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UNIVERSAL ULTRAMETRIC SPACES OF
SMALLEST WEIGHT

Jerry E. Vaughan

Abstract

We modify a construction of A. Lemin and
V. Lemin to construct an ultrametric space LW/
which is universal (in the sense of isometry) for
ultrametric spaces of weight at most 7. Under
the singular cardinal hypothesis, a set-theoretic
assumption whose negation is related to large
cardinals, the weight of LW is 7 for all 7 > «.
This provides a solution to a problem raised by
the Lemins.

1. Introduction

An ultrametric space X is called isometrically universal for ul-
trametric spaces of weight at most T provided that every ultra-
metric space of weight at most 7 can be isometrically embedded
into X (for short, we say that X is 7-universal). In [3], A. Lemin
and V. Lemin construct for every cardinal 7 an ultrametric space
which they called LW, and proved

Theorem 1. [3, Main Theorem| The ultrametric space LW is
a T-universal space, and the weight of LW, is 7.

The Lemins point out that if 7 is a cardinal such that 7% = 7,
then their space LW, has weight 7, which is the smallest possible
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weight for a 7-universal space. This leads to the natural question
raised by the Lemins ([3, Problem 1]): If ¢ < 7 < 7%, does there
exist a T-universal space having weight smaller than 77 In
particular, does there exist one having weight 77 We give two
affirmative solutions to this latter problem. We show that there
is an unbounded class of cardinals 7 satisfying ¢ < 7 < 7% for
which there is a 7-universal space of weight 7, and that under
the assumption of the singular cardinal hypothesis, for every
cardinal satisfying ¢ < 7 < 7 there exists a 7-universal space
of weight 7.

We consider only infinite cardinals in this paper, and ¢ = 2%
denotes the cardinality of the continuum. For a cardinal 7, 77
denotes the first cardinal larger than 7, and cf(7) denotes the
cofinality of 7. We consider the following condition for cardinal
numbers 7 > ¢

(%) Z{Kf" ck<TP<S T

Clearly (*) is weaker than the condition 7% = 7. Since c¢f(7) = w
implies 7 < 7¢ by Konig’s theorem [1, Theorem 17], we
introduce the following condition for discussion of the Lemins’

problem: (t) 7 satisfies (*) and cf(7) = w

Our main result follows from Lemma 2 and Lemma 3:

Theorem 2. If 7 > ¢ and 7 satisfies (*), then there exists an
ultrametric space LW which is T-universal and has weight T.

Thus if 7 satisfies (}), then LW/ provides an affirmative solution
to the Lemins’ problem. Clearly every strong limit cardinal
7 of countable cofinality satisfies () (a cardinal 7 is a strong
limit cardinal provided 2% < 7 for every cardinal x < 7). Thus
we have an unbounded class of cardinals for which LW/ is a
T-universal space of weight 7; so the Lemins’ problem is solved
for these cardinals. Moreover, we completely solve the Lemins’
problem assuming the singular cardinal hypothesis, by proving
the following:
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Lemma 1. Under the singular cardinal hypothesis, every T > ¢
satisfies (*).

Proof. The result [1, Lemma 8.1] describes the value of k* for
any infinite cardinals x, A under the assumption of the singular
cardinal hypothesis. In case k > ¢ and A = w, the lemma tell us
that k¥ = k or k™. Thus, if kK < 7 then x* = ¢,k or k™, so we
have k¥ < 7. O

The hypothesis “7 > ¢” in Theorem 2 can be improved to
“7 > ¢ since ¢ = ¢*, but for no cardinal 7 < c¢ is there a
T-universal space of weight 7 (or of weight less than 7¢) because
the Lemins proved that any ultrametric space that contains an
isometric copy of every two-point ultrametric space must neces-
sarily have weight at least ¢ [3, Proposition].

The question as to whether every cardinal 7 > ¢ satisfies
(*) is related to large cardinals. If (*) fails for some cardi-
nal 7 > ¢, then the singular cardinal hypothesis is false, and
therefore there is an inner model of the universe with a mea-
surable cardinal [2, §29]. In the other direction, using “some
very large cardinals,” M. Magidor [4] constructed a model satis-
fying the following two properties: (i) for all n < w, 2% =R,
and (ii) 2% = W, ,o. It follows that (*) fails for the cardinal
T = N,11 > csince XY = X1 in this model (e.g., see [1, Lemma
8.3]). We do not know if the Lemins’ problem is related to large
cardinals.

In §2, we describe the space LW/, and prove that its weight
is 7 whenever 7 satisfies (*). In §3 we prove that LW/ is
T-universal. In §4 we discuss the condition (}), and the remain-
ing unsolved portion of the Lemins’ question.

2. A Subspace of the Lemins’ T-universal Space

We first define the Lemins’ 7-universal metric space LW,. Let

Q" denote the set of positive rational numbers, and @' 7 the set
of all function f : Q" — 7. The Lemins defined

LW.={f ¢ A AN(f) € R such that f(z) =0 for all x > N(f)},
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and an ultrametric A on LW, by the equalities A(f, f) = 0 and

for f # g, A(f,g) =sup{z : f(x) # g(x)}. It is easily checked
that A is an ultrametric on LW..

We define
D, ={fe€ LW, : (3a < 7)Range(f) C a},

and define the subspace LW’ C LW, to be the closure of D, in
LW._:
LWJ_ = CZLWT (DT)

Lemma 2. The weight of LW! equals 7 - {r* : k < 7}, and
7Y A{KY : k < T} is either T or . If T satisfies (*), then the
weight of LW! equals .

Proof. The cardinality of D, equals > {|a]¥ : an < 7} since

D~ % (@),

a<Tt

and clearly > {|la|* :a <7} =7 > {kY: Kk <7} Since D, is
dense in LW/, the weight of LW/ < |D,|. We need to show that
the weight is not less than |D.|, and we do this in two steps.
First we show that for every k < 7, there is a discrete subset of
LW of cardinality . We proceed as in [3, Main Theorem| and
define for each f € LW, the function Fy € LW, by Fy(z) =0
for x < 1, and Fy(z) = f(r — 1) for x > 1. Then if f # g,
we have A(Fy, Fy) > 1; so {Fy: f € LW,} is a discrete subset
of LW! of cardinality x*. Thus the weight of LW/ is at least
Y {k¥: Kk < 7}. Now for a < 7 define

aif0<x <1
f“(g”)_{o if x> 1

Then {f, : @ < 7} is a discrete subset of LW/ of cardinality ;
so the weight of LW/ is at least 7.
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To see that 7-> {xk* : k < 7} is either 7 or 7*, first note that
this cardinal is between 7 and 7¢. Thusif 7 < 7-> {k¥: Kk <7}
then 7 < > {k* : k < 7}. Hence there exists ko < 7 such that
T < kg;so kY =71 Thus ) {k* kK <T}=7"

The last statement in the Lemma follows from the definition
of (*).

Clearly LW! = LW, if and only if cf(7) > w. O

3. LWﬂ’_ is T7-universal

We now show that LW! is a T-universal space. Since we work
in a subspace of LW, we can refer to the proof in [3] for most
of the details.

Lemma 3. LW is a T-universal space.

Proof. Let (X, d) be an ultrametric space of weight 7. We recall
the inductive construction in [3] of the function i : X — LW,
which will be the desired isometry. Essentially, all we do is
observe that a minor change in the well-ordering of X allows us
to prepare the induction so we can prove that Range(i) C LW,.
Well-order X = {a, : @ < k} (one-to-one) in such a way that
{ao : @ < 7} is dense in X (putting this dense set first is the
change we need). The function ¢ will be defined by induction on
k and the notation i(a,) = f, will be used. Define i(ag) = fo
to be the constant function in @7 with constant value 0. Define
i(a1) = f1 by fi(xz) =1 for 0 <z < d(ap,a1) and fi(x) = fo(z)
for x > d(ag, a;). Assume we have defined f, for a < v, where
v < K, so that for all f < o < v we have

(1) d(aa, ag) = A(fa, f5)

(2) Range(f,) C min{a+ 1,7}
As in [3], we define f, in two cases. First put

d, = inf{d(aq, a,) : @ < v},

and note that d, = 0 for all 7 <y < k.
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Case 1. There exists 3 < vy such that d(ag, a,) = d, (by one-to-
one, d, # 0; so v < 7 in this case). Then define

I it v <d,
hiz) = { folz) itz > d,
Case 2. If not Case 1, then there exists a sequence of a,, < =

such that d(aa,,a,) < d, + = (for n <w).
Case 2(a). If d, > 0 define

I if v <d,
K@) = { for(x) ifdy+ 1 <z

Case 2(b). If d, = 0 define f,(z) = fa,(x) for d, + 1 < z.
The Lemins prove [3, Theorem 1] that in all cases f, is well
defined and satisfies (1).

To see that (2) holds for f., we first assume that v < 7, hence
min{y + 1,7} = v+ 1. If f, is defined by Case 1, we note that
since § < 7,

Range(fy) C Range(fs) U{v} C (B+1)U{ytCy+1

If f, is defined by Case 2, we have (since oy, < v < 7 for all
n < w) either

Range(f,) € | ) Range(fa,)U{7} € |J(an+1)U{7} Cv+1,

n<w n<w
or

Range(f,) C U Range(fa,) C U (an +1) Cy+1.

n<w n<w

Now we show that (2) holds when 7 < v < k. In this case we
have min{y + 1,7} = 7. Since {a, : @ < 7} is dense in X, we
have d, = 0 for all 7 < v < &, and therefore f, is defined by
Case 2(b). By the induction hypothesis we have

Range(f,) C UpcwRange(fa,) C Upcy(min{a,, +1,7}) C 7.
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This completes the induction. To complete the proof of the
Lemma, we note that by (2), for a < 7, f, has bounded range
in LW, hence the dense set {a, : @ < 7} is mapped by i into
D.. Since 7 is an isometry by (1), hence continuous,

Z(X) C CZLWTD’T = LWJ_

This completes the proof. O

We remark that the Lemins’ proof of their Main Theorem
proceeds in two steps. First they define the isometry on a dense
subset of X into LW, where 7 is the density of X, and next
they extend the isometry to the whole space X. Our proof does
not explicitly use the second step since we construct ¢ to be an
isometry on all of X into LW.

4. Cardinals that Satisfy (%)

As we noted, every strong limit cardinal 7 of countable cofi-
nality satisfies (1), hence the class of cardinals satisfying (1) is
unbounded. We will describe this class in more detail and enu-
merate it.

Lemma 4. (a) A countable sum of cardinals satisfying (1) sat-
isfies (1). (b) For any cardinal k, the smallest cardinal T > K
that satisfies (1) is the first singular cardinal greater than k*.

Proof. The proof of (a) is obvious, and (b) follows from the
well-known Hausdorff formula [1, 6.18]

Ng Ng
Na—l—l = Na Na—l—l

and its corollary that if k = N, satisfies k¥ = k, then sim-
ilarly N,.; satisfies (No41)Y = Noqq. Thus if & = X, then
T = sup{Natn : n < w} is the first singular cardinal greater
than k. Moreover, T satisfies (). We now show that 7 is the
smallest cardinal greater than  satisfying (T): If x is a cardinal
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and kK < p < 7, then either p < k*, in which case p does not
satisfy (*), or p = R,4, for some n < w, in which case p* = pu
so p has uncountable cofinality by Konig’s theorem [1, Theorem
17]. In either case, u does not satisfy (7).

For a cardinal k let s(k) denote the first singular cardinal
greater than k. We can enumerate the class of all cardinals
satisfying (T) as follows. Let ko = s(c¢), and for a > 0 define

. :{Z{"%iﬁ<a} if cf(a) = w
: s(> {kp: B < a}) otherwise

By Lemma 4, (k4 ) is a strictly increasing enumeration of cardi-
nal numbers satisfying (t). To see that every cardinal 7 which
satisfies (1) is in this enumeration, let a be the first cardinal
such that 7 < ko. Thus > {ks: 3 <a} < 7. If ¢f(a) = w, then

/@a:Z{/{5:6<a}§7‘§/@a

and thus 7 = ko. If ¢f(a) > w, then since cf(7) = w, we
have > {ks : f < a} < 7, and since 7 satisfies (*), we have
(O {kp: B < a})? < 7. Finally we have s(> {rs: f<a}) <7
because (as above) any cardinal g in an interval of cardinals of
the form [A“, s(A\*)) has the property u* = p, which 7 does not
satisfy. Thus

KQZS(Z{&5:6<Q})§T§KJQ
SO again T = K.

By the preceding discussion, we see that the first cardinal for
which we cannot answer the Lemins’ problem (in ZFC) is the
cardinal 7 = s(¢)™. In Magidor’s model, 7 = s(¢)t = N1,
and, as we noted, in his model 7 > 7. Since 7 = N .1 has
uncountable cofinality (in fact, is regular) LW, = LW/, so the
weight of LW is 7¥ > 7. The following portion of the Lemin’s
question is therefore still open: Is it true without any assump-
tion outside ZFC, that for every cardinal 7 > c¢ there exists
a 7-universal space of weight less than 7%, in particular of
weight 77
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