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METRIZABILITY OF MANIFOLDS BY DIAGONAL
PROPERTIES

Paul M. Gartside and Abdul M. Mohamad∗

Abstract

This paper investigates metrization theory of man-
ifolds. We show that diagonal properties play a
central role in developing metrizability of mani-
folds.

1. Introduction

By a manifold is meant a connected, Hausdorff space which
is locally homeomorphic to euclidean space (we take our mani-
folds to have no boundary). Note that because of connectedness
the dimension of the euclidean space is an invariant of the man-
ifold ; this is the dimension of the manifold.

A significant question in topology is that of deciding when a
topological space is metrizable, there being many criteria which
have now been developed to answer the question. Among the
most natural is the following: a topological space is metrizable if
and only if it is paracompact, Hausdorff and locally metrizable.
Note that manifolds are always Hausdorff and locally metriz-
able so this criterion gives a criterion for the metrizability of a
manifold, viz that a manifold is metrizable if and only if it is
paracompact. Many other metrization criteria have been discov-
ered for manifolds, as seen by Theorem 2 [10], which lists criteria
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which require at least some of the extra properties possessed by
manifolds.

The question whether perfect normality is equivalent to metriz-
ability for a manifold is an old one, dating back to [2]. It was
shown in [21] that under MA+¬CH the two conditions are equiv-
alent. On the other hand in [23] there is constructed an example
of a perfectly normal non-metrizable manifold under CH. The
same situation prevails when we consider strong hereditary sepa-
rability. In [14] it is shown that under MA+¬CH every strongly
hereditarily separable space is Lindelöf. On the other hand even
when we combine the two notions the resulting manifold need
not be metrizable in general; in [11] there is constructed un-
der CH a manifold which is strongly hereditarily separable and
perfectly normal but not metrizable.

In this paper we study diagonal properties in manifolds to
arrive at developability and metrizability. We show that the fol-
lowing conditions are each equivalent to a manifold being metriz-
able:

• it is perfectly normal and has a quasi-G∗
δ-diagonal;

• it is separable and has an S2–diagonal with property (∗);

• it is separable, hereditarily normal and has an S2–diagonal;

• it is separable and has a point finite S2–diagonal;

• it is separable and has a point countable quasi–G∗
δ–diagonal;

• it is R–perfect with a quasi–G∗
δ–diagonal;

• it has a quasi–regular–Gδ-diagonal.

Let G = {Gn : n ∈ N } be a countable family of collections of
subsets of a space X. Consider the following conditions on G:

(a) for each n ∈ N, Gn is a collection of open sets in X;

(b) each Gn is a cover of X;
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(c) for any distinct x, y ∈ X, there exists n ∈ N such that

x ∈ st(x,Gn) ⊂ X − {y};

(d) for each x ∈ X and n ∈ N, st(x,Gn) is an open subset of
X;

(e) for any distinct x, y ∈ X, there exists n ∈ N such that

x ∈ st(x,Gn) ⊂ X − {y};

(f) for each x ∈ X, { st(x,Gn) : n ∈ N, x ∈
⋃
Gn } is a local

base at x;

Definition 1.1. A space X has a quasi–G∗
δ–diagonal if there

exists a family G satisfying (a) and (e). The sequence G is called
quasi–G∗

δ–sequence.
Recall that a space X has a quasi–Gδ–diagonal if there ex-
ists a family G satisfying (a)and (c). The sequence G is called
quasi–Gδ–sequence.
A space X has a Gδ–diagonal if there exists a family G satis-
fying (a), (b) and (c). The sequence G is called Gδ–sequence.
A space X has a G∗

δ–diagonal if there exists a family G satis-
fying (a), (b) and (e). The sequence G is called G∗

δ–sequence.
A space X has an S1–diagonal [13] if there exists a family G
satisfying (b), (c) and (d). The sequence G is called S1–sequence.
A space X has an S2–diagonal [13] if there exists a family G
satisfying (b), (d) and (e). The sequence G is called S2–sequence.

Definition 1.2. A space X is developable [quasi–develop-
able] if there exists a family G satisfying (a), (b) and (f) [(a)
and (f)].
A space X is o–semi–developable if there exists a family G
satisfying (b), (d) and (f).
A space X is semi–developable if there exists a family G sat-
isfying (b) and (f).
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Let X be a space, and (A,B) a pair of subsets of X. A
collection U of (open) (closed) subsets of X is separating [re-
spectively, strongly separating] (open) (closed) for (A,B) if,
given distinct points x0 ∈ A and x1 ∈ B, there is U ∈ U such
that x0 ∈ U but x1 /∈ U [respectively, there is U ∈ U so that
x0 ∈ U while x1 /∈ U ]. A subset, C, of a space X, will be called
an Sδ–subset (respectively, Rδ–subset) if there is a countable
open separating (respectively, strongly separating) family for the
pair (C,X − C).

A space, X, has an Sδ–diagonal (respectively, an Rδ–diag-
onal) if the diagonal in X2 is an Sδ subset (respectively, an Rδ

subset).
Recall that a subset H of the space X is a regular Gδ–set

if there is a sequence 〈Un : n ∈ N〉 of open sets in X such that
H =

⋂
n∈NUn =

⋂
n∈NUn. We say that X has a regular–Gδ–

diagonal [12] if ∆ = {(x, x) : x ∈ X} is a regular Gδ–set in
X2.

2. Quasi–Developable Manifolds

Theorem 2.1. Let X be locally compact and locally connected.
If X has a quasi–G∗

δ–diagonal, then X is quasi–developable.

Proof. Let 〈Hn :n∈N〉 be a quasi–G∗
δ diagonal sequence for X.

Set cH(x) = {n : st(x,Hn) 6= ∅}. Then
⋂

n∈cH(x)st(x,Hn) =

{x}. Let F denote the non–empty finite subsets of N. For each
F ∈ F put

G
F

= {
⋂

i∈F
Hi : Hi ∈ Hi}.

Set G
F

′ = {U : U is a component of G for some G ∈ G
F
}. By

local connectedness, all the sets in G
F

′ are open. We show
that {G

F

′ : F ∈ F} is a quasi–development of X. Suppose
x ∈ X and U is open such that x ∈ U and U is compact.
For each n ∈ N put Fn = cH(x) ∩ {1, 2, ...,m}, where m ≥ n
is minimal such that {1, 2, ...,m} ∩ cH(x) 6= ∅. We claim that

st(x,G
Fn

′) ⊆ U for some n. Otherwise, since each st(x,G
Fn

′) is
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connected, st(x,G
Fn

′)∩ ∂U 6= ∅ for each n ∈ N. But ∂U is com-

pact and st(x,G
Fn

′)∩∂U is a decreasing sequence of non–empty

closed sets, so ∂U ∩
⋂

n∈Nst(x,GFn

′) 6= ∅. But
⋂

n∈Nst(x,GFn

′) ⊆⋂
n∈cH(x)st(x,Hn) = {x}. Hence x ∈ ∂U , a contradiction. 2

From Theorem 2.1 and [4, Theorem 1.8] we get the following
result:

Corollary 2.2. Every locally compact, locally connected, R–per-
fect space with a quasi–G∗

δ–diagonal is metrizable.

In 1935 Alexandroff, then in 1949 Wilder, asked questions
which led topologists to investigate whether every perfectly nor-
mal manifold is metrizable. Rudin and Zenor [21], [23] showed
that the answer depends on the set theory. We show that addi-
tion of the condition that the manifold has a quasi-G∗

δ -diagonal
suffices to ensure metrizability.

Proposition 2.3. A manifold is metrizable if and only if it is
perfectly normal and has a quasi-G∗

δ-diagonal.

Proof. Every metrizable space is perfectly normal and has a
quasi-G∗

δ-diagonal. The converse follows from Reed and Zenor’s
metrization theorem [19], [12, Theorem 2.15 ] and Theorem 2.1
or from Reed and Zenor’s metrization theorem [19] and [15, The-
orem 2.1]. 2

There are manifolds which are normal but not metrizable, for
example the long ray [18]. There are also manifolds which are
separable but not metrizable, for example the Prüfer manifold
(see Example 5.1 for a description of a version of the Prüfer
manifold). There are even manifolds which are both normal
and separable but not metrizable, [20] and [22].



626 Paul M. Gartside and Abdul M. Mohamad

3. Separable Manifolds With S2–Diagonals

Definition 3.1. A space X has S2–diagonal with property (∗)
if X has an S2-sequence 〈Gn : n ∈ N〉 satisfying the following
additional condition: for each x, y ∈ X, y ∈ st(x,Gn) if and only
if x ∈ st(y,Gn), for all n ∈ N.

Balogh and Bennett [4] proved that a locally compact, locally
connected space with a point countable strongly separating open
cover is metrizable. We give here an application of this result.

Theorem 3.2. A separable, locally compact, locally connected
space with S2–diagonal with property (∗) is metrizable.

Proof. By Balogh and Bennett’s result it suffices to show that if
X is a separable space having an S2–diagonal with property (∗)
then X has a point–countable strongly separating open cover.

Let D be a countable dense subset of X and let 〈Gn : n ∈ N〉
be an S2–sequence with property (∗). Let C = {

⋂n
i=1st(d,Gi) :

n ∈ N and d ∈ D}. Then C is a countable open cover of X. It
is claimed that C is strongly separating. Suppose x, y ∈ X with
x 6= y. Then there exist l,m ∈ N such that x /∈ st(y,Gl) and
y /∈ st(x,Gm). Let n = max{l,m}. Consider

U =
⋂n

i=1
st(x,Gi) − st(y,Gl).

Then U is a non–empty open subset of X so we may choose
d ∈ D ∩ U . Then d ∈

⋂n
i=1st(x,Gi) so x ∈

⋂n
i=1st(d,Gi). If y ∈⋂n

i=1st(d,Gi) then y ∈ st(d,Gl) and hence by property (∗), d ∈
st(y,Gl) contradicting d ∈ U . Thus

⋂n
i=1st(d,Gi) is a member

of C containing x but whose closure does not contain y and this
completes the proof. 2

Corollary 3.3. A manifold is metrizable if and only if it is sep-
arable and has S2–diagonal with property (∗).

Remark 3.4. In 1984 P. Nyikos [16] constructed an example
of a separable Moore manifold which is not metrizable.
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By using the same technique as in Theorem 3.2 and applying
[4, Corollary 1.5], we have the following theorem.

Theorem 3.5. A manifold is metrizable if and only if it is sep-
arable and hereditarily normal and has S2–diagonal.

In 1993 D. Gauld [11] constructed in CH a strongly hereditar-
ily separable, nonmetrizable manifold. We show that by adding
the condition that the manifold has a point finite S2–diagonal
to separability suffices to ensure metrizability.

Definition 3.6. A sequence 〈Gn :n∈N〉 of point finite covers of
space X is called a point finite S2–diagonal (semi–development)
if and only if the sequence 〈Gn : n ∈ N〉 is S2–diagonal (semi–
development). A space with a point finite semi–development is
called a point finite semi–developable space.

Definition 3.7. A sequence 〈Gn : n ∈ N〉 of point countable col-
lections of open subsets of space X is called a point countable
quasi–G∗

δ–diagonal (quasi–development) if and only if the se-
quence 〈Gn : n ∈ N〉 is quasi–G∗

δ–diagonal (quasi–development).
A space with a point countable quasi–development is called a
point countable quasi–developable space.

Lemma 3.8. If 〈Gn : n ∈ N〉 is an S2-sequence for a space X
and xn ∈ st(x,Gn) for each n and fixed x ∈ X, then either x is
a cluster point of 〈xn : n ∈ N〉 or 〈xn : n ∈ N〉 does not cluster
at all.

Proof. There is no loss of generality if we assume that 〈Gn : n ∈
N〉 is a decreasing sequence (i.e. Gn+1 refines Gn for all n ∈ N).
Then, {xm : m ≥ n} ⊂ st(x,Gn). Since

⋂
n∈Nst(x,Gn) = {x},

either x is a cluster point of 〈xn : n ∈ N〉 or 〈xn : n ∈ N〉 does
not cluster at all. 2

In the following theorem we use the same technique as in
[12, Theorem 2.15].
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Theorem 3.9. A manifold is hereditarily separable and metriz-
able if it is separable and has a point finite S2–diagonal.

Proof. Let 〈Gn : n ∈ N〉 be a point finite S2–sequence for X. We
show that 〈Gn : n ∈ N〉 is a point finite semi-development. We
may assume that Gn+1 refines Gn. By passing to components,
we may assume that for each x ∈ X and each n ∈ N, st(x,Gn)
is connected. Suppose that xn ∈ st(x,Gn) for each n and fixed
x ∈ X. By lemma 3.8 x is a cluster point of 〈xn : n ∈ N〉 or 〈xn :
n ∈ N〉 does not cluster at all. Suppose it does not cluster at all.
So there is a compact neighborhood U of x and U ∩ {xn} = ∅,
so st(x,Gn) is not subset of U for each n. Then since st(x,Gn) is
connected, st(x,Gn) ∩ ∂U 6= ∅ for each n. Since ∂U is compact,
∂U ∩

⋂
nst(x,Gn) 6= ∅, a contradiction. Since every separable

regular space with a point finite semi-development is metrizable
[1, Theorem 1.7, Proposition 1.12], the proof is done. 2

We can prove the following theorem using the same technique.

Theorem 3.10. Every manifold with S2–diagonal is o-semi-
developable.

Bennett [6] proved that in a quasi–developable space,
hereditarily ℵ1–compact, hereditarily Lindelöf and hereditarily
separability are equivalent and each of these conditions implies
metrizability of the space if it is regular. We prove the following
lemma by analogous method to the [1, Proposition 1.12].

Lemma 3.11. A separable space with a point–countable quasi–
development is hereditarily separable.

Proof. This Lemma is standard. Thus the proof is left to the
reader. 2

Corollary 3.12. A regular separable space with a point–count-
able quasi–development is second countable.
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From Theorem 2.1 and Corollary 3.12 we have the following
result:

Corollary 3.13. Every locally compact, locally connected,
regular separable space with a point–countable quasi–G∗

δ–diagonal
is metrizable.

The following open problems will be formulated for the
manifold case, but are also relevant in the context of locally
connected, locally compact spaces.

Question 3.14. Is every normal manifold with S2–diagonal
metrizable?

Question 3.15. Is every hereditarily normal manifold with
S2–diagonal metrizable?

Question 3.16. Is every separable normal manifold with
S2–diagonal metrizable?

Question 3.17. Is every hereditarily normal manifold with a
quasi-G∗

δ-diagonal metrizable?

By Theorem 2.1 and [3, Theorem 2.3], the answer to Question
3.17 is yes if 2ω1 > 2ω holds.

4. Quasi–Regular–Gδ–Diagonals

Lemma 4.1. A space X has a quasi–Gδ–diagonal if and only if
there is a countable sequence 〈Un : n ∈ N〉 of open subsets in X2,
such that for all (x, y) /∈ ∆, there is n ∈ N such that (x, x) ∈ Un

but (x, y) /∈ Un.

Proof. Let 〈Gn : n ∈ N〉 be a quasi–Gδ–diagonal sequence for X.
Define Un =

⋃
{G×G : G ∈ Gn}. Then the each Un is open in

X2. Further, if (x, y) ∈ X2 such that x 6= y, then there is n ∈ N,
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such that x ∈ st(x,Gn) and y /∈ st(x,Gn). Then (x, x) ∈ Un but
(x, y) /∈ Un.

Conversely suppose we have a sequence 〈Un : n ∈ N〉 as in
the statement of the Lemma. Define Gn = {G : G is open and
G × G ⊆ Un}. Suppose distinct x and y are in X. Pick n ∈ N
so that (x, x) ∈ Un but (x, y) /∈ Un. Then x ∈ st(x,Gn) while
y /∈ st(x,Gn). 2

Corollary 4.2. Every space with an Sδ–diagonal has a
quasi–Gδ diagonal.

Prompted by the above corollary, and by analogy with
‘regular– Gδ–diagonal’, we make the following definition. A
space X has a quasi–regular–Gδ–diagonal [8] if and only
if there is a countable sequence 〈Un : n ∈ N〉 of open subsets
in X2, such that for all (x, y) /∈ ∆, there is n ∈ N such that
(x, x) ∈ Un but (x, y) /∈ Un.

Lemma 4.3. Every space with an Rδ–diagonal has a
quasi–regular–Gδ–diagonal.

Lemma 4.4. Every space with a quasi–regular–Gδ–diagonal has
a quasi–G∗

δ–diagonal.

Proof. Suppose we have a sequence 〈Un : n ∈ N〉 as in the
definition of quasi–regular–Gδ–diagonal. Define Gn = {G : G is
open and G×G ⊆ Un}. Suppose distinct x and y are in X. Pick
n ∈ N so that (x, x) ∈ Un but (x, y) /∈ Un. Then x ∈ st(x,Gn)
while y /∈ st(x,Gn). 2

Definition 4.5. A sequence 〈Gn : n ∈ N〉 of families of open
sets of a space X is called:

1. a strong quasi–development for X if for every x ∈
X and any open neighborhood U of x there exist an open
neighborhood V of x and a natural number i such that x ∈
st(V,Gi) ⊂ U ;
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2. a quasi–development of order 2 for X if

{st2(x,Gn)}n∈N − {∅}
is a local base at x for each x ∈ X.

Definition 4.6. A space X is called hereditarily screenable
if every subspace of X is screenable.
A space X is screenable if every open cover U has an open
refinement V which can be decomposed as V = ∪\∈NV\ such that
each V\ is disjoint.

The proof of our next result relies on a theorem of Costantini,
Fedeli and Pelant [7].

Theorem 4.7. For every space X the following conditions are
equivalent:

1. X has a σ–disjoint base;

2. X has a strong quasi–development;

3. X has a quasi–development of order 2;

4. X is quasi–developable and hereditarily screenable.

Proposition 4.8. Let X be a locally compact, locally connected
space. If X has a quasi–regular–Gδ–diagonal, then X is metriz-
able.

Proof. By Theorem 4.7 and well–known result ‘a locally com-
pact, locally connected space, is hereditarily screenable if and
only if it is metrizable’ [10], we only need to show that X
has a quasi–development 〈Gn : n ∈ N〉 such that, for each
x ∈ X, {st2(x,Gn)}n∈N − {∅} is a local base at x.

Let 〈Un : n ∈ N〉 be as in the definition of quasi–regular Gδ

diagonal. So, the sets Un are open in X2 and for all (x, y) /∈ ∆,
there is n ∈ N such that (x, x) ∈ Un but (x, y) /∈ Un. Put
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Hn = {H : H is open ,H ×H ⊆ Un}. Let F denote the non–
empty finite subsets of N, and for F ∈ F put

G
F

= {
⋂

i∈F
Hi : Hi ∈ Hi}

and G
F

′ = {U : U is a component of G for some G ∈ GF}.
We show that for each x ∈ X, {st2(x,G

F

′)}F∈F−{∅} is a local
base at x. Take any x ∈ X and suppose x ∈ V is open and V is
compact. For each n ∈ N put Fn = cH(x) ∩ {1, 2, ...,m}, where
m ≥ n is minimal such that {1, 2, ...,m} ∩ cH(x) 6= ∅.

Suppose, for a contradiction, for all n ∈ N, st2(x,G
Fn

′) ∩
(X − V ) 6= ∅. Since each st2(x,G

Fn

′) is connected,st2(x,G
Fn

′) ∩
∂V 6= ∅ for each n ∈ N. But ∂V is compact and st2(x,G

Fn

′)∩∂V ,
n ∈ N, is a decreasing sequence of non–empty closed sets, so
∂V ∩

⋂
n∈Nst

2(x,G
Fn

′) 6= ∅, hence there is y ∈
⋂

n∈Nst
2(x,G

Fn

′)∩
∂V . Of course x 6= y. So by the definition of quasi–regular–Gδ–
diagonal, there is n such that (x, x) ∈ Un but (x, y) /∈ Un.

By the same argument as in Theorem 2.1, we know that
{G

F

′ : F ∈ F} is a quasi–development of X. Therefore there
exists I and J ∈ F such that

(x, y) ∈ st(x,G
I

′) × st(y,G
J

′) ⊆ X2 − Un.

Choose m ≥ max{I, n}, so that I ⊆ Fm. It follows that y ∈
st2(x,G

Fm

′), so st2(x,G
Fm

′) ∩ st(y,G
J

′) 6= ∅. Then there exists,
G1, G2 ∈ G

Fm

′ and G3 ∈ G
J

′ such that y ∈ G3, x ∈ G1, G1∩G2 6=
∅ and G2 ∩ G3 6= ∅. Let z1 ∈ G1 ∩ G2 and z2 ∈ G2 ∩ G3.
Then (z1, z2) ∈ (G1×G3)∩(G2×G2). Now, G1 ∈ G

Fm

′, G3 ∈ G
J

′,
so G1 × G3 ⊆ st(x,G

Fm

′) × st(y,G
J

′). Also, G2 ∈ GFm

′ and n ∈
Fm, so G2 ⊆ H for some H ∈ Hn. Therefore G2×G2 ⊆ H×H ⊆
Un, so (z1, z2) ∈ Un.

In other words, (z1, z2) ∈ G2×G3 ⊆ (st(x,G
Fm

′)×st(y,G
J

′))∩
Un, and this is a contradiction. 2

From Theorem 4.7 and the well–known result ‘a locally com-
pact, locally connected space, is hereditarily screenable if and
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only if it is metrizable’ [10], we derive an alternative proof of
the following result:

Theorem 4.9. A manifold is metrizable if and only if it has a
σ–disjoint base.

5. Examples

The implications between diagonal properties of manifolds is
shown in the following diagram:

G∗
δ

Gδ

G∗
δ

Gδquasi–Gδ

quasi–

regular–quasi regular–Gδ

Fig. 1. Relationships between diagonal properties.

During his visit to Auckland, P. Nyikos informed the second
author that Rudin’s first manifold in [22] is hereditarily normal
with a Gδ–diagonal but is not metrizable, so this example can
serve as a manifold with a Gδ–diagonal but not a G∗

δ–diagonal
and a manifold with a quasi–Gδ–diagonal but not a quasi–G∗

δ–
diagonal.

The Prüfer manifold (a description of a version of Prüfer man-
ifold is given in Example 5.1) is an example of a manifold with
G∗

δ–diagonal but not regular–Gδ–diagonal.
The Balogh–Bennett manifold [5] is an example of a manifold

with quasi–Gδ–diagonal but without a Gδ–diagonal.
Example 5.2 has been given in [9, Example 2.2]. It answers

a problem of Nyikos [17] in the negative that there is a quasi–
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developable 2–manifold with a Gδ–diagonal, but which is not de-
velopable. This example is a manifold with a quasi–G∗

δ–diagonal
but not a quasi– regular–Gδ–diagonal and also can serve as a
manifold with a quasi–G∗

δ–diagonal but not a G∗
δ–diagonal.

The presentation of [9, Example 2.2] is concise. The authors
feel the techniques used in its construction might have wider
application, so we outline here a general method of creating
quasi–developable 2–manifolds with Gδ–diagonal.

Example 5.1. A class of quasi–developable manifolds with
Gδ–diagonal.

Construction. We start with a description of a version of the
Prüfer manifold. The underlying set is P = H+ ∪ G where
H+ = R × (0,+∞) and G = R × (−1, 0]. The topology on P
is defined as follows. Points of H+ have the usual Euclidean
topology, so the nth neighbourhood of (x, y) ∈ H+ can be taken
to be U(x, y;n) = (disc about (x, y) of radius 1/n) ∩H+. A
point (x, a), where a ∈ (−1, 0] has as its nth neighbourhood,
V (x, a;n) = (({x} × (a − 1/n, a + 1/n)) ∩ G)∪ (set of points
in H+ within the disc of radius 1/n about (x, 0) and between
either the lines of slope 1/(a− 1/n) and 1/(a+1/n) or the lines
of slope 1/(−a− 1/n) and 1/(−a+ 1/n)) (illustrated in Figure
2, with picture proof, V (x, a;n) is homeomorphic to R2).

Suppose B and C are two disjoint subset of R and for each
element c ∈ C, there are one or two sequences 〈lc,n : n ∈ N〉
and 〈rc,n : n ∈ N〉 so that lc,n, rc,n ∈ B, lc,m < lc,n < c if
m < n,c < rc,n < rc,m if m < n, and both |c− lc,n| and |c− rc,n|
are strictly less than 1/n2. Thus, (lc,n)n∈N converges to c from
below, and (rc,n)n∈N converges to c from above in the real line
with its usual topology so that the distance of lc,n to c and rc,n

to c strictly decreases with n.
We will construct a manifold M = M(B,C) having underly-

ing set H+∪ B̂∪ Ĉ, where B̂ = B× (−1, 0], and Ĉ = C× (−1, 0]
and a space X = X(B,C) with underlying set B∪C, and topol-
ogy to be described shortly.
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GiveH+∪B̂, the subspace topology from the Prüfer manifold.
Then it is an open submanifold. We will define the topology at
points of Ĉ such that

1. M is a manifold

2. M is quasi–developable

3. M has a Gδ diagonal

4. the identity map B̂∪Ĉ → X×(−1, 0] is a homeomorphism.

Let c ∈ C and set R = {rc,n : n ∈ N} and L = {lc,n : n ∈ N}
whichever is defined. Three cases arise depending whether only
R or only L or both are defined.

We define the nth neighborhood of the point (c, a) ∈ Ĉ (il-
lustrated in Figure 3) to be:

Case (1): Both R and L are defined.

W (c, a; n) = (V (c, a; n)∩ ({c} × R))

∪(
⋃

k≥n+1
(V (lc,k, a; n)∩ ((

lc,k−1 + lc,k
2

,
lc,k + lc,k+1

2
] × R)))

∪(
⋃

k≥n+1
(V (rc,k, a; n)∩ ([

rc,k+1 + rc,k

2
,
rc,k + rc,k−1

2
]× R))).

Case (2): R is undefined.

W (c, a; n) = (V (c, a; n)∩ ([c, +∞)× R))

∪(
⋃

k≥n+1
(V (lc,k, a; n)∩ ((

lc,k−1 + lc,k
2

,
lc,k + lc,k+1

2
]× R))).

Case (3): L is undefined.

W (c, a; n) = (V (c, a; n)∩ ((−∞, c]× R))

∪(
⋃

k≥n+1
(V (rc,k, a; n)∩ ([

rc,k+1 + rc,k

2
,
rc,k + rc,k−1

2
]× R))).
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Fig. 2. V (x, a; n) is homeomorphic to R2.

Fig. 3. W (c, a; n) is homeomorphic to R2.
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X is topologised by isolating points of B and letting basic
neighbourhhood of a point c ∈ C consist of c together with tails
of the corresponding sequences 〈lc,n〉 and 〈rc,n〉 (or just one of
those sequences when only one is defined).

Define Gn = {U(x, y;n) : x ∈ R, y > 0}, Hn = {V (x, a;n) :
x ∈ B, a ∈ (−1, 0]} and In = {W (c, a;n) : c ∈ C and a ∈
(−1, 0]}.

One can easily check that M is Hausdorff.
Claim: W (c, a;n) is homeomorphic to R2.
Proof. Let φ be the natural identification of R × (0,∞) with
(R × (0,∞) \ S+) ∪ S− where S+ =

⋃∞
k=1({lc,k} × (0, 1] ∪ {c} ×

(0, 1] ∪ {rc,k} × (0, 1]) and S− =
⋃∞

k=1({lc,k} × (−1, 0] ∪ {c} ×
(−1, 0] ∪ {rc,k} × (−1, 0]).

Observe that (R×(0,∞)\S+) is homeomorphic to R×(0,∞).
Let ψ : (R× (0,∞) \S+)∪S− → R× (0,∞)∪S− be a function
which is the identity on S− and is one of those homeomorphisms
‘pushing out’ S+ from R × (0,∞).

Now ψ◦φ is a bijection between R×(0,∞) and (R×(0,∞))∪
S−. Give this second set the induced topology. (So (R×(0,∞))∪
S− is homeomorphic to R × (0,∞) which in turn is homeomor-
phic to R2.)

Consider the effect of ψ ◦φ on a basic rectangular neighbour-
hood of (lc,k, a + 1) (a ∈ (−1, 0]). We can see that these basic
neighborhoods of (lc,k, a) are (apart from small deformations)
of the form of the sets V (lc,k, a;n). Now consider the effect of
ψ ◦φ on a rectangle about (c, a+1). We can see that these basic
neighbourhoods of (c, a) (a ∈ (−1, 0]) are of the form of the sets
W (c, a;n). Hence, W (c, a;n) is homeomorphic to R2. Thus M
with the topology defined above, is a 2–manifold. It is easy to
check X × (−1, 0] has the product topology (i.e. the identity
map B̂ ∪ Ĉ → X × (−1, 0] is a homeomorphism).

It remains to show that M is quasi–developable and has a Gδ

diagonal. To do this we examine the stars of points of M in the
open collections Gn, Hn and In.
Case: x ∈ R and y > 0.

st((x, y),G2n) ⊆ U(x, y;n), st((x, y),Hn) = ∅ if n > 1/y
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and st((x, y),In) = ∅ if n > 1/y.
Case: x ∈ B and a ∈ (−1, 0].

st((x, a),Gn) = ∅, st((x, a),H2n) ⊆ V (x, a;n)

and st((x, a),In) ⊆ [x− 1/n, x+1/n]× ((0, 1/n) ∪ (a− 1/n, a+
1/n)).
Case: c ∈ C and a ∈ (−1, 0].

st((c, a),Gn) = ∅, st((c, a),Hn) = ∅, st((c, a),I2n) ⊆ W (c, a;n).

It follows that {Gn}n∈N∪{Hn}n∈N∪{In}n∈N, is a quasi–develop-
ment for M .

Define Jn = Gn ∪ Hn ∪ In, for each n ∈ N. Computing stars
of points in the open covers Jn (for the three cases as above),
we have for n sufficiently large,

st((x, y),Jn) ⊆ U(x, y; n), st((c, a),J2n) ⊆ W (c, a; n),

st((x, a),J2n) ⊆
V (x, a; n)∪ [x− 1/n, x + 1/n] × ((0, 1/n)∪ (a − 1/n, a + 1/n))

and hence
⋂

n∈Nst((p, q),Jn) = {(p, q)} for all (p, q) ∈ M . In
other words, {Jn}n∈N is a Gδ–sequence for M . 2

Example 5.2. A quasi–developable manifold M which has a
Gδ–diagonal but is not perfect.

Construction. Let B be a Bernstein subset of R. We consider
a special case of Example 5.1. Let {Bα}α<2ℵ0 list all countable
subsets of B with uncountable closure in R. Inductively pick
xα ∈ Bα \ (B ∪ {xβ}β<α), and lα,n and rα,n sequences on B
converging to xα from the left and right (respectively). Set C =
{xα}α<2ℵ0 . Note that X is homeomorphic to Gruenhage’s space
[12]. Hence M is not perfect. 2

Acknowledgement: The second author is grateful to Prof.
David Gauld for his kind help and valuable comments and sug-
gestions on this paper, particularly for suggesting the general
setting of Example 5.1.
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