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INFIMA OF RING TOPOLOGIES

Niel Shell*

Abstract

We consider when the infima of two field topolo-
gies, considered as members of four different lat-
tices (the lattices of all topologies, of all group
topologies, of all ring topologies, and of all field
topologies) are the same and when they are dis-
tinct.

1. Introduction

The range of a sequence {x,} will be denoted by range{x,}.
The nonzero elements of an additive group G (e.g., the additive
group of a ring) will be denoted by G*. We denote the set
of integers, the set of positive integers and the set of rational
numbers by Z, Z-o and Q, respectively. We denote the usual
topology on any subfield of the complex numbers by 7.

By a group topology on an additive group we mean a topol-
ogy with respect to which addition is jointly continuous and
negation is continuous. By a ring topology we mean a group
topology on the additive group of a ring with respect to which
multiplication is jointly continuous; and by a field topology we
mean a ring topology on a field with respect to which inversion
is a continuous function on the set of nonzero elements of the
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field. We let £,(K) (respectively, L,(K), L, (K), L;(K)) denote
the set of all topologies (all group, ring, field topologies) on a
set (group, ring, field) K. Each of these four sets of topologies
is considered to be partially ordered by containment, and it is
well-known that each of these sets is a complete lattice with this
order (see, e.g., [10, pp.30-31]).

The least upper bound (greatest lower bound) of a subset £
of a totally ordered group or of the lattice all ring topologies on
a ring will be denoted by VE (AE); we let a V b = V{a,b} and
aNb= Na,b}.

We denote the trivial topology and the discrete topology on
any set by 0 and 1 , respectively.

Recall (see, e.g., [10, Definition 3.4.1]) that a family of topolo-
gies on a set is called independent if NU; = () for U; € T;, where 7T;
are distinct members of a finite subfamily of the family, implies
one of the sets U; must be empty.

The neighborhood filter at the identity of a group topology
7 will be denoted by B(7). A group topology on a group G
is called minimal if it is a minimal element of the set of all
Hausdorff group topologies on . Compact Hausdorff group
topologies are obvious examples of minimal group topologies.

A ring topology on a field is either Hausdorff or trivial (see,
e.g., [10, Theorem 1.3.1]). For certain subsets (near orders) A
of a field K, the sets {rA : z € K*} form a neighborhood base
at zero for a Hausdorff ring topology on K; this topology is
denoted by 74 (see, e.g., [10, Chapter 4]). In particular, the
topology having {zZ : x € Q*} as a neighborhood base at zero
is denoted by 7z.

By a waluation on a field we mean either a nonarchimedean
valuation with values in a totally ordered abelian group (whose
operation we write as multiplication) or the usual absolute value,
denoted by | |, on a subfield of the complex numbers. For a
valuation v on a field K, the sets Uy(a) = {r € K :v(z—a) < g}
are called spheres. The spheres about zero form a neighborhood
base at zero for a topology which we call the topology induced
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by the valuation. A nondiscrete topology induced by a valuation
on K is a field topology which is minimal among the set of all
Hausdorff ring topologies on K (see, e.g., [10, Theorem 3.3.1]).
Any family of nondiscrete topologies induced by valuations is
independent (see [16, Corollary 2.3]). The topology induced by
the valuation v is denoted by 7,. Thus 7} = 7.

A class of topologies called direct topologies was defined in
[18] and developed in [11], [12], [13], and [14]. These topologies
generalized important examples of ring topologies on Q defined
in [8] and [9]. Further important examples of direct topologies
appeared in [5] and [6].

Definition: A sequence of subsets {M;,,}inez., of a ring S will
be called a direct system in S’ if

(D1) 0 € M;,, for all i and n and M;, = {0} if i < n;

(D2) —M;,, = M,,, for all i and n;

(D?)) Min—l—l + Min—l—l C M;,, for all 7 and n;

(D4) [Xi (Mg + My + Min)] N(Miy + Myy + My1) = {0}
for all & > 1;

(D5) for all 4 and n, 3=y k—; Tjyx € M;y, Whenever x; € Mj, 41
and yp € Mg ,41; and

(D6) for all @ € S and n > 0, there exists k > 0 such that,
for all 4, aM; 1 C M;,, and M; i ra C M;,.

For each positive integer n, U, = UX, % M;,. The
sequence {U,} will be called the neighborhood base associated
with the direct system. A ring topology with a neighborhood
base at zero which is the neighborhood base associated with a
direct system will be called a direct topology.

The following construction of direct topologies is used in some
of the examples and in the final theorem.

Let (K,|]|) be a field with a nontrivial absolute value, and
let R be a ring with quotient K such that R is discrete in the
topology induced by the absolute value. Let v be a positive real
number less than or equal to 1; let {a;,}, i,n € Z~g, i > n, be
real numbers greater than or equal to A|R*|; and let P;, i € Z+,
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be positive real numbers satisfying P, > 1/ and

i1
Qin > Qing1(2 Y W1 Py + Qi1 B);
Jj=n-+1

T

yPiv1 D

2.93% zzaﬁlpj‘
j=1

Let {p;} be a sequence in R such that 7P, < |p;| < P, for all
1. Then the sets U,, n > 1, defined below form a neighborhood
base at zero for a ring topology on K (see [12, Theorem 12]):

Un= {Z %pi:ai’bi € Rk =n, % < ip, 0 < b <2871

(3

For a given field K, with a fixed choice of | | and R, the set of
all topologies of this form on K will be denoted by mutl(K).
For K = Q, we choose the usual absolute value and let R = Z.
The reader is referred to [12, Theorem 13] for the definition of
a second similar class of topologies referred to in Example 6 as
mut2(K). If J is an infinite subset of positive integers and J(7)
denotes the ith element of J listed as an increasing sequence,
then a topology finer than the topology with base {U, } may be
defined by taking the sets U/ consisting of sums in U,, such that
a; = 0 for i ¢ J. This is referred to as the condensation of the
topology to J ([12, pp.199-200]); this definition of condensation
generalizes readily to all direct topologies). A second topology
finer than the one defined by {U,} is obtained by replacing the
parameters defining U,, by
a;n = QJ(i)n, PQ = PJG)-

We refer to this as the Mutylin condensation of the original
topology to J (see [12, p.211]).
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2. Infima

In [1] (or see [10, Theorem 3.2.1]) the authors show that for each
Hausdorff ring topology 7 on a field K, the quotient topology
for the division function

(K, 7)) x (K*T|gx) — K
(z,y) — x/y

is a Hausdorff field topology coarser than or equal to 7. Mutylin
[9] showed that if B is a neighborhood base at zero for 7, then

v
1+ O\{-1}

is a neighborhood base at zero for a Hausdorff field topology
weaker than 7. (Weber [15] showed Mutylin’s result generalized
readily to topological rings.) Actually these two constructions
yield the same field topology: both may be verified to be the
finest field topology coarser than or equal to 7 (see, e.g., [10,
Theorem 3.2.1]). We will call this topology D7 .

For a field K and §,7 € L;(K), the supremum of S and
7 is the same whether calculated in the lattice £;(K), £, (K),
Ly(K) or L,(K). Analogous statements for ring topologies on a
ring and group topologies on a group are true. A neighborhood
base at a point x with respect to the supremum of a family T of
topologies on any set can be described explicitly: all sets of the
form Nzer,Ur, where Ur belongs to a 7-neighborhood base at
x and Ty ranges over all finite subsets of T.

The situation is quite different for infima: For an arbitrary
set X, § N7 is the infimum of two topologies in £:(X). For
an additive group G, the sets U + V', where U varies over an
S-neighborhood base at zero and V' varies over a 7 -neighborhood
base at zero, are easily seen to form a neighborhood base at zero
for the infimum of S and 7 in £4(G); we denote this topology
by & + 7. The notation given above for the finest ring topol-
ogy weaker than both of the ring topologies S and 7 is SA 7.

{ U € B},
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The infimum in £;(K) of two topologies S and 7 is easily veri-
fied to be D(S A T). Clearly

DSEANT)SSANT <S+T<8SNT.

The purpose of this paper is to consider when these inequal-
ities are strict.

Theorem 1. If S and T are first countable Hausdorff group
topologies on an additively written abelian group G, then SNT =
S+ 7 if and only if S and T are comparable (i.e., S < T or
T<S§).

Proof. Suppose S £ 7 and T £ S. Then there exist symmetric
sets Up € B(S) and Vy € B(7T) such that V ¢ Uy and U ¢ Vj
for any U € B(S) and V € B(T). Thus, there exists a sequence

{z,,} of elements in Uy such that ,->0, and z, ¢ V; for any
n. If the range of x, has any 7 -cluster points, we replace the
sequence {z,} by a subsequence which is 7-convergent to, say,
x; limg z,, will denote the set (0 or {z}) of all 7-limits of {x,}.
Analogously, choose a sequence {y,} of elements in V{ such that
ynLO, yn ¢ Up for any n, and limsy, = {y} or {y,} has no
S-cluster points.

We show that

E = range{z, + y,} U li%n Ty U liényn

is not (S + 7)-closed: Since x,, + "0, 0 is in the (S+7T)-
closure of E. But, when they exist, x,y # 0; and x, + y, = 0
would imply y, = —x,, € Up, a contradiction. So 0 ¢ E.

However, range{x, + y,} U limrx, is 7-closed, so FE is
T -closed. Similarly F is S-closed. L.e.,

G\E € (SNTO\(S+17T). O

The hypothesis of the theorem is not a necessary condition:
if S is a minimal Hausdorff group topology and 7 »? S is
Hausdorff, then S + 7 is not Ty, but all cofinite sets are in
SNT,s05+7 <8NT.
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Theorem 2. If A is a ring and S, 7 € L.(A), then these
conditions are equivalent:
(1)SANT =8+T;
(2) S+ T is a ring topology;
(3) given U € B(S) and V € B(T), there exists Uy € B(S)
and Vi € B(T) such that UyV; C U4V and ViU, C U4V,
The routine verification is omitted.

Lemma 3.1 Group topologies S and T on a group (G,-) are
independent if and only if UV = G for all U € B(S) and V €
B(T). In particular, if G is abelian and its group operation is
addition, then S and T are independent if and only if S+7 = 0.

Proof. The second statement follows from the first, and the easy
proof in [16, Theorem 1.6] of the first statement does not use
the assumed commutativity: If UV = G for all U € B(S) and
V € B(7) and if A and B are nonempty S-open and 7 -open
sets, respectively, with a € A and b € B, then a”'b € G =
(a=tA)(B~'), so that there exists a’ € A and b € B such that
a™'b = a=td'(b')7'b. Hence, b/ = o’ € AN B. Conversely, if S
and 7 are independent, g € G, U € B(S) and V € B(7T), then
there exists z € U 'gNV. That is x = u='g = v for some u € U
and v € V. Then g =uv € UV. O

Theorem 3. If S and T are ring topologies on a field K such
that

(1) T is minimal among Hausdorff ring topologies on K,
(2)S 27T, and
(8) S and T are not independent;

then0=SANT <S+7.

Proof. (1) and (2) imply the stated equality, and Lemma 3.1
states that (3) is equivalent to the statement S + 7 # 0. O
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Example 1: In the field Q,
TaNTe =0< Tz 4+ T <TzNT.

Example 2: For 7 € mutl(K),
TANT=0<T+7T | <TnNT).

Example 3: Let 7 be a nondiscrete direct field topology, and
let 7° and 7°¢ denote the condensations of 7 to the set of odd,
respectively, even, positive integers (with both condensations
with respect to the same direct system). Then, by [12, Theorem
11], 7° and 7° are field topologies, and, from the definition of
the neighborhoods defining a direct topology,

T=DT°NT)=T°NT*=T°+T°<T°NT".

For 7 € mutl(Q), let §° and 8¢ be the Mutylin condensa-
tions of 7, to the sets of odd and even positive integers, respec-
tively, with defining neighborhood bases at zero {U?} and {U¢}.
Then
a;

U,OL—I-UfL:{Z%pi: ?

where « is the integer £ —n or %

< @in, 0 < by < 2%},

71 —n. One readily verifies (by

the same methods as in [7, pp.161-162]—or see [10, p.27]) that
UpiUpn C U + Uy

Also,
33n

P /25" € U \(US + US).

Therefore
T <S°NS° =8+ S°.

Example 4: Let D be a Dedekind domain with quotient field
K; let V and W be D-submodules of K; and let lin(K, D) be
the collection of all D-linear ring topologies on K (see [3, p.476]
for definitions and terminology). Then

Ty + Tw = Ty A Ty,
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and 7y + Ty obviously is D-linear, so the infimum of 7y, and Ty,
computed in the lattice lin(K, D), viz., Ty w, is also Ty + Ty .

Hence, the only natural misinterpretation of the symbol “inf”
in [3] that would be erroneous is 7y N Ty .

Theorem 4. (cf. [17,2.2-2.4]) If{T, 71,75} is an independent
set of group topologies, then

(LVT)+ (LVT)=T.

If {7, 7,5} is an independent set of ring topologies, then
also

(LVT)N(T,VT)=T.

If {7, 7y, T2} is an independent set of field topologies, then
also

D(TWVT)N(TVvT)=T.

Proof. Choose a set of the form
W= U nNU)+ (UsNU); U, eB(T;),i=1,2, UeB(T).

The collection of all such sets is a base for (71 V7T)+ (T2 vV T).
Pick V' € B(7T) such that V' —V C U. Choose z € V and

relUinN(z—=V)Nn(z—U,).

Then
z=z+ (2 —x) € W;

ie, VCW, so
(LVvT)+(LVT)<T.
On the other hand, obviously

T[<D(LVI)NTLVT))<(GVT)AN(TLVT)
< (GVT)+(LVT). O
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Example 5: ([17, 2.3-2.4]) Let E be a set of inequivalent
valuations on a field K, and, for A C FE, let 74 be the supremum
of the valuation topologies 7,,,v € A. If A, B and C' are disjoint
subsets of F/, then 74, Tp and 7¢ are independent. Since 74 V
Te = Tauc, IV Tc = Tpuc and 7 is a field topology,

D(Taue N Tpue) = Tave N Tpue = Taue + Tpuc = To.

Theorem 5. Suppose S, T and U are ring topologies on a field
K satisyfing the following conditions:

(1) U is induced by a valuation.

(2) All zero neighborhoods of SV T are U-unbounded.
[In the presence of condition (1), condition (2) above and (2')
below are equivalent:

(2')SVT 2U.]

(8) T and U are not independent.

(4) S and U are independent.

Then (SVT)N(SVU) < (SVT)+(SVU).

Proof. Let S, T and U, with or without subscripts or primes,
denote open neighborhoods of zero in S, 7 and U, respectively.
Let Uy(0) be a sphere of radius g with respect to a valuation v
inducing U.
Hypothesis (3) implies there exists ¢ € K, and U and T such
that
(c+U)NT = 0.

Choose symmetric U; such that U; + Uy C U. Then, for any
a€cc+ Ul,
ag¢ (SNT)+(SNUy).

Suppose the product (S'NT")-(S"NU’) is given, and U,.(0) C
U’ NU,. Using (2), choose x € §' NT" such that v(£) < 7/,
where 1’ = r if v is nonarchimedian and r’ = r/2 otherwise. Let
t = (r/v(x)) Ar" and choose y € K such that

yeSn (g + Ut(0)>
(using (4)). Then
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y € % + U,(0) € U, (0) C U
Therefore, y € S'NU’ and zy € (' NT") - (S"NU’). However,

v(ay —¢) = v(@ply - o) <r,
T
SO
xy € c+ U, (0) C c+ Us.
The desired conclusion now follows from Theorem 2. O

Example 6: Let g be a prime integer, and let £,*(Q) denote
the set of all Hausdorff ring topologies on Q which are coarser
than or equal to 74, where A is the near order {m/q" : m,n €
Z}.

For U = T, on Q, the hypotheses of Theorem 5 are satis-
fied whenever § € £,* Umut2(Q) and 7 € {7z} Umut1(Q),
provided the same parameters {p;} are used to define S and 7
when § € mut2(Q) and 7 € mutl(Q).

Although our results indicate that SN7 and S AT are gen-
erally distinct, there are examples in the literature ([4, p.165],
[18, pp.40-43 and pp.66-69]), and [11, Theorem 8] of families
{S;} of group and ring topologies such that

We gave explicit descriptions for the neighborhoods of zero
for the topologies SV 7, SN7 and S + 7; and the neighbor-
hoods of zero in D(S A 7)) are described explicitly in terms of
the neighborhoods of zero in SA7. When SA7 and S + 7
coincide, we have a description of the neighborhoods of zero of
the former. It would be useful to have a description for the
(S A T )-neighborhoods of zero in the general case.

Theorem 6. Let (K,||) be a field with a nontrivial absolute
value. Suppose K contains a discrete subring whose quotient is
K. Then L,.(K) is not a distributive lattice.
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Proof. Choose 7 € mutl(K) and a condensation 74 > 7. The
result follows from [2, pp.69-70] and this diagram:
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