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ON THE STRONG COVERING PROPERTY OF
CONTINUA

JANUSZ J. CHARATONIK AND WÃLODZIMIERZ J. CHARATONIK

Abstract. The concept of a minimal closed cover of a con-
tinuum has been introduced and studied in [11]. We provide
a further investigation of this notion. In particular, we show
connections with several related notions and answer questions
in [11] (concerning hereditarily indecomposable continua and
hereditarily locally connected ones). Using the concept we
define the strong covering property of continua and study its
connections with related concepts.

1. Introduction

Given a (metric) continuum X, a family F of nonempty closed
subsets of X is said to cover X provided that ∪F = X. We denote
by C(X) the hyperspace of (nonempty) subcontinua of X equipped
with the Hausdorff metric (see [15, 0.1, p.1]; compare [6, 2, p.9]).
By a Whitney map for C(X) we mean a mapping µ : C(X) → [0,∞)
such that

(1.1) µ({x}) = 0 for each x ∈ X,
(1.2) if A ( B, then µ(A) < µ(B).

For each t ∈ [0, µ(X)] the preimage µ−1(t) is called a Whitney level
for C(X). The reader is referred to [15] and [6] for these and other
concepts used in this paper.

A continuum X is said to have the covering property (written
X ∈ CP ) provided that for each Whitney map µ : C(X) → [0,∞)
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and for each t ∈ [0, µ(X)] no proper subcontinuum of µ−1(t) covers
X (see [8, Section 6, p. 179]; compare also [15, Remark 14.14, p.
417] and [6, Definition 35.3, p. 253, and Theorem 67.1, p. 320]).

The condition of the definition of the covering property which
claims that no proper subcontinuum of µ−1(t) covers X has been
relaxed in [11] by considering certain special covers of X. Namely,
the condition has been replaced by demanding that no proper com-
pact subset of µ−1(t) covers X. The following concept is defined in
[11, p. 191].

Definition 2. A subset A of C(X) is said to be a minimal closed
cover of X provided that

(2.1) A is a closed subset of C(X);
(2.2) each element of A is a nondegenerate proper subcontinuum

of X;
(2.3) A covers X, i.e., ∪A = X;
(2.4) no proper closed subset of A covers X.

Examples and basic properties of this concept are given in [11].
In particular it is known that if a family of nondegenerate proper
subcontinua of X is closed in C(X) and covers X, then it contains
a minimal closed cover of X (see [11, Theorem 3, p. 195]).

Definition 3. A continuum X is said to have the strong covering
property (written X ∈ SCP ) provided that for each Whitney map
µ : C(X) → [0,∞) and for each t ∈ [0, µ(X)] the Whitney level
µ−1(t) for C(X) is a minimal closed cover of X.

Thus, by the definitions,

(3.1) X ∈ SCP =⇒ X ∈ CP for each continuum X.

Remark 4. The opposite implication to (3.1) is not true, because
if X is an arc, then X ∈ CP (see [6, Section 67, (b), p. 319, and
Theorem 67.1, p. 320]); on the other hand, each minimal closed
cover of X is finite according to [11, Theorem 4, p. 196], so it
cannot be equal to any Whitney level µ−1(t) for some Whitney
map µ and for some t ∈ [0, µ(X)) which obviously is infinite. So
X /∈ SCP .

In the present paper we study minimal closed covers and the
strong covering property, especially for indecomposable continua
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and for hereditarily locally connected ones. We answer some ques-
tions asked in [11], (and repeated [6, Section 67, p. 325]).

Acknowledgement. The authors thank the referee for his/her
attention in reading the paper and for valuable remarks and sug-
gestions.

2. Hereditarily locally connected continua

Recall that a continuum is hereditarily locally connected provided
that all of its subcontinua are locally connected. Each dendrite (i.e.,
a locally connected continuum containing no simple closed curve)
is hereditarily locally connected, see [16, Corollary 10.5, p. 167]. It
is shown in [11, Theorem 7, p. 202] that if for a continuum X all
of its minimal closed covers are countable, then X is hereditarily
locally connected. The opposite implication is not true (see [11,
p. 199]) because the Gehman dendrite G (see [4, the example on
p. 42] and Figure 5 in [11, p. 199]) has an uncountable minimal
closed cover. The cover is homeomorphic to the Cantor set. In
connection with this a question asked in [11, p. 204] if it is true
that a continuum is hereditarily locally connected if and only if all
its minimal closed covers are totally disconnected. Below we give a
negative answer to this question for the implication from hereditary
local connectedness of the continuum to total disconnectedness of
all its minimal closed covers.

Example 5. There is a dendrite (thus a hereditarily locally con-
nected continuum) X having the set of all its end points countable,
and a minimal closed cover of X containing an arc.

Proof: Let
X1 = ([0, 1]× {0}) ∪⋃ {⋃ {{2k−1

2n } × [0, 1
2n ] : k ∈ {1, 2, . . . , 2n−1}} : n ∈ N}

.
The continuum X1 is described and pictured in [10, §49, VI,

Remark and Fig. 6, p. 247]. Let X2 = [1, 2] × {0} and X =
X1 ∪ X2. Thus X is a dendrite having the set E(X) of its end
points countable. For p, q ∈ X let pq be the arc from p to q in X.
Let a = (0, 0), b = (1, 0) and c = (2, 0). Define two families of arcs
in X by

A1 = {cx : x ∈ E(X) \ {c}} and A2 = {cx : x ∈ ab},
and note that A2 is an arc in C(X). Let A = A1 ∪ A2.



116 J. J. CHARATONIK AND W. J. CHARATONIK

It is evident that A covers X, and that each element of A is
an arc. Since ab ⊂ cl(E(X)), it follows that A is closed in C(X).
Therefore, to prove that it is a minimal closed cover of X we need
only to show that condition (2.4) is satisfied. In fact, note that for
each x ∈ E(X) the arc cx is the only element of A that contains
x. Thus if B is a subcover of A, then A1 ⊂ B. Since B has to be
closed, and since to each point x ∈ ab there exists a sequence of
points xn ∈ E(X) with x = limxn, we have A2 ⊂ B. Thus B = A,
as needed. ¤

It is shown in [11, Theorem 7, p. 202] that if a continuum has all
its minimal closed covers countable, then it is hereditarily locally
connected. We would like to know whether the conclusion holds
under a weaker assumption.

Question 6. Let a continuum X have all its minimal closed cov-
ers totally disconnected (equivalently: 0-dimensional). Is then X
hereditarily locally connected?

The following questions (the first of which is a modification of
the question considered by S. Maćıas in [11, p. 199]) are related to
Example 5 and Question 6 above and to Theorem 7 of [11, pp. 202
and 204].

Question 7. Characterize hereditarily locally connected continua
(dendrites, in particular) all minimal closed covers of which are
countable.

Question 8. Characterize continua (dendrites, in particular) all
minimal closed covers of which are totally disconnected.

Recall that continua X having all minimal closed covers of X
finite are characterized as graphs (see [11, Theorem 5, p. 198]).
Observe that the set E(X) of end points of the dendrite X in Ex-
ample 5 is not closed. Thus one can ask if there is a dendrite X
having the set E(X) closed and such that a minimal closed cover
of X contains an arc. Below we give an example of such a dendrite.

Example 9. The Gehman dendrite has a minimal closed cover
which is an arc.

Proof: To define the needed cover we will use an auxiliary hered-
itarily locally connected continuum X (see the Figure). The con-
tinuum was defined in [3, Example 7, p. 216] (compare also the
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Figure (Example 9)

continuum Z in [14, Example 2.5, p. 782]). Since [3] is not easy to
access, we repeat the definition of X for the reader convenience.

In the rectangular coordinates in the plane, for each integer n ≥ 0
and each k ∈ {0, 1, . . . , 2n} put (see the Figure)

pn
k = (2k+1

2n+1 , 1
2n+1 ) for k < 2n and qn

k = ( k
2n , 0),

and let ab stand for the straight line segment joining a and b. De-
fine
X = q0

0q
0
1∪⋃ {⋃ {

pn
kqn

k ∪ pn
kqn

k+1 : k ∈ {0, 1, . . . , 2n − 1}} : n ∈ {0} ∪ N}
.

Thus X is a (hereditarily locally connected) continuum. Let C
be the standard Cantor middle-third set in the closed unit interval
[0, 1], and consider the well known Cantor-Lebesgue step function
ϕ : C → [0, 1] that identifies the end points of each contiguous
interval of the Cantor set (see [9, §16, II, (8) and footnote 1, p.
150] or [17, p. 35]). Note that [0, 1] is isometric with q0

0q
0
1. Further,

we may assume that the set E(G) of the end points of the Gehman
dendrite G is isometric with C. Let α : E(G) → C and β : [0, 1] →
q0
0q

0
1 be the isometries, and define a mapping g : G → X by the

conditions:

(9.1) g|E(G) = β ◦ ϕ ◦ α : E(G) → q0
0q

0
1,

(9.2) g| (G \ E(G)) : (G \ E(G)) → X\q0
0q

0
1 is a homeomorphism.
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For each e ∈ E(G) define x(e) ∈ [0, 1] by g(e) = (x(e), 0), and let
L(e) be the union of two half lines (the dashed lines in the Figure)
emanating from g(e), lying (except g(e)) in the upper half plane
and determined by the equation

y = |12(x− x(e))|.
Let A(e) (the set drawn using thick lines in the Figure) be the set
of points of X lying either above or on L(e), i.e.,

(x, y) ∈ A(e) ⇐⇒ (x, y) ∈ X and y ≥ |12(x− x(e))|.
Thus A(e) is a subcontinuum of X. The reader can verify that, for
e ∈ E(G), the sets g−1(A(e)) are subcontinua of G and that the
family

{g−1(A(e)) : e ∈ E(G)}
is a minimal closed cover of G. The function g−1(A(e)) 7→ x(e)
establishes a homeomorphism between the family and [0, 1]. ¤

So, we have two dendrites X (of Examples 5 and 9) such that
for each of them there is a minimal closed cover of X containing an
arc. Note that the set of the end points is countable and not closed
for the first, while uncountable and closed for the second dendrite.
In connection with this the next questions are natural.

Question 10. Does there exist a dendrite X having the set of
all its end points countable and closed, such that a minimal closed
cover of X contains an arc?

Question 11. Characterize dendrites X with the set E(X) of their
end points closed and such that all minimal closed covers of X are
totally disconnected.

Recall that properties of dendrites with the closed set of their
end points are studied in [2].

3. Indecomposable continua

The following result is known (see [8, Section 6, p. 179] and [15,
Theorem 14.14.1, p. 418]).

Theorem 12. Each hereditarily indecomposable continuum has the
covering property.

A subcontinuum K of a continuum X is said to be terminal in X
provided that for each continuum L of X the condition K ∩ L 6= ∅
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implies K ⊂ L or L ⊂ K. This concept need not be confused with
another one under the same name, e.g. in [15, Definition 1.54, p.
107]. The family of all terminal subcontinua of a given continuum
X will be denoted by Ter(X). The reader is referred to [12, Section
1, p. 535] and [13, Section 1, p. 177] for more information about
Ter(X). In particular, the following equivalence is known (see [7,
Remark, p. 85]).

Proposition 13. A continuum X is hereditarily indecomposable
if and only if Ter(X) = C(X) (i.e., if each subcontinuum of X is
terminal in X ).

The following theorem is the basic result of the first part of the
paper.

Theorem 14. If A ∈ Ter(X) and A is a closed cover of X con-
tained in µ−1(µ(A)), then A ∈ A.

Proof: Let p ∈ A. Since A covers X, there is an element B ∈ A
with p ∈ B. Thus p ∈ A∩B. By terminality of A and since µ(A) =
µ(B) it follows that A = B ∈ A. This finishes the proof. ¤

As a consequence of the above theorem we get the main result
of this part of the paper.

Corollary 15. Let a continuum X satisfy the following condition.
(15.1) For each Whitney map µ : C(X) → [0,∞) and for each

t ∈ (0, µ(X)) the set Ter(X) ∩ µ−1(t) is dense in µ−1(t).
Then X ∈ SCP .

The next corollary, which has been observed in [11, p. 204],
forms a stronger version of Theorem 12 above.

Corollary 16. Each hereditarily indecomposable continuum has
the strong covering property.

Proof: Really, by Proposition 13, the conclusion follows from
Corollary 15. ¤

Remark 17. Notwithstanding the above corollary is stated in
[11, p. 204], the argument given there is incorrect, because it is
claimed that any continuum with the covering property has the
strong covering property, which is not true by Remark 4.
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Example 18. There is a continuum X containing an arc and
which satisfies condition (15.1); hence X ∈ SCP .

Proof: In a pseudo-arc P replace a point a ∈ P by an arc A.
More precisely, consider a compactification X of the locally com-
pact space P \ {a} such that an arc A is the remainder of the
compactification (see [1, Theorem, p. 35]). Then each subcontin-
uum of X not intersecting A is a pseudo-arc terminal in X, whence
(15.1) is satisfied. Then X ∈ SCP by Corollary 15. ¤
Remarks 19. a) A question is asked in [11, p. 204] if the converse
to Corollary 16 is true (see also [6, Question 67.8, p. 324]). Example
18 answers this question in the negative.

b) Another question asked in [11, p. 204] is whether or not
it is true that if X is a continuum for which all of its minimal
closed covers are connected, then X is hereditarily indecomposable
(see also [6, Question 67.9, p. 325]). Theorem 20 below gives an
affirmative answer to this question: the continuum has to be not
only hereditarily indecomposable but even a singleton.

Theorem 20. Each nondegenerate continuum has a nonconnected
minimal closed cover.

Proof: Let A and B be two closed subsets of a nondegenerate
continuum X such that A ∪ B = X and that they are minimal
with respect to this property, i.e., if A′ ⊂ A and B′ ⊂ B with
A′ ∪ B′ = X, then A′ = A and B′ = B. Choose points a ∈ A \ B
and b ∈ B \A. Let µ : C(X) → [0,∞) be a Whitney map for C(X)
and let t > 0 be a number such that for each continuum P ∈ C(X)
with µ(P ) < t we have

a ∈ P =⇒ P ⊂ A \B and b ∈ P =⇒ P ⊂ B \A.

Define
A = {P ∈ C(X) : µ(P ) = t and A ∩ P 6= ∅},
B = {P ∈ C(X) : µ(P ) = t

2 and B ∩ P 6= ∅}.
Then A∪B covers X (i.e., (∪A)∪(∪B) = X), while ∪A does not

contain the point b, and ∪B does not contain the point a. Moreover,
A ∩ B = ∅.

According to [11, Theorem 3, p. 195] there exists a minimal
closed cover C of X contained in A∪B. Observe that C = (A∩C)∪
(B∩C), and that the intersections in the parentheses are nonempty
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proper subsets of C: the former contains a continuum P (a) ∈ A
such that a ∈ P (a), the latter contains a continuum P (b) ∈ B such
that b ∈ P (b), and neither P (a) is in B nor P (b) is in A. This
shows that C is not connected. The proof is complete. ¤

The rest of this section of the paper is devoted to connections
between the strong covering property and various related properties
of continua.

Theorem 21. Consider the following conditions a continuum X
may satisfy:

(21.1) X is hereditarily indecomposable;
(21.2) for each Whitney map µ : C(X) → [0,∞) and for each

t ∈ (0, µ(X)) the set Ter (X) ∩ µ−1(t) is dense in µ−1(t);
(21.3) Ter(X) is a dense subset of C(X);
(21.4) {X} is an accumulation point of Ter (X);
(21.5) X is indecomposable;
(21.6) X ∈ SCP ;
(21.7) X ∈ CP ;
(21.8) X is unicoherent and irreducible.

Then the following implications hold:

(21.1) ⇒ (21.2) ⇒ (21.3) ⇒ (21.4) ⇒ (21.5)
⇓

(21.6) ⇒ (21.7) ⇒ (21.8)

Proof: The implication (21.1) ⇒ (21.2) is a consequence of Propo-
sition 13. The ones (21.2) ⇒ (21.3) ⇒ (21.4) are obvious.

To show that (21.4) ⇒ (21.5) assume (21.4) and suppose that X
is decomposable. Let A,B ∈ C(X) \ {X} with X = A∪B. If K ∈
Ter(X) is such that H(K, X) < min{H(A,X),H(B, X)}, where H
denotes the Hausdorff metric on C(X), then K ∩ (A \ B) 6= ∅ 6=
K ∩ (B \A). Thus A ⊂ K and B ⊂ K by terminality of K, whence
X = A∪B ⊂ K, so K = X. Therefore there is no terminal proper
subcontinuum of X close to X, which contradicts (21.4).

Implication (21.2) ⇒ (21.6) is Corollary 15, and (21.6) ⇒ (21.7)
according to (3.1). Finally, (21.7) ⇒ (21.8) is in [15, the second
part of Theorem 14.14.1, p. 418, and Theorem 14.73.1, p. 478].
The proof is then complete. ¤
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Example 22. There exists a continuum X such that Ter(X) is
not a dense subset of C(X), and {X} is an accumulation point of
Ter(X).

Proof: The continuum X is defined as the inverse limit of an in-
creasing sequence of (arc-like) continua with retractions as bonding
mappings.

Given an inverse sequence {Xn, fn} of continua Xn with bond-
ing mappings fn : Xn+1 → Xn, where the set N of positive inte-
gers is taken as the directed set of indices, we denote by X∞ =
lim←−{Xn, fn} its inverse limit (see [16, Chapter II, p. 17-35]).

Let X1 = [0, 1]. If Xn is defined for some n ∈ N, let Xn+1 be a
compactification of the half-line [0,∞) having Xn as the remainder
(see [1, Theorem, p. 35]), and let fn : Xn+1 → Xn be the natural
retraction. Thus each Xn is an arc-like continuum, so the inverse
limit X∞ = lim←−{Xn, fn} also is arc-like and all these continua can
be seen as embedded in the plane R2 (see e.g. [12, Propositions 7
and 10, p. 537]). Therefore

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · ⊂ X∞ ⊂ R2.

Furthermore, the embedding can be chosen in such a way that
assumptions (1) and (2) of [16, Theorem 2.10, p. 23] are satisfied.
Thereby X∞ is homeomorphic to cl(

⋃{Xn : n ∈ N}), whence
(22.1) X∞ = Lim Xn.

Besides, it is evident from the above construction that each Xn

is terminal in Xn+1; moreover, it is the only nondegenerate proper
terminal subcontinuum of Xn+1. Put, for shortness, X = X∞.
Consequently, if F1(X) stands for the hyperspace of singletons, then

Ter(X) = F1(X) ∪ {Xn : n ∈ N} ∪ {X}.
Thus Ter(X) is a boundary subset of C(X), while {X} is an accu-
mulation point of Ter(X) by (22.1). ¤
Remarks 23. We will discuss the problem of what implications of
ones considered in Theorem 21 can be reversed.

1) Since (15.1) is another name of (21.2), Example 18 shows that
(21.2) does not imply (21.1).

2) Since the only terminal subcontinua in the dyadic solenoid
X are the singletons and the whole space, (21.5) does not imply
(21.4).
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3) Example 22 shows that (21.4) does not imply (21.3).
4) It is stated in Remark 4 that (21.7) does not imply (21.6).

The same example (viz. an arc) shows that no one of the conditions
(21.1)-(21.6) is implied by (21.7).

5) An example of an irreducible and unicoherent continuum with-
out having CP is shown in [5, Example 5.7, p. 501]. Thus (21.8)
does not imply (21.7).

6) The authors do not have any examples showing that the other
implications in Theorem 21 cannot be reversed.

The following question seems to be particularly interesting.

Questions 24. Are the conditions (21.2), (21.3) and (21.6) equiv-
alent? If not, what implications besides those established in Theo-
rem 21 are true?
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