Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.

UNIVERSAL ULTRAMETRIC SPACES OF SMALLEST WEIGHT

Jerry E. Vaughan

Abstract

We modify a construction of A. Lemin and V. Lemin to construct an ultrametric space LW'_{τ} which is universal (in the sense of isometry) for ultrametric spaces of weight at most τ . Under the singular cardinal hypothesis, a set-theoretic assumption whose negation is related to large cardinals, the weight of LW'_{τ} is τ for all $\tau > \mathfrak{c}$. This provides a solution to a problem raised by the Lemins.

1. Introduction

An ultrametric space X is called isometrically universal for ultrametric spaces of weight at most τ provided that every ultrametric space of weight at most τ can be isometrically embedded into X (for short, we say that X is τ -universal). In [3], A. Lemin and V. Lemin construct for every cardinal τ an ultrametric space which they called LW_{τ} , and proved

Theorem 1. [3, Main Theorem] The ultrametric space LW_{τ} is a τ -universal space, and the weight of LW_{τ} is τ^{ω} .

The Lemins point out that if τ is a cardinal such that $\tau^{\omega} = \tau$, then their space LW_{τ} has weight τ , which is the smallest possible

Mathematics Subject Classification: 54E35, 54A35, Secondary 03E10 Key words: ultrametrics, singular cardinal hypothesis, large cardinals

weight for a τ -universal space. This leads to the natural question raised by the Lemins ([3, Problem 1]): If $\mathfrak{c} < \tau < \tau^{\omega}$, does there exist a τ -universal space having weight smaller than τ^{ω} ? In particular, does there exist one having weight τ ? We give two affirmative solutions to this latter problem. We show that there is an unbounded class of cardinals τ satisfying $\mathfrak{c} < \tau < \tau^{\omega}$ for which there is a τ -universal space of weight τ , and that under the assumption of the singular cardinal hypothesis, for every cardinal satisfying $\mathfrak{c} < \tau < \tau^{\omega}$ there exists a τ -universal space of weight τ .

We consider only infinite cardinals in this paper, and $\mathfrak{c} = 2^{\omega}$ denotes the cardinality of the continuum. For a cardinal τ , τ^+ denotes the first cardinal larger than τ , and $cf(\tau)$ denotes the cofinality of τ . We consider the following condition for cardinal numbers $\tau > \mathfrak{c}$:

$$(*) \quad \sum \{ \kappa^{\omega} : \kappa < \tau \} \le \tau.$$

Clearly (*) is weaker than the condition $\tau^{\omega} = \tau$. Since $cf(\tau) = \omega$ implies $\tau < \tau^{\omega}$ by Konig's theorem [1, Theorem 17], we introduce the following condition for discussion of the Lemins' problem:

(†) τ satisfies (*) and $cf(\tau) = \omega$

Our main result follows from Lemma 2 and Lemma 3:

Theorem 2. If $\tau > \mathfrak{c}$ and τ satisfies (*), then there exists an ultrametric space LW'_{τ} which is τ -universal and has weight τ .

Thus if τ satisfies (†), then LW'_{τ} provides an affirmative solution to the Lemins' problem. Clearly every strong limit cardinal τ of countable cofinality satisfies (†) (a cardinal τ is a strong limit cardinal provided $2^{\kappa} < \tau$ for every cardinal $\kappa < \tau$). Thus we have an unbounded class of cardinals for which LW'_{τ} is a τ -universal space of weight τ ; so the Lemins' problem is solved for these cardinals. Moreover, we completely solve the Lemins' problem assuming the singular cardinal hypothesis, by proving the following:

Lemma 1. Under the singular cardinal hypothesis, every $\tau > \mathfrak{c}$ satisfies (*).

Proof. The result [1, Lemma 8.1] describes the value of κ^{λ} for any infinite cardinals κ , λ under the assumption of the singular cardinal hypothesis. In case $\kappa > \mathfrak{c}$ and $\lambda = \omega$, the lemma tell us that $\kappa^{\omega} = \kappa$ or κ^{+} . Thus, if $\kappa < \tau$ then $\kappa^{\omega} = \mathfrak{c}$, κ or κ^{+} , so we have $\kappa^{\omega} \leq \tau$.

The hypothesis " $\tau > \mathfrak{c}$ " in Theorem 2 can be improved to " $\tau \geq \mathfrak{c}$ " since $\mathfrak{c} = \mathfrak{c}^{\omega}$, but for no cardinal $\tau < \mathfrak{c}$ is there a τ -universal space of weight τ (or of weight less than τ^{ω}) because the Lemins proved that any ultrametric space that contains an isometric copy of every two-point ultrametric space must necessarily have weight at least \mathfrak{c} [3, Proposition].

The question as to whether every cardinal $\tau > \mathfrak{c}$ satisfies (*) is related to large cardinals. If (*) fails for some cardinal $\tau > \mathfrak{c}$, then the singular cardinal hypothesis is false, and therefore there is an inner model of the universe with a measurable cardinal [2, §29]. In the other direction, using "some very large cardinals," M. Magidor [4] constructed a model satisfying the following two properties: (i) for all $n < \omega$, $2^{\aleph_n} = \aleph_{n+1}$ and (ii) $2^{\aleph_\omega} = \aleph_{\omega+2}$. It follows that (*) fails for the cardinal $\tau = \aleph_{\omega+1} > \mathfrak{c}$ since $\aleph_\omega^\omega = \aleph_{\omega+2}$ in this model (e.g., see [1, Lemma 8.3]). We do not know if the Lemins' problem is related to large cardinals.

In §2, we describe the space LW'_{τ} , and prove that its weight is τ whenever τ satisfies (*). In §3 we prove that LW'_{τ} is τ -universal. In §4 we discuss the condition (†), and the remaining unsolved portion of the Lemins' question.

2. A Subspace of the Lemins' τ -universal Space

We first define the Lemins' τ -universal metric space LW_{τ} . Let \mathbb{Q}^+ denote the set of positive rational numbers, and \mathbb{Q}^+ the set of all function $f: \mathbb{Q}^+ \to \tau$. The Lemins defined

 $LW_{\tau} = \{ f \in \mathbb{Q}^+ \tau : \exists N(f) \in \mathbb{R} \text{ such that } f(x) = 0 \text{ for all } x > N(f) \},$

and an ultrametric Δ on LW_{τ} by the equalities $\Delta(f, f) = 0$ and for $f \neq g$, $\Delta(f, g) = \sup\{x : f(x) \neq g(x)\}$. It is easily checked that Δ is an ultrametric on LW_{τ} .

We define

$$D_{\tau} = \{ f \in LW_{\tau} : (\exists \alpha < \tau) Range(f) \subset \alpha \},$$

and define the subspace $LW'_{\tau} \subset LW_{\tau}$ to be the closure of D_{τ} in LW_{τ} :

$$LW'_{\tau} = cl_{LW_{\tau}}(D_{\tau}).$$

Lemma 2. The weight of LW'_{τ} equals $\tau \cdot \sum \{\kappa^{\omega} : \kappa < \tau\}$, and $\tau \cdot \sum \{\kappa^{\omega} : \kappa < \tau\}$ is either τ or τ^{ω} . If τ satisfies (*), then the weight of LW'_{τ} equals τ .

Proof. The cardinality of D_{τ} equals $\sum \{ |\alpha|^{\omega} : \alpha < \tau \}$ since

$$D_{\tau} = \bigcup_{\alpha < \tau} \mathbb{Q}^{+}(\alpha),$$

and clearly $\sum \{|\alpha|^{\omega} : \alpha < \tau\} = \tau \cdot \sum \{\kappa^{\omega} : \kappa < \tau\}$. Since D_{τ} is dense in LW'_{τ} , the weight of $LW'_{\tau} \leq |D_{\tau}|$. We need to show that the weight is not less than $|D_{\tau}|$, and we do this in two steps. First we show that for every $\kappa < \tau$, there is a discrete subset of LW'_{τ} of cardinality κ^{ω} . We proceed as in [3, Main Theorem] and define for each $f \in LW_{\kappa}$ the function $F_f \in LW_{\kappa}$ by $F_f(x) = 0$ for $x \leq 1$, and $F_f(x) = f(x-1)$ for x > 1. Then if $f \neq g$, we have $\Delta(F_f, F_g) \geq 1$; so $\{F_f : f \in LW_{\kappa}\}$ is a discrete subset of LW'_{τ} of cardinality κ^{ω} . Thus the weight of LW'_{τ} is at least $\sum \{\kappa^{\omega} : \kappa < \tau\}$. Now for $\alpha < \tau$ define

$$f_{\alpha}(x) = \begin{cases} \alpha & \text{if } 0 < x \le 1\\ 0 & \text{if } x > 1 \end{cases}$$

Then $\{f_{\alpha} : \alpha < \tau\}$ is a discrete subset of LW'_{τ} of cardinality τ ; so the weight of LW'_{τ} is at least τ .

To see that $\tau \cdot \sum \{\kappa^{\omega} : \kappa < \tau\}$ is either τ or τ^{ω} , first note that this cardinal is between τ and τ^{ω} . Thus if $\tau < \tau \cdot \sum \{\kappa^{\omega} : \kappa < \tau\}$ then $\tau < \sum \{\kappa^{\omega} : \kappa < \tau\}$. Hence there exists $\kappa_0 < \tau$ such that $\tau < \kappa_0^{\omega}$; so $\kappa_0^{\omega} = \tau^{\omega}$. Thus $\sum \{\kappa^{\omega} : \kappa < \tau\} = \tau^{\omega}$.

The last statement in the Lemma follows from the definition of (*).

Clearly
$$LW'_{\tau} = LW_{\tau}$$
 if and only if $cf(\tau) > \omega$.

3. LW'_{τ} is τ -universal

We now show that LW'_{τ} is a τ -universal space. Since we work in a subspace of LW_{τ} , we can refer to the proof in [3] for most of the details.

Lemma 3. LW'_{τ} is a τ -universal space.

Proof. Let (X,d) be an ultrametric space of weight τ . We recall the inductive construction in [3] of the function $i: X \to LW_{\tau}$ which will be the desired isometry. Essentially, all we do is observe that a minor change in the well-ordering of X allows us to prepare the induction so we can prove that $Range(i) \subset LW'_{\tau}$. Well-order $X = \{a_{\alpha} : \alpha < \kappa\}$ (one-to-one) in such a way that $\{a_{\alpha} : \alpha < \tau\}$ is dense in X (putting this dense set first is the change we need). The function i will be defined by induction on κ and the notation $i(a_{\alpha}) = f_{\alpha}$ will be used. Define $i(a_0) = f_0$ to be the constant function in $\mathbb{Q}^+\tau$ with constant value 0. Define $i(a_1) = f_1$ by $f_1(x) = 1$ for $0 < x \le d(a_0, a_1)$ and $f_1(x) = f_0(x)$ for $x > d(a_0, a_1)$. Assume we have defined f_{α} for $\alpha < \gamma$, where $\gamma < \kappa$, so that for all $\beta < \alpha < \gamma$ we have

- (1) $d(a_{\alpha}, a_{\beta}) = \Delta(f_{\alpha}, f_{\beta})$
- (2) $Range(f_{\alpha}) \subset \min\{\alpha+1, \tau\}$

As in [3], we define f_{γ} in two cases. First put

$$d_{\gamma} = \inf\{d(a_{\alpha}, a_{\gamma}) : \alpha < \gamma\},\$$

and note that $d_{\gamma} = 0$ for all $\tau \leq \gamma < \kappa$.

Case 1. There exists $\beta < \gamma$ such that $d(a_{\beta}, a_{\gamma}) = d_{\gamma}$ (by one-to-one, $d_{\gamma} \neq 0$; so $\gamma < \tau$ in this case). Then define

$$f_{\gamma}(x) = \begin{cases} \gamma & \text{if } x \leq d_{\gamma} \\ f_{\beta}(x) & \text{if } x > d_{\gamma} \end{cases}$$

Case 2. If not Case 1, then there exists a sequence of $\alpha_n < \gamma$ such that $d(a_{\alpha_n}, a_{\gamma}) < d_{\gamma} + \frac{1}{n}$ (for $n < \omega$).

Case 2(a). If $d_{\gamma} > 0$ define

$$f_{\gamma}(x) = \begin{cases} \gamma & \text{if } x \leq d_{\gamma} \\ f_{\alpha_n}(x) & \text{if } d_{\gamma} + \frac{1}{n} < x \end{cases}$$

Case 2(b). If $d_{\gamma} = 0$ define $f_{\gamma}(x) = f_{\alpha_n}(x)$ for $d_{\gamma} + \frac{1}{n} < x$. The Lemins prove [3, Theorem 1] that in all cases f_{γ} is well defined and satisfies (1).

To see that (2) holds for f_{γ} , we first assume that $\gamma < \tau$, hence $\min\{\gamma + 1, \tau\} = \gamma + 1$. If f_{γ} is defined by Case 1, we note that since $\beta < \gamma$,

$$Range(f_{\gamma}) \subset Range(f_{\beta}) \cup \{\gamma\} \subset (\beta + 1) \cup \{\gamma\} \subset \gamma + 1.$$

If f_{γ} is defined by Case 2, we have (since $\alpha_n < \gamma < \tau$ for all $n < \omega$) either

$$Range(f_{\gamma}) \subset \bigcup_{n < \omega} Range(f_{\alpha_n}) \cup \{\gamma\} \subset \bigcup_{n < \omega} (\alpha_n + 1) \cup \{\gamma\} \subset \gamma + 1,$$

or

$$Range(f_{\gamma}) \subset \bigcup_{n < \omega} Range(f_{\alpha_n}) \subset \bigcup_{n < \omega} (\alpha_n + 1) \subset \gamma + 1.$$

Now we show that (2) holds when $\tau \leq \gamma < \kappa$. In this case we have $\min\{\gamma + 1, \tau\} = \tau$. Since $\{a_{\alpha} : \alpha < \tau\}$ is dense in X, we have $d_{\gamma} = 0$ for all $\tau \leq \gamma < \kappa$, and therefore f_{γ} is defined by Case 2(b). By the induction hypothesis we have

$$Range(f_{\gamma}) \subset \bigcup_{n < \omega} Range(f_{\alpha_n}) \subset \bigcup_{n < \omega} (\min\{\alpha_n + 1, \tau\}) \subset \tau.$$

$$i(X) \subset cl_{LW_{\tau}}D_{\tau} = LW'_{\tau}.$$

This completes the proof.

We remark that the Lemins' proof of their Main Theorem proceeds in two steps. First they define the isometry on a dense subset of X into LW_{τ} where τ is the density of X, and next they extend the isometry to the whole space X. Our proof does not explicitly use the second step since we construct i to be an isometry on all of X into LW'_{τ} .

4. Cardinals that Satisfy (†)

As we noted, every strong limit cardinal τ of countable cofinality satisfies (†), hence the class of cardinals satisfying (†) is unbounded. We will describe this class in more detail and enumerate it.

Lemma 4. (a) A countable sum of cardinals satisfying (†) satisfies (†). (b) For any cardinal κ , the smallest cardinal $\tau > \kappa$ that satisfies (†) is the first singular cardinal greater than κ^{ω} .

Proof. The proof of (a) is obvious, and (b) follows from the well-known Hausdorff formula [1, 6.18]

$$\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \aleph_{\alpha+1}$$

and its corollary that if $\kappa = \aleph_{\alpha}$ satisfies $\kappa^{\omega} = \kappa$, then similarly $\aleph_{\alpha+1}$ satisfies $(\aleph_{\alpha+1})^{\omega} = \aleph_{\alpha+1}$. Thus if $\kappa = \aleph_{\alpha}$, then $\tau = \sup\{\aleph_{\alpha+n} : n < \omega\}$ is the first singular cardinal greater than κ . Moreover, τ satisfies (†). We now show that τ is the smallest cardinal greater than κ satisfying (†): If μ is a cardinal

and $\kappa < \mu < \tau$, then either $\mu < \kappa^{\omega}$, in which case μ does not satisfy (*), or $\mu = \aleph_{\alpha+n}$ for some $n < \omega$, in which case $\mu^{\omega} = \mu$ so μ has uncountable cofinality by Konig's theorem [1, Theorem 17]. In either case, μ does not satisfy (†).

For a cardinal κ let $s(\kappa)$ denote the first singular cardinal greater than κ^{ω} . We can enumerate the class of all cardinals satisfying (†) as follows. Let $\kappa_0 = s(\mathfrak{c})$, and for $\alpha > 0$ define

$$\kappa_{\alpha} = \begin{cases} \sum \{ \kappa_{\beta} : \beta < \alpha \} & \text{if } cf(\alpha) = \omega \\ s(\sum \{ \kappa_{\beta} : \beta < \alpha \}) & \text{otherwise} \end{cases}$$

By Lemma 4, (κ_{α}) is a strictly increasing enumeration of cardinal numbers satisfying (†). To see that every cardinal τ which satisfies (†) is in this enumeration, let α be the first cardinal such that $\tau \leq \kappa_{\alpha}$. Thus $\sum {\{\kappa_{\beta} : \beta < \alpha\}} \leq \tau$. If $cf(\alpha) = \omega$, then

$$\kappa_{\alpha} = \sum \{ \kappa_{\beta} : \beta < \alpha \} \le \tau \le \kappa_{\alpha}$$

and thus $\tau = \kappa_{\alpha}$. If $cf(\alpha) > \omega$, then since $cf(\tau) = \omega$, we have $\sum \{\kappa_{\beta} : \beta < \alpha\} < \tau$, and since τ satisfies (*), we have $(\sum \{\kappa_{\beta} : \beta < \alpha\})^{\omega} \le \tau$. Finally we have $s(\sum \{\kappa_{\beta} : \beta < \alpha\}) \le \tau$ because (as above) any cardinal μ in an interval of cardinals of the form $[\lambda^{\omega}, s(\lambda^{\omega}))$ has the property $\mu^{\omega} = \mu$, which τ does not satisfy. Thus

$$\kappa_{\alpha} = s(\sum \{\kappa_{\beta} : \beta < \alpha\}) \le \tau \le \kappa_{\alpha}$$

so again $\tau = \kappa_{\alpha}$.

By the preceding discussion, we see that the first cardinal for which we cannot answer the Lemins' problem (in ZFC) is the cardinal $\tau = s(\mathfrak{c})^+$. In Magidor's model, $\tau = s(\mathfrak{c})^+ = \aleph_{\omega+1}$, and, as we noted, in his model $\tau^{\omega} > \tau$. Since $\tau = \aleph_{\omega+1}$ has uncountable cofinality (in fact, is regular) $LW_{\tau} = LW'_{\tau}$, so the weight of LW'_{τ} is $\tau^{\omega} > \tau$. The following portion of the Lemin's question is therefore still open: Is it true without any assumption outside ZFC, that for every cardinal $\tau > c$ there exists a τ -universal space of weight less than τ^{ω} , in particular of weight τ ?

References

- [1] Thomas Jech, Set Theory, Academic Press, New York, 1978.
- [2] A. Kanamori and M. Magidor, *The evolution of large cardinal axioms in set theory*, in Higher set theory (Proc. Conf. Math. Forschungsinst., Oberwolfach, 1977), 99-275, Lecture Notes in Math., **669**, Springer, Berlin, 1978.
- [3] Alex J. Lemin and Vladimir A. Lemin, On a universal ultrametric space, Topology and Appl. 103, Number 3, (10 June 2000), 339-345.
- [4] Menachem Magidor, On the singular cardinals problem II, Ann Math (2) **106** (1977) 517 547.

Department of Mathematical Sciences, University of North Carolina at Greensboro, Greensboro, NC 27402.

E-mail address: vaughanj@uncg.edu