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MOORE SPACE COMPLETION REMAINDERS OF
Q

DAVID L. FEARNLEY, L. FEARNLEY, J.W. LAMOREAUX

Abstract. This paper answers a question of Gruenhage, Fitz-
patrick and Ott raised in the Proceedings of the American
Mathematical Society (volume 117, Number 1, January 1993)
by giving necessary and sufficient conditions for a Moore space
to be a completion remainder of the rational numbers.

1. introduction

Completeness is one of the most important properties of a space
for topology and analysis. Completeness implies the Baire property,
which is one of the most well-used topological characteristics of a
space. Every metric space can be densely embedded in a complete
metric space. However, it is not clear which metric spaces are spaces
into which some metric spaces can be densely embedded. For a
given metric space X it is less clear still which metric spaces are
the complements of X in these dense embeddings. For instance, it
was unknown for a time whether there was a three point completion
of the reals. A completion remainder for a metric space X is a space
Y so that for some complete space Z, X is densely embedded in
Z, and Y is homeomorphic to the complement of X in Z. If Z
is a metric space, then by complete we mean that Z is complete
with respect to some metric. If Z is a Moore space we mean that
Z is complete with respect to some development, and this will be
defined later. It should be noted that there are multiple versions of
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completeness that can be used for Moore spaces which all imply the
Baire property, and would all be equivalent to completeness in a
metric space. We will use the most standard definition. Whipple [8]
gave an alternate characterization of this definition of completeness
and completability depending on sequences.

Fitzpatrick, Gruenhage and Ott [4] have shown that the metric
space completion remainders of the real numbers are the non-empty
Polish spaces. The completion remainders of the rational numbers
in the class of metric spaces were shown to be the nowhere locally
compact, separable, complete metric spaces.

It was an open question, however, which Moore spaces were com-
pletion remainders of Q. Not all Moore spaces can be densely em-
bedded in complete Moore spaces, and in fact not all Moore spaces
can be densely embedded in a Moore space with the Baire prop-
erty, including many Moore spaces with dense metric subspaces,
and even Moore spaces with developments satisfying axiom C at
a dense set of points. Rudin [1] described the first Moore space
which could not be densely embedded in a complete Moore space,
Reed [7] showed that a Moore space can be densely embedded in a
developable Hausdorff space with the Baire property if and only if
it has a development satisfying axiom C at a dense set of points.
Fitzpatrick [3] showed that a Moore space has a dense metrizable
subset if and only if it has a σ-discrete π-base. Fearnley [2] gave an
example of a Moore space with a σ-discrete π-base which cannot
be densely embedded in a Moore space with the Baire property.

2. Preliminaries

Let S be a topological space. Let G = (G1, G2, ...) be a sequence
of open covers for S. For any set T in S, we let st(T, Gn) denote the
union of all elements of Gn which intersect T (or if T is a single point
then the set of elements of Gn containing T as an element). Then G
is a development for S if for every point p ∈ S and every open set U
in S so that p ∈ U , there is a positive integer n so that st(p, Gn) ⊂
U . We say S is developable if there is a development for S, and
we say S is a Moore space if S is both developable and regular.
Throughout this paper it is assumed that every element of every
member of every development is also non-empty. We will define a
Moore space S to be complete with respect to a development G if
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for any descending sequence (Ai) of closed sets in S so that for each
integer i, Ai ⊂ gi for some gi ∈ Gi, the intersection

⋂
i∈N Ai 6= ∅.

Note that any development which refines a complete development
is also complete, and that if there is a complete development for a
space then there is a nested complete development for the space,
or in other words a development G = (G1, G2, ...) so that for each
positive integer i, Gi+1 ⊂ Gi. A space S has the Baire property if
every countable collection of dense open subsets of S has a dense
intersection in S. A collection B of non-empty open sets is a π-base
for S if for each open set U in S there is some open V ∈ B such
that V ⊂ U . A development G for a space S satisfies axiom C at
a point p if for each open set U with p ∈ U , there is some positive
integer n and gn ∈ Gn such that p ∈ gn and st(gn, Gn) ⊂ U . By
the Moore metrization theorem [6], any Hausdorff space which has
a development satisfying axiom C at every point is metrizable.

Medvedev [5] showed that for any cardinal κ, all σ-discrete met-
ric spaces having the property that every non-empty open set has
cardinality κ are homeomorphic. This space is called Q(κ). In par-
ticular, every countable metric space which has no isolated points
is homeomorphic to Q.

Throughout this paper, we will refer to a sequence of sets (Ti),
as being closure nested if for each positive integer i, Ti+1 ⊂ Ti. We
refer to a sequence (Ti) of sets as being eventually closure nested if
for some positive integer n, if i > n then Ti+1 ⊂ Ti. In a space S
with development G then we will refer to Ti as being star nested if
for each n, st(Tn+1, Gn+1) ⊂ Tn, and define eventually star nested
similarly. We also say that the members of a descending sequence
of sets Ti are eventually contained in the set U if for some positive
integer j, Tj ⊂ U . We define a collection C of closure nested
sequences of open sets to be eventually thin if for each point q,
and for each open O so that q ∈ O, there is an open set V so that
q ∈ V ⊂ O and for each sequence (Un) ∈ C, there is some n so that
either Un is contained in V or disjoint from V . In this definition
it should be emphasized that for a given q ∈ O the open set V
described is the same open set for every sequence (Un) ∈ C, though
the value of n so that either Un is contained in V or disjoint from
V may be different for different sequences. In a metric space the
following is equivalent to nowhere local compactness and having
a metric which is nowhere locally complete. In a Moore space
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this condition implies nowhere local compactness and is similar
to the existence of a nowhere locally complete development. We
will refer to this condition as being densely incomplete. We define
S to be densely incomplete if there is a function F assigning to
every open set U a closure nested sequence of non-empty open
sets F (U) = (Un) so that U1 ⊂ U and

⋂
n∈N Un = ∅, having the

additional property that the range of F is eventually thin.

3. Characterization of the completion remainders of Q

Theorem 3.1. A Moore space S is a completion remainder of Q
if and only if S is complete, separable, and densely incomplete.

This theorem will be proven in stages. We will begin with neces-
sity and finish with sufficiency.

Theorem 3.2. If a Moore space S is a completion remainder of Q
then S is complete, separable and densely incomplete.

Proof: By the definition of completion remainder, we may pick a
complete Moore space Z having the property that Q can be densely
embedded in Z, and S is homeomorphic to the complement of Q
in Z. From now on we will refer to S and Q as the complementary
subsets of Z which they are homeomorphic to. Let G be a nested
development for Z with respect to which Z is complete.

We begin this proof by noting that each point of Z has a basis
of open sets whose boundaries do not intersect Q. This is true
because Q is zero dimensional, or more directly because { p} ∪Q is
a countable first countable regular space, and therefore metrizable.
Thus, since there are uncountably many different epsilon radius
neighborhoods about p and only countably many points of Q, there
is an epsilon radius neighborhood Nε(p) about p whose boundary
does not intersect Q. If V is an open set in Z whose intersection
with p ∪Q is Nε(p) then since Q is dense in Z, the boundary of V
does not intersect Q either.

Moore has shown [6] that every Gδ-set in a complete Moore space
is complete. Since S is a dense Gδ subset of Z, we know that S is
complete.

We know that S is separable because S is a dense subset of a first
countable separable space. We know S is dense in Z because a non-
empty open set in Z containing no points of S would be an open
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subset of Q. Since no non-empty open subset of Q is complete and
every open subset of a complete Moore space is complete, it follows
that S must be dense in Z. It remains only to show that S is densely
incomplete. We may choose, for each q ∈ Q, a closure nested
sequence of open sets (Oq(n)) containing q, so that for any open
set V in Z such that q ∈ V , there is some n such that Oq(n) ⊂ V .

For each open set U in S, we pick an open set U∗ in Z such that
U∗∩S = U . Well order the points of Q. Then, for each open set U in
S, define F (U) as follows. Let q(U) be the first element of Q which
is contained in U∗. Then let nU be the first positive integer such
that Oq(U)(nU ) ⊂ U∗. Then, we define F (U) = (Oq(U)(n+nU )∩S)
where n varies over the natural numbers.

It remains to show that F satisfies all the conditions for S to be
densely incomplete. First, note that since

⋂
n∈N Oq(U)(n+nU ) = q

in Z, it follows that
⋂

n∈N (Oq(U)(n + nU ) ∩ S) = ∅. Also, each
member of each element of the range of F is non-empty since S is
dense in Z.

We must still show that the range of F is eventually thin. Let
p ∈ U , where U is open in S. Then, as was discussed in the
proof of completeness, we may choose an open set V in Z so that
p ∈ V ⊂ V ⊂ U∗ in Z and the boundary of V does not intersect
Q. Let W = V ∩ S. Then W ⊂ U and for any q ∈ Q we know that
either q ∈ V or q ∈ (Z \V ). If q ∈ V then for some positive integer
i, Oq(i) ⊂ V , and so (Oq(i)∩S) ⊂ W . If q ∈ (Z \V ) then for some
positive integer i, Oq(i) ⊂ (Z \V ), and hence (Oq(i)∩S)∩W = ∅.
Hence, the members of (Oq(n)∩S) are either eventually contained
in W or eventually contained in S \W . It follows that the range of
F is eventually thin, and so S is densely incomplete. ¤

We will now prove sufficiency. This sufficiency condition is closely
analogous to a sufficient condition for a Moore space to be a com-
pletion remainder of Q(κ) which we will describe later.

Theorem 3.3. If S is a Moore space which is complete, separable
and densely incomplete, then S is a completion remainder of Q.

The proof will be in three steps. The first step is the construction
of Z, the completion of S, the second step is in showing that Z is a
Moore space, and the third step is to construct a development with
respect to which Z is complete.
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Proof: Step 1: Construction of Z.
We will construct a complete Moore space Z having both S and

Q as dense subsets by defining certain closure nested sequences in S
to be additional points. This proof will require the construction of
several different developments and modifications of closure nested
sequences.

We begin with an inductive construction of a sequence of closure
nested sequences of open sets in S which have empty intersections.
Let G be a complete nested development for S. Since S is separable
and first countable, S has a countable π-base. Hence, we may
choose open sets B1, B2, ... which are a π -base for S. We let F
be the function prescribed by the definition of densely incomplete.
We define U1(1) to be an element of G1 whose closure is contained
in B1. Then for all positive integers n > 1 we define the n + 1st
member of F (U1(1)) to be U1(n). Note that the sequence (U1(n))
is closure nested and has empty intersection.

We proceed by induction. Suppose that we have already defined
(Um(n)) if m ≤ j, where n ranges over the natural numbers in-
dexing the members of the mth sequence, and that for each i ≤ j
the sequence (Ui(n)) is closure nested, has empty intersection, and
Ui(1) ⊂ Bi. Also, suppose that for each i, k ≤ j, and each m,n ∈ N ,
one of Ui(m) ⊂ Uk(n), or Ui(m) ∩ Uk(n) = ∅, or Uk(n) ⊂ Ui(m) is
true. Finally, suppose that whenever i ≤ k ≤ j, the set Uk(i) ∈ Gi.

We will now define (Uj+1(n)), where n ranges over the natural
numbers. Let k1 be the first integer so that U1(k1) + Bj+1. We
define O1 = Bj+1 \ U1(k1). In general, for i > 1 we let ki be the
first integer such that Ui(ki) + Oi−1 and let Oi = Oi−1 \Ui(ki). We
choose Uj+1(1) ∈ G1 so that Uj+1(1) ⊂ (Oj ∩ (

⋂{ Ui(k)|i ≤ j and
k < ki} )). For all positive integers n such that 1 < n ≤ j + 1 we
choose Uj+1(n) ∈ Gn so that Un ⊂ Un−1. Then, for all n > j + 1
we let Uj+1(n) be the nth member of the sequence F (Uj+1(j + 1)).

In this way we have defined the sequences (Ui(n)) for all i ≤ j.
Each such sequence is closure nested and has empty intersection,
and for all positive integers i it follows that Ui(1) ⊂ Bi. Note that
if n < j + 1 then by construction, if Un(m) intersects Uj+1(1) then
Un(m) contains Uj+1(1) and thus Uj+1(k) for all k > 1. Hence,
it follows that for each i, k ≤ j + 1, and each m,n ∈ N , one of
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Ui(m) ⊂ Uk(n), or Ui(m) ∩ Uk(n) = ∅, or Uk(n) ⊂ Ui(m) is true.
Also, whenever i ≤ k ≤ j + 1, the set Uk(i) ∈ Gi.

There are four properties about the closure nested sequences
(Um(n)) which will be important to our construction. These prop-
erties will be listed for reference as follows.

(1) For any i 6= j there is some positive integer n so that Ui(n)∩
Uj(n) = ∅.

(2) For any Um(n) and any positive integer i, there is some posi-
tive integer j such that either Ui(j) ⊂ Um(n) or Ui(j)∩Um(n) = ∅.
In other words, the members of (Ui(k)) are either eventually con-
tained in Um(n) or the members of (Ui(k)) are eventually contained
in S \ Um(n).

(3) Every open set U in S contains the first member of one of
these closure nested sequences.

(4) If i ≤ j then Uj(i) ∈ Gi. So, the upper right triangle of
the array mentioned before consists of development open sets of a
corresponding index.

We can now define the space Z. We let Z consist of S and for
each positive integer m, we let the sequence (Um(n)) be a point of
Z. We refer to each such sequence as a sequence point of Z. The
topology on Z is constructed by letting, for every open set U in
S, the set U∗ = U ∪ { (Um(n)) ∈ Z | m ∈ N and the members of
(Um(n)) are eventually contained in U} be open in Z. Note that
this defines a topology for Z, and that S is a subspace of Z.

Step 2: The space Z is a Moore space in which the complement
of the subspace S is homeomorphic to Q.

We make our first modification to the development G for S,
and we also modify the sequence points that we just constructed.
The purpose for this modification is to make the closure nested
sequences become eventually star nested sequences with respect to
a new development. This will be used to construct a development
for Z.

We will inductively define new sequences Vn(m) and a new de-
velopment K = (K1,K2, ...). We will define both simultaneously
since the constructions are dependent on one another. We begin
by letting V1(1) = U1(2). We will use integers rm(n) to index
subsequences of our original closure nested sequences. We de-
fine r1(1) = 1. For each m > 1 choose an integer rm(1) so that
Um(rm(1)) is either contained in V1(1) or disjoint from V1(1). Then
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for all m > 1 we define Vm(1) = Um(rm(1) + 1). Then, we define
K1 = { g1∩U1(1) | g1 ∈ G1} ∪{ g1∩(S\V1(1)) | g1 ∈ G1} ∪{ Vm(1) |
m ∈ N} . We have defined the first member of the development
and the first member of each Vm(n) sequence.

Suppose we have defined Ki and Vm(i) for all i ≤ j. Suppose
further that we have defined rm(i) for all i ≤ j, so that for each
positive integer m, rm(1) < rm(2) < ... < rm(j) and Vm(i) =
Um(rm(i)+1). Furthermore, suppose that for all i < j, if j > t ≥ i
then st(Vi(t + 1),Kt+1) ⊂ Vt. Also, suppose that for all i, t ≤ j
and all positive integers m, Vm(i) is either contained in Vt(i) or
is disjoint from Vt(i). Finally, suppose that for all i ≤ j, the sets
V1(i), V2(i), ..., Vi(i) are pairwise disjoint.

To illustrate these conditions graphically, list the Vm(n) in an
array as before where the nth row in the array is listing the Vm(n)
open sets with n fixed, and the mth column in the array is listing
the Vm(n) open sets with m fixed. Then all elements below the
diagonal of the array would have their stars in the corresponding
development stage contained in the open set immediately above
them in the array list. Also, each open set to the right of the
diagonal on each row is either contained in one of the open sets to
the left of or on the diagonal, or it is disjoint from all open sets on
that row on or to the left of the diagonal. Finally, all members of
the array on or to the left of the diagonal on each row would have
disjoint closures.

We now give the inductive step. For each integer i, 0 < i ≤ j +1,
choose ri(j + 1) > ri(j) so that U1(r1(j + 1)), ..., Uj+1(rj+1(j + 1))
are pairwise disjoint. Then, for each positive integer m > j + 1, if
for some i ≤ j+1, the members of (Um(n)) are eventually contained
in Vi(j +1) then choose rm(j +1) > rm(j) so that Um(rm(j +1)) ⊂
Vi(j+1). Otherwise choose rm(j+1) > rm(j) so that Um(rm(j+1))
is disjoint from Vi(j+1), for all i ≤ j. Then for each positive integer
m, we define Vm(j + 1) = Um(rm(j + 1) + 1).

Finally, we define Kj+1 = (
⋃j+1

i=1{ gj+1 ∩ Ui(ri(j + 1)) | gj+1 ∈
Gj+1} )∪ ({ gj+1 \ (

⋃j+1
i=1 Vi(j + 1)) | gj+1 ∈ Gj+1} )∪{ Vm(j +1) |

m ∈ N} . We note that each element of the induction holds for the
j + 1st row and development stage. If any kj+1 ∈ Kj+1 intersects
some Vi(j + 1) then either kj+1 = Vm(j + 1) for some m, in which
case kj+1 ⊂ Vi(j + 1), or kj+1 is the intersection of a member of
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Gj+1 with Ui(ri(j + 1)). Either way, kj+1 ⊂ Ui(ri(j + 1)) ⊂ Vi(j),
so st(Vi(j + 1),Kj+1) ⊂ Vi(j) as desired. The other properties of
the induction are immediate from the construction.

We must show that K is a development for S. Let p ∈ U , an
open set in S. Then, since G is a nested development, for some n,
if m ≥ n then st(p,Gm) ⊂ U . For some m ≥ n, p is not an element
of

⋃n
i=1 Vi(m). For all i ≥ n, Vi(m) is a subset of an element of

Gn, and so if p ∈ Vi(m) then Vi(n) ⊂ U . All elements of Km are
either contained elements of Gm or are of the form Vi(m) for some
i. Hence, all elements of Km which contain p are contained in U .
Therefore, st(p,Km) ⊂ U and K is a development.

Each sequence (Vm(n)) is a subsequence of (Um(n)). Hence prop-
erties 1-3 for the (Um(n)) sequences also hold for the Vm(n) se-
quences. Also, the following are true.

(5) For each positive integer m, Vm(n) is eventually star nested
with respect to the development K. Specifically, for every positive
integer i, if t ≥ i then st(Vi(t + 1),Kt+1) ⊂ Vi(t).

(6) If i ≤ j then for some gi ∈ Gi, Vj(i) ⊂ gi. So, the upper right
triangle of the array mentioned before is contained in development
open sets of a corresponding index. We further note the that then
for every positive integer n, if j ≥ i then Vj(n) is a subset of an
element of Gi.

For each positive integer m, we also refer to the sequence (Vm(n))
as a sequence point since it is a subsequence of (Um(n)). Note that
if we define U∗ = U ∪ { (Vm(n)) ∈ Z | m ∈ N and the members of
(Vm(n)) are eventually contained in U} then the sequence points
(Vm(n)) contained in the new open set U∗ are the subsequences of
exactly the sequence points (Um(n)) contained in U∗ in the earlier
definition of the topology on Z. Hence, the two spaces are home-
omorphic and the definitions may be used interchangeably. Note
also that every open set in Z is equal to U∗ for some open set U in
S.

We define K∗
n = { k∗n | kn ∈ Kn} . Then we claim that K∗ =

(K∗
1 , K∗

2 , ...) is a development for Z. Let p ∈ U∗, an open set in Z.
Then either p ∈ S or p = (Vm(n)) for some positive integer m. If
p ∈ S then there is some positive integer n so that st(p,Kn) ⊂ U .
Hence, by definition st(p,K∗

n) ⊂ U∗. If p = (Vm(n)) then there
is some positive integer j ≥ m such that Vm(j) ⊂ U . Then by
property (5) we know that st(Vm(j + 1),Kj+1) ⊂ Vm(j) ⊂ U , so
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since any open in Z containing p must intersect Vm(j + 1), we
conclude that st(p,K∗

j+1) ⊂ U∗. Hence, K∗ is a development for
Z.

Next, we wish to show that Z is regular. As before, we let
p ∈ U∗, an open set in Z. Then either p ∈ S or p = (Vm(n))
for some positive integer m. If p ∈ S then since the set of all the
sequence points of Z is eventually thin, we may choose an open set
V in S so that p ∈ V ⊂ V ⊂ U and for each positive integer i the
members of the sequence (Vi(n)) are either eventually contained
in V or disjoint from V . Hence, there are no sequence points on
the boundary of V ∗. Thus, V ∗ ⊂ U∗. If p = (Vm(n)) then for
some positive integer j > m, we know that Vm(j) ⊂ U . So, then
st(Vm(j + 1),Kj+1) ⊂ U , and thus st(Vm(j + 1)∗,K∗

j+1) ⊂ U∗, and
hence p ∈ Vm(j + 1)∗ ⊂ Vm(j + 1)∗ ⊂ U∗. Hence, Z is regular, and
so Z is a Moore space.

Finally, we wish to show that Q can be densely embedded in
Z. We claim that the subspace Z \ S of sequence points of Z is
homeomorphic to Q. By a theorem of Medvedev [5], this is true
if and only if Z \ S is metrizable, countable, and has no isolated
points. We know Z \ S is countable by definition, and hence also
metrizable because it is a countable subspace of a Moore space. Let
(Vm(n)) ∈ (Z \ S). Let U∗ ∩ (Z \ S) be an open set in Z \ S so
that (Vm(n)) ∈ (U∗ ∩ (Z \ S)). Then for some positive integer j,
it follows that Vm(j) ⊂ U , and by construction Vm(j) 6= ∅. Hence,
since V1(1), V2(1), ... is a π -base for S by construction, there is
some positive integer i so that Vi(1) is contained in Vm(j). Thus,
(Vi(n)) ∈ (U∗ ∩ (Z \ S)), and so Z \ S has no isolated points, and
is homeomorphic to Q. From now on, we will refer to Z \ S as Q.

Step 3. The space Z is complete.
As in the proof of necessity, we replace the development K∗ with

a development the elements of whose members have boundaries
which do not intersect Q. For each positive integer n, let Wn be
the set of all open subsets wn of Z having the property that the
boundary of wn does not intersect Q, and also wn ⊂ k∗n for some
k∗n ∈ K∗

n. We claim the Z is complete with respect to the devel-
opment W = (W1,W2, ...). Note that for the same reasons given
in the proof of necessity, W is a development for Z. Let (Ti) be a
decreasing sequence of closed sets in Z such that for every positive
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integer i there is some wi ∈ Wi so that Ti ⊂ wi. Note that by con-
struction, wi is either contained in Vm(i)∗ for some positive integer
m, or wi is contained in some k∗i ∈ K∗

i , where k∗i ⊂ g∗i for some
gi ∈ Gi, since all elements of Ki not contained in { Vm(i) | m ∈ N}
are subsets of elements of Gi.

Either, for infinitely many integers i it is the case that wi ⊂ g∗i
for some gi ∈ Gi, or not. If so, then the sequence (Ti ∩ S) is a
decreasing sequence of closed sets in S such that for each i there
is some gi ∈ Gi so that (Ti ∩ S) ⊂ gi. This is true since Gi is a
nested development. Hence, since S is complete with respect to
G,we know that

⋂
i∈N (Ti ∩ S) 6= ∅, so

⋂
i∈N Ti 6= ∅.

If it is not the case that for infinitely many integers i, wi ⊂ g∗i
for some gi ∈ Gi, then for infinitely many integers i we know that
wi ⊂ Vm(i)∗ for some positive integer m. In that case either there
is some positive integer j so that wi ⊂ Vj(i)∗ for infinitely many
integers i or not. If so then (Vj(n)) ∈ ⋂

i∈N Ti. If not then there
are infinitely many integers m so that wi ⊂ Vm(i)∗. Then we can
pick a positive integer i1 so that wi1 ⊂ g∗i1 for some g1 ∈ G1. This
is true because every Vm(i1) is a subset of some element of G1 by
property (6). Let m1 be the positive integer so that wi1 ⊂ Vm1(i1).
Since there are infinitely many integers m so that wi ⊂ Vm(i)∗,
there is some i2 > i1 and some m2 ≥ 2 such that wi2 ⊂ Vm2(i2)

∗.
Then, since m2 ≥ 2, we know that for some g2 ∈ G2, Vm2(i2) ⊂ g2

by property (6).
Inductively, suppose we have chosen in and mn for all m ≤ j, so

that i1 < i2 < ... < ij−1 < ij , and wn ⊂ Vmn(in)∗, and Vmn(in) ⊂
gn for some gn ∈ Gn. Then we can pick ij+1 > ij and some mj+1 ≥
j+1 so that wij+1 ⊂ Vmj+1(ij+1)∗. Then, since mj+1 ≥ j+1, by (6)
we know that Vmj+1(ij+1) ⊂ gj+1 for some gj+1 ∈ Gj+1. Hence,
for each positive integer n, we know that Tin ∩ S ⊂ gn for some
gn ∈ Gn. Hence, since G is complete,

⋂
n∈N (Tin ∩ S) 6= ∅. Thus,

since (Ti) is a descending sequence of sets,
⋂

n∈N Tn =
⋂

n∈N Tin ⊃⋂
n∈N (Tin ∩ S), and so

⋂
n∈N Tn 6= ∅. Hence, W is a complete

development for Z as desired. This completes the proof. ¤
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