of nonzero vectors by suitable scalars so
as to obtain a sequence bounded away from 0. As a corollary
we therefore obtain Theorem 4 on the nonexistence of infinite-
dimensional ‘Hilbert-like’ spaces in case the valuation is real-
valued.

Now we list some properties (most can be found in [45]) show-
ing that such spaces deserve the name ‘Hilbert’. We have seen
that an exotic Hilbert space E has an inner product and that
x — ||z|| := +/|(z,x)| is a norm satisfying the strong triangle
inequality. We have the Cauchy-Schwarz inequality |(z,y)| <
lel gl (z,y € B) (9]

For each closed subspace D we have D = D+ so D has an
orthogonal complement; therefore the Theorem 9 version of the
Hahn-Banach Theorem holds. Form orthogonality implies norm
orthogonality in the sense of 2.4 but not conversely. F is com-
plete and has a countable form orthogonal base. Each maximal
form orthogonal system of nonzero vectors is an orthogonal base.
For each f € E’ there exists a unique a € E with f(x) = (z,a)
forallz € E, and || f|| = ||a||. E is reflexive. For each A € L(F)
there exists a unique A* € £(FE) and that (Az,y) = (z, A*y) for
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all x,y € E. This leads to the definition of hermitean, normal,
unitary,. .. operators. Spectral theory is, as yet, rather unknown
territory.

On the other hand there are enough features to justify the term
‘exotic’ for such spaces E. We have already seen that bounded
orthogonal sequences tend to 0. In addition, each A € L(F)
can be approximated uniformly on bounded sets by finite rank
operators, making every A € L(E) compact in the sense of [73].
This ties in with the fact that the unit ball of F is a compactoid
([45],4.3.7). If A € L(E) is injective and AFE is closed then A
is surjective! Each surjective A € L(F) is bijective! Thus, F is
never linearly homeomorphic to any proper closed subspace [73].
All these properties make exotic Hilbert spaces F resemble finite-
dimensional spaces, behaving more ‘rigidly’ than classical Hilbert
spaces. Another peculiarity is that continuous linear operators
need not be bounded (Lipschitz). The theory of exotic Hilbert
spaces is far from complete; more research is needed. A recent
result [27] is the absence of operators A and B satisfying the
commutation relation AB — BA = I, which is of interest for
n.a. Quantum Mechanics. (As a contrast, on the space ¢y over
a rank 1 valued field there do exist operators A, B satisfying
AB — BA=1! [33])

3.4. Banach Spaces Over Fields with an Infinite Rank
Valuation

Traditionally, norms have values in [0,00). This has also been
our choice in §2 for spaces over a field with a rank 1 valuation.
However, for our infinite rank valued scalar field K of 3.1 it is
not at once clear what a ‘natural home’ for norm values should
be. The range of the valuation is {0} U G, with G = @, Gy,
and the natural norm on exotic Hilbert spaces has values in
{0} UVG. For several constructions such as norms in quotient
spaces, norms of linear operators, we would like to be able to
take infima and suprema of bounded sets in our range. Now
G and VG are not Dedekind complete, so one is tempted to

consider the Dedekind completions G* and \/5#, constructed
in the usual way by cuts.
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Unfortunately, although there are at least two natural ways to
extend the multiplication of, say, G to G¥, it will never be a
group, only a semigroup, as it is easily seen that for a proper
convex subgroup H, we will get (sup H)> = supH. On the

other hand, one may not need a multiplication in \/5# or G*
in many situations. So, what is really needed? A norm || || on
a space over K should satisfy [[z|]| = 0 < = =0, || \z| =
Az, ||z + y|| < max(||z|[,|ly]|), so the range set X should
be linearly ordered and allow a multiplication of elements of G
with elements of X. This leads to the following.

Definition. ([45],1.5) Let G be the value group of K. A
G-module is a totally ordered set X together with an action
G x X — X such that ¢ > h, x > y implies gx > hy for all
g,h € G, x,y € X, and such that for each ¢ > 0 thereisa g € G
for which gz < e (to make scalar multiplication continuous).
Adjoin an element Ox to X with the properties g-Ox =0-0x=0x
and Ox < z for all g € G, v € X, and let us write from now on
0 instead of Ox. An X-norm on a K-vector space E is a map
|||+ E— X U{0} satisfying the rules mentioned above.

One proves directly that the Dedekind completion X of X is
again a G-module in a natural way. Examples of G-modules are:
any union of cosets of the value group in (0,00) in the case of
a rank 1 (real valued) valuation, but also the sets G, VG, G#

and \/5# mentioned above for the field K of 3.1.

This definition opens the way to building a theory of Banach
spaces over K - and over more general infinite rank valued fields
L - in the spirit of Section 2. This theory is not yet fully devel-
oped; see [45] for recent results. Several theorems remain valid
in this general setting such as the Hahn-Banach Theorem for
spherically complete L, the theory of norm-orthogonality, the
Open Mapping Theorem, but there are also differences, such as
for example the existence of a Banach space of countable type
without Schauder base ([71]; compare Theorem 6). There is a
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quite satisfactory theory for so-called norm Hilbert spaces (NHS)
i.e. spaces E such that for each closed subspace D there is a lin-
ear projection P of E onto D with ||Pz|| < ||z| for all . This
class properly contains the category of the exotic Hilbert spaces,
but it shares the ‘exotic’ properties of (3.3).

A final remark. The notion of a general X-normed space is by no
means restricted to the infinite rank case. For example, let L be
a n.a. valued complete field with a dense valuation L — [0, 00),
let £ := (. For x = (x1,23,...) € £> put r := sup,, ||z.||-
Define

rt if max|z,| exists
]| :== no
r~ otherwise

where 7~ is an ‘immediate predecessor’ of . Formally || || takes
its nonzero values in X := (0,00) x {0, 1}, a (0, 00)-module with
the lexicographic ordening, and obvious operations. r* := (r, 1),
r~ = (r,0).

This way the norm ||z|| can store more information on the vector
x than in the traditional ones. This area is still unexplored.

Acknowledgement. I wish to thank A. Khrennikov, H. Ochse-
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Note to the references. No attempts have been made to be
complete; references are just meant to be a help to the reader
to find details and further investigations. Accessibility has been
the main criterion of listing.

For general introduction on n.a. valued fields and elementary
analyse see [1], [5], [32], [34], [54], [59], for infinite rank valua-
tions see [5], [53], [81]. Books on n.a. Functional Analysis are
[44], [43], [52], [57], and survey papers [42], [21].
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