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COMBINATORIAL AND TOPOLOGICAL ASPECTS
OF MEASURE-PRESERVING FUNCTIONS

A. GIARLOTTA, V. PATA AND P. URSINO

Abstract. We study measure-preserving functions between
Lebesgue measurable subsets of the real line. We use partic-
ular bijections of the interval [0, 1), called shifts, to approxi-
mate from below the set of measure-preserving maps on [0, 1).
This construction is similar to the method used in ergodic the-
ory to obtain special transformations by cutting and stacking.
In our approach we provide the set of shifts with an algebraic
symmetric structure, which allows us to investigate the topic
from both a combinatorial and a topological point of view. It
is interesting the interplay between these two aspects of the
problem.

1. Introduction

Measure-preserving functions have been widely studied in the
literature, both from a theoretical and an applied point of view
(see, e.g., [5, 7, 8, 11, 12, 14] and references therein). The traditional
approach focuses primarily on the measure algebra homomorphisms
that they induce.

In this paper we analyze the subject from a quite different per-
spective, aiming to show how a more constructive and explicit study
of measure-preserving functions can shed light on the whole area.
For concreteness, we concentrate our attention on maps between
measurable subsets of the real line R having the same finite positive
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Lebesgue measure. Our investigation is centered on the topological
and metric structure (as opposed to the purely measure theoretic
structure) of the underlying measure spaces. Specifically, our goal is
to try to “understand from below” the general features of measure-
preserving maps. This procedure of approximation is performed
using some rather elementary functions, called “shifts”. Then, ev-
ery measure-preserving function can be expressed as the limit (in
the topology of convergence in measure) of a finite composition of
shifts.

Shifts are similar to the so-called “interval exchange transfor-
mations”, well known in the literature in ergodic theory (see, for
instance, [2, 5]). Nonetheless, our approach departs from the tra-
ditional one in three respects. First, the environment in which our
analysis is carried out is the underlying measure space, and not
the associated measure algebra. Second, the topologies we put on
the spaces of functions are different from those already studied in
the literature (see, e.g., [5, 7, 12]). Finally, we endow the set of
shifts with a natural algebraic symmetric structure, which turns
out to be quite useful in order to obtain a new representation of
measure-preserving maps.

Our first goal is to obtain, using a similar construction, simi-
lar results. Indeed, within the set of all shifts, it is possible to
identify a countable subfamily R, formed by the so called “ratio-
nal” shifts. Then, the group S (under composition) generated by
rational shifts witnesses the separability of the space of measure-
preserving functions endowed with the topology of convergence in
measure. Therefore, S plays in this context the same role that the
set of interval exchange transformations plays in the space of au-
tomorphisms of the associated measure algebra endowed with the
so-called “neighborhood topology” (cf. [7]).

On the other hand, the use of the group S as a tool to describe
from below measure-preserving functions presents some rather
unique advantages. In fact, there exists a natural correspondence
between rational shifts and finite permutations of N. This corre-
spondence between analytical and combinatorial objects is useful
in two ways.

First of all, it allows us to express every measure-preserving func-
tion as a countable sequence of finite permutations of natural num-
bers. As consequence, we could get some insight into the space
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of measure-preserving maps by using combinatorial properties of
permutations of natural numbers.

At the same time, analytical properties of shifts might provide
us with geometrical methods to determine the order of specific el-
ements of symmetric groups. Furthermore, the above correspon-
dence can also be used to obtain some combinatorial metrics on
(equivalence classes of) finite permutations of N by simply trans-
lating the usual distances in the corresponding spaces of functions.

The paper is organized as follows. In Section 2 we introduce the
basic objects of our investigation, namely, the measure-preserving
functions. The shifts on the interval [0, 1) are defined in Section 3.
Section 4 is devoted to the study of the group S generated by ratio-
nal shifts. Here we show that S is the directed colimit of a directed
system of the symmetric groups. In Section 5 we analyze the shifts
from a group-theoretical point of view, determining the order of
any shift. Section 6 is devoted to an investigation of suitable met-
ric structures that the set of measure-preserving functions on the
interval [0, 1) can be endowed with. In particular, we prove that this
set, endowed with the distance induced by convergence in measure,
is a complete separable metric space. In Section 7 we deal with the
subspace of measure-preserving bijections, and we show that its al-
gebraic and topological structures are compatible. Specifically, we
prove that this space is a Polish group. Conclusions group final
remarks, open problems and future directions of research.

2. Preliminaries

We begin by recalling the definition of measure-preserving maps
(with respect to the Lebesgue measure µ).

Definition 2.1. Let X, Y ⊂ R be two measurable sets of finite
positive measure. A measure-preserving function (or, more simply,
a homomorphism) of X into Y is a map γ : X → Y such that
γ−1(M) ⊂ X is measurable and µ(γ−1(M)) = µ(M), whenever
M ⊂ Y is measurable. The map γ is said to be an isomorphism if,
in addition, γ is a bijection. A homomorphism of X into itself is
called an endomorphism; an isomorphism of X onto itself is called
an automorphism.

Notice that the definition of homomorphism can be weakened
by requiring only that γ−1(I) ⊂ X is measurable and µ(γ−1(I)) =
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µ(I ∩ Y ), for every open interval I ⊂ R. Furthermore, it is well
known that isomorphism between sets of positive measure can be
characterized in a quite useful manner (see, e.g., [13, 14]):

Theorem 2.2. Let X, Y ⊂ R be two measurable sets of finite pos-
itive measure, and let γ : X → Y be an injective map. Then the
following conditions are equivalent:

(i) for every open interval I⊂R , the set γ−1(I) is measurable,
and µ(γ−1(I)) = µ(I ∩ Y );

(ii) γ is surjective, and for every open interval I ⊂ R , the set
γ(I ∩X) is measurable, with µ(γ(I ∩X)) = µ(I ∩X);

(iii) γ is an isomorphism from X onto Y ;
(iv) γ is surjective, and γ−1 is an isomorphism from Y onto X.

Theorem 2.2 says, in particular, that injective homomorphisms
are isomorphisms, and that isomorphisms carry measurable sets
into measurable sets.

As usual, we identify functions which are equal almost every-
where. Then, every equivalence class of isomorphisms is uniquely
determined by a bijection which carries nullsets into nullsets. More-
over, two isomorphisms which differ on a set of positive measure
give rise to different equivalence classes. It is understood that The-
orem 2.2 still holds, mutatis mutandis, if we replace the sentence
“γ is injective” by the sentence “[γ] contains an injective element”,
where [ · ] stands for equivalence class in the relation of equality
almost everywhere.

In the following, we denote the space of equivalence classes of
measure-preserving functions from X to Y by Hom(X, Y ); in ad-
dition, Iso(X, Y ) is the set of [γ] ∈ Hom(X,Y ) such that γ is an
isomorphism of X onto Y . Further, we set End(X) = Hom(X, X),
and Aut(X) = Iso(X, X).

The space Aut(X) is a group with respect to the ordinary com-
position of functions (denoted by ◦). The unit in (Aut(X), ◦) is
[e], where e is the identity map e(x) = x. If γ is an automor-
phism of X, the inverse of [γ] ∈ Aut(X) is [γ−1]. The space
(End(X), ◦) is a monoid with unit [e]. Note also that the inclu-
sion Iso(X, Y ) ⊂ Hom(X, Y ) is in general proper, as the following
example shows.

Example 2.3. Let X = Y = [0, 1], and consider the function
β(x) = 1 − |1 − 2x|. Since for every interval I ⊂ [0, 1] we have
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µ(I) = µ(β−1(I)), we get that [β] ∈ End([0, 1]). Assume now that
[β] ∈ Aut([0, 1]). Then there exists nullsets N1, N2 ⊂ [0, 1] such
that β : [0, 1]\N1 → [0, 1]\N2 is a bijection. Set M = [0, 1/2]\N1.
Since M is measurable, it must be µ(M) = µ(β(M)). But β|M (x) =
2x, which entails 2µ(M) = µ(β(M)), a contradiction.

Our aim is to investigate the general features of homomorphisms
and isomorphisms on measurable subsets of R having finite positive
measure. The following well known result shows that there is no
loss of generality if we restrict our attention to endomorphisms and
automorphisms of the unit interval.

Theorem 2.4. Let X, Y ⊂ R be two measurable sets having the
same finite positive measure. Then there exists an isomorphism γ
between X and Y .

In the sequel we will therefore focus our attention on the following
objects:

E = End([0, 1)) and A = Aut([0, 1)) .

We will also follow the usual convention of denoting the equivalence
class [γ] ∈ E by γ, choosing a bijective representative γ whenever
[γ] ∈ A.

3. The shifts

In this section we single out some particular elements of A, called
“shifts”. They will be the building blocks in the construction of an
algebraic object which “approximates from below” the spaces A
and E .

A very similar construction is well known in ergodic theory, under
the name of cutting and stacking method (see [5]). This method,
originally due to von Neumann and Kakutani, is very useful in
order to construct transformations of various types (ergodic, mix-
ing, measure-preserving, etc.). Furthermore, this representation
has been used to prove approximation results of the type we are
interested in. Namely, the automorphisms of the associated mea-
sure algebra can be endowed with suitable topologies (see [3, 7]),
and some interesting separability results can be proved in these
topological spaces. More recently, it has been shown (see [2]) that
an abstract cutting and stacking construction can be realized as
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an “interval exchange transformation”. Therefore, we may think
of interval exchange transformations as the building blocks used to
approximate from below every automorphism of the corresponding
measure algebra.

As it will soon become apparent, our definition of shift is very
similar to that of interval exchange transformation. Nevertheless,
in spite of the evident similarities, our approach is justified by sev-
eral reasons. In fact, we will establish a correspondence between
shifts and particular permutations of the natural numbers. This
will in turn provide us with a geometric way to compute their
group-theoretic order. Moreover, shifts will be used to generate
an algebraic object, the group S, which will allow us to obtain
some approximation results having the same flavor as those already
mentioned. In this investigation, we will endow the space E with
topologies which, in our setting, seem to be more appropriate than
the one used in the literature for the associated measure algebra.
The advantage of our construction is that the group S is a purely
combinatorial object, being the directed colimit of a system of the
symmetric groups Sn, and therefore the approximation results that
we get for spaces of functions have a combinatorial representation
as well. Note that, by the lifting theorem on the representability of
automorphisms of measure algebras (see, for instance, [9], p.118),
all the results obtained on the underlying measure space still hold
in the associated measure algebra.

Definition 3.1. A shift is a map of the form γh
a,b : [0, 1) → [0, 1)

defined by

γh
a,b(x) =





x + h if x ∈ [a, b)
x−max{b− a, h} if x ∈ [a + h, b + h) \ [a, b)
x otherwise ,

where the parameters a, b, h ∈ [0, 1] satisfy 0 ≤ a + h < b + h ≤ 1.
We call [a, b) and [a + h, b + h) the basic interval and the shifted
interval of γh

a,b, respectively. A shift is said to be total if the two
intervals do not overlap (i.e., h ≥ b − a), and partial otherwise. A
shift γh

a,b is rational if the parameters a, b, h are all rational numbers.
The set of all [total, partial] rational shifts will be denoted by R
[Rtot,Rpar].
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Remark 3.2. It is an immediate consequence of the definition that
every shift is an automorphism of [0, 1). Notice also that every
nonidentity partial rational shift can be written as a composition
of total rational shifts. More generally, any nonidentity rational
shift has many representations as a composition of (more than one)
other rational shifts, e.g.,

γ
1
2
1
8
, 3
8

= γ
1
2
1
8
, 1
4

◦ γ
1
2
1
4
, 3
8

= γ
1
4
1
8
, 3
8

◦ γ
1
4
3
8
, 5
8

◦ γ
1
4
1
8
, 3
8

.

Its representation in the form γh
a,b is, however, unique (instead, for

the identity, we have e = γ0
a,b for each 0 ≤ a < b ≤ 1). Finally

observe that the graph of a shift is composed by a finite number of
segments (not necessarily of the same length), closed to the left and
open to the right, all having slope equal to 1. Therefore, also the
graph of any finite composition of shifts will be of the same type.

In the sequel, we are mostly interested in rational shifts. In fact,
we focus our attention on the group (under composition) generated
by R; we will denote this group by S. The importance of this al-
gebraic object is based both on the simple nature of its elements
as functions on [0, 1) (which allows us to give a purely combina-
torial representation of it: see Sections 4 and 5) and on its close
topological relationship to E and A (see Sections 6 and 7).

Remark 3.3. The following chain of inclusions holds:

R ⊂ S @ A ⊂ E ,

where @ stands for subgroup. Notice that S is not normal in A.
Indeed, if we let β = γh

a,b , with (b − a) ∈ Q and h ∈ R\Q, and
define

α(x) =

{
β(2x)

2
if x ∈ [0, 1/2)

x if x ∈ [1/2, 1) ,

then α ∈ A , γ
1
2

0, 1
2

∈ R ⊂ S , but (α−1 ◦ γ
1
2

0, 1
2

◦ α) 6∈ S. Finally,

observe that E is not a group under compositions of functions, since
there are endomorphisms whose equivalence classes do not contain
bijections (cf. Example 2.3).
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4. The group S generated by rational shifts

We now start analyzing the group-theoretic structure of S pro-
viding a representation theorem for S (in this section) and deter-
mining the order of its generators (in the next section).

As the graph of any rational shift suggests, we may regard any
element of R as a finite permutation of natural numbers by prop-
erly subdividing [0, 1) in intervals of equal length, and collapsing
each interval to a point. In other words, any rational shift can be
identified with a particular element of Sn, the symmetric group on
n letters, for a suitably chosen n ∈ N. This easy but crucial obser-
vation is the starting point for an attempt to represent the group
S by means of the symmetric groups Sn, n ∈ N. In the following
we show that indeed (S, ◦) is a directed colimit of the groups Sn.

We briefly recall from [10] the categorial definition of directed
colimit for a directed family of morphisms. Let (I,¹) be a directed
set of indices, namely, a poset with the property that for each
i, j ∈ I there is k ∈ I such that both i ¹ k and j ¹ k. Let A
be a category and (Ai)i∈I a family of A-objects. For each pair
(i, j) ∈ I2 such that i ¹ j, assume we are given an A-morphism
f j

i : Ai → Aj satisfying the following two properties: f i
i = idAi

(the identity morphism on Ai) for every i ∈ I, and fk
i = fk

j ◦ f j
i

whenever i ¹ j ¹ k. Then the I-indexed family of pairs (Ai, f
j
i )I

is said to be a directed family of morphisms over (I,¹). Finally, a
directed colimit of the family (Ai, f

j
i )I is a pair (A, (fi)i∈I) such that

the A-morphisms fi : Ai → A satisfy the following two properties:
(i) fi = fj ◦ f j

i whenever i ¹ j ;
(ii) for every other pair (B, (gi)i∈I), where gi : Ai → B are A-

morphisms such that gi = gj ◦ f j
i if i ¹ j, there exists a

unique A-morphism f : A → B satisfying f ◦ fi = gi for
every i ∈ I .

In other words, a directed colimit of (Ai, f
j
i )I is an initial object

in the category C obtained from A taking as C-objects the pairs
(A, (fi)i∈I) as above, and defining C-morphisms from (A, (fi)i∈I)
to (B, (gi)i∈I) as those A-morphisms from A to B that make the
relative diagrams commute.

We will now apply the above notions in the category of groups.
Partially order N by divisibility, denoting m ¹ n if m divides n.
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Then, (N,¹) is a directed set. For each pair (m,n)∈N 2 of compara-
ble naturals, say m ¹ n with n = tm, define a map ιnm : Sm −→ Sn

as follows:

if σ =
(

1 . . . m
k1 . . . km

)
∈ Sm, let

ιnm(σ) =
(

1 . . . t t + 1 . . . tm
t(k1−1)+1 . . . t(k1−1) + t t(k2−1)+1 . . . t(km−1)+t

)
.

One can easily verify that ιnm(σ) is the permutation in Sn given
by

(i− 1) t + j 7−→ (σ(i)− 1) t + j

for i = 1, . . . , m and j = 1, . . . , t. Hence, ιnm is a well defined
injection of Sm into Sn.

Lemma 4.1. (Sn, ιnm)N is a directed system over the directed set
(N,¹).

Proof: Straightforward verification of the properties of a directed
system. ¤

Next, we associate to each finite permutation of N a finite compo-
sition of rational shifts. Given n ∈ N, consider the decomposition of
[0, 1) in n subintervals of equal length [(i− 1)/n, i/n), i = 1, . . . , n.
For each permutation σ ∈ Sn, define a map γσ in [0, 1) by

γσ(x) = x +
σ(i)− i

n

if x ∈ [(i − 1)/n, i/n). Note that γσ is a finite composition of
rational shifts. Therefore, the maps φn : Sn → S given by

φn(σ) = γσ

are well defined for each n ∈ N. The next lemma collects some
properties of the family of maps (φn)n∈N.

Lemma 4.2. The following hold:
(i) φn is a group monomorphism for each n ∈ N ;
(ii) φm = φn ◦ ιnm whenever m ¹ n ;
(iii) for each γ ∈ Rtot there exists an involution σ in some Sn

such that γ = φn(σ) ;
(iv) for each γ ∈ S there exist n ∈ N and σ ∈ Sn such that

γ = φn(σ) .
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Proof: To prove (i), fix n ∈ N and σ1, σ2 ∈ Sn, and let x ∈ [0, 1).
Then there exists i ∈ {1, . . . , n} such that x ∈ [(i − 1)/n, i/n).
Observe that, if k ∈ {1, . . . , n}, the point x + (k − i)/n lies in the
interval [(k − 1)/n, k/n). Then, denoting j = σ2(i), we get

γσ1◦σ2(x) = x+
j − i

n
+

σ1(j)−j

n
= γσ1

(
x+

j−i

n

)
= γσ1◦γσ2(x) .

Therefore, the equality γσ1◦σ2 = γσ1◦γσ2 holds for each σ1, σ2 ∈ Sn,
that is, φn is a group homomorphism. It is apparent that φn is
injective.

For (ii), let n = tm for some t ∈ N. To show that the equality
γσ = γιnm(σ) holds for each σ ∈ Sm, let x ∈ [(i−1)/m, i/m) ⊂ [0, 1),
for some i ∈ {1, . . . , m}. Since there exists l ∈ {1, . . . , t} such that

x ∈
[(i− 1)t + l − 1

n
,
(i− 1)t + l

n

)
,

the definition of ιnm(σ) gives

γιnm(σ)(x)=x+
((σ(i)−1)t + l)−((i−1)t + l)

n
=x+

σ(i)− i

m
=γσ(x) ,

as wanted.
To prove (iii), observe that any γh

a,b ∈ Rtot can be written as

γ
k/n
i/n,j/n , where n is the least common multiple of the denominators

of a, b, h, and 0 < j − i ≤ k < n. Then, γh
a,b = φn(σ), where

σ is the permutation given by the following product of disjoint
transpositions in Sn:

(i + 1, i + 1 + k) (i + 2, i + 2 + k) . . . (j, j + k) .

Finally, (iv) is an immediate consequence of (iii). ¤
Then we have:

Theorem 4.3. (S, (φn)N) is a directed colimit of the directed sys-
tem (Sn, ιnm)N in the category of groups.

Proof: We already know from Lemma 4.2 (i) that all the maps φn

are group homomorphisms. Moreover, Lemma 4.2 (ii) shows that
the commutativity condition

φm = φn ◦ ιnm

holds for all m ¹ n. Therefore, we are left to prove that (S, (φn)N)
satisfies the following universal mapping property: for every group
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G, and for every family of group homomorphisms (ψn)N, ψn : Sn →
G, such that ψm = ψn ◦ ιnm whenever m ¹ n, there exists a unique
homomorphism ψ : S → G satisfying the relations ψ ◦ φn = ψn

for every n ∈ N. We define ψ to fulfill the above commutativity
conditions. For each n ∈ N and each γ ∈ S, set

ψ(γ) = ψn(σ) ,

where σ ∈ Sn is such that φn(σ) = γ. In order to prove the result, it
suffices to show that ψ is a group homomorphism, uniqueness being
obvious. We start proving that ψ is a well-defined map from S into
G. Indeed, let σn∈Sn and σm∈Sm be such that φn(σn) = φm(σm).
Setting p = lcm(n,m), and exploiting the commutativity condition,
we have

φp(ιpn(σn)) = φn(σn) = φm(σm) = φp(ιpm(σm)) .

Since φp is left-cancellable by Lemma 4.2 (i), we get that

ιpn(σn) = ιpm(σm) ,

which in turn entails

ψn(σn) = ψp(ιpn(σn)) = ψp(ιpm(σm)) = ψm(σm) ,

as desired. Finally, we show that ψ is a homomorphism. Let
γ1, γ2 ∈ S. Then, by Lemma 4.2 (iv), there exist ni ∈ N and
τi ∈ Sni (i = 1, 2) such that γi = φni(τi). Setting n = lcm(n1, n2),
let σi be the elements of Sn given by σi = ιnni

(τi). Then we have

φn(σi) = φn ◦ ιnni
(τi) = φni(τi) = γi .

Recalling now the definition of ψ, and the fact that both φn and
ψn are homomorphisms, we conclude that

ψ(γ1 ◦ γ2) = ψn(σ1 ◦ σ2) = ψn(σ1) ◦ ψn(σ2) = ψ(γ1) ◦ ψ(γ2) .

This completes the proof. ¤
Recall from [1] that there is a canonical way to associate a colimit

to any directed family of morphisms in the category of groups (and,
more generally, in any algebraic construct having a certain form).
Then, if we denote by (S[∞], (αn)N) the canonical directed colimit
of the system (Sn, ιnm)N, Theorem 4.3 yields the following result:

Corollary 4.4. S and S[∞] are isomorphic groups.
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Proof: Colimits of the same (directed) system are essentially unique
(see [1], Propositions 11.29 and 11.7). In particular, since both
(S, (φn)N) and (S[∞], (αn)N) are colimits of the same directed sys-
tem in the category of groups, there exists a group isomorphism
α : S[∞] → S such that φn = α ◦ αn for each n ∈ N. ¤

In light of the above result, it is interesting to analyze in some
detail which type of topological structure the group S[∞] can be
endowed with.

Remark 4.5. By construction, the underlying set of S[∞] is built as
a quotient of the disjoint union of the sets Sn, since its elements are
equivalence classes of finite permutations of N under the relation ∼
defined as follows: for each σm ∈ Sm and σn ∈ Sn

σm ∼ σn ⇐⇒ ∃ p º m,n such that ιpm(σm) = ιpn(σn) .

It is now easy to check that the isomorphism α in the proof of
Corollary 4.4 is actually given by [σ] 7→ γσ.

Remark 4.6. Each class in S[∞] intersects each Sn in at most
one element. Therefore, we can identify [σ] ∈ S[∞] with its ¹-
minimal representative. More precisely, for each finite permutation
σ, denote

Nσ = {n ∈ N : [σ] ∩ Sn 6= ∅}
and define for each n ∈ Nσ

σ(n) = [σ] ∩ Sn .

Then, if we let nσ = min Nσ , the map

[σ] 7−→ (σ(nσ), nσ)

is a well defined injection of S[∞] into
⋃

n∈N(Sn, n).

The above identification turns out to be a useful device to com-
pare different elements of S[∞]. Given [σ], [τ ] ∈ S[∞], denote nσ,τ =
lcm{nσ, nτ}. Then, we can compare [σ] and [τ ] by looking at
their representatives in the ¹-minimally indexed common symmet-
ric group, that is, σ(nσ,τ ), τ (nσ,τ ) ∈ Snσ,τ .

Example 4.7. Let σ ∈ S8 and τ ∈ S9 be the following involutions
(here we use their cycle representation):

σ = (1 5) (2 6) (3 7) (4 8) and τ = (1 7) (2 8) (3 9) (4) (5) (6) .

Then, we have:
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• nσ = 2 , σ(2) = (1 2) , nτ = 3 , τ (3) = (1 3) (2) ;
• nσ,τ = 6 , σ(6) = (1 4) (2 5) (3 6) , τ (6) = (1 5) (2 6) (3) (4) ;

• γσ = γ
1
2

0, 1
2

, γτ = γ
2
3

0, 1
3

, [σ] 6= [τ ] .

We now use the identification of Remark 4.6 to define some in-
teresting metrics in S[∞]. They are combinatorial versions of some
well known metrics for spaces of functions, and are obtained by
means of the isomorphism between S[∞] and S.

Proposition 4.8. The maps d1, d2 and d3 defined by

d1([σ], [τ ]) =
1

nσ,τ
max{|σ(nσ,τ )(i)− τ (nσ,τ )(i)| : i = 1, . . . , nσ,τ} ,

d2([σ], [τ ]) =
1

(nσ,τ )2

nσ,τ∑

i=1

|σ(nσ,τ )(i)− τ (nσ,τ )(i)| ,

d3([σ], [τ ]) =

1
(nσ,τ )2

nσ,τ∑

i=1

(
|σ(nσ,τ )(i)−τ (nσ,τ )(i)|+|(σ−1)(nσ,τ )(i)−(τ−1)(nσ,τ )(i)|

)
,

are metrics in S[∞].

Proof: The correspondence [σ] 7→ γσ gives at once

d1([σ], [τ ]) = sup{|γσ(t)− γτ (t)| : t ∈ [0, 1)} ,

d2([σ], [τ ]) =
∫ 1

0
|γσ(t)− γτ (t)| dµ(t) ,

d3([σ], [τ ]) =
∫ 1

0

(
|γσ(t)− γτ (t)|+ |γ−1

σ (t)− γ−1
τ (t)|

)
dµ(t) ,

the right-hand sides being well known metrics on A. ¤
Therefore all the analytic results that we obtain in Section 6 and

Section 7 can be translated into a combinatorial form. In particular,
the following fact is worth being mentioned (see Theorem 6.1):

Theorem 4.9. Every endomorphism of [0, 1) is the limit of finite
permutations of N.

Remark 4.10. The “internal” relationships of the natural numbers
are expressed by the group S∞ of permutations of N. From this
point of view, each n ∈ N gives a finite picture of these relations
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via its symmetric group Sn. Ordering the groups Sn into the ¹-
directed system (Sn, ιnm)N sheds new light onto their limit behavior.
Each Sn is a finite approximation of S∞, but not all the information
provided by Sn is relevant to this aim. The effective contribution
of n∈N to S∞ is in fact contained into the subset S

′
n of Sn given

by

S
′
n = {σ ∈ Sn : nσ = n} .

Indeed, only the ¹-minimal elements of Sn add new information,
since any σ ∈ Sn \ S

′
n is an element of S

′
k, for some k � n.

5. Some numerical properties of shifts

Here we study the order of shifts as elements of the group A.
As a consequence, we get some insight into the group S by de-
termining the order of its generators. The next step would be the
study of the order of particular compositions of rational shifts. This
problem presents some serious difficulties, and it is currently under
investigation.

Determining the order of total shifts is an easy task. We know
already from Lemma 4.2 (iii) that the order a rational total shift
is 2. We will show that this fact immediately extends to all total
shifts. For what concerns partial shifts, some of them have finite
order, but there exist also torsion-free partial shifts. Obviously, all
rational partial shifts do have finite order. Nonetheless, the class
of partial shifts with finite order is actually much larger, as we will
see.

In the sequel, we classify all shifts and determine their order
accordingly. We begin with two easy observations.

Remark 5.1. Any shift γh
a,b 6= e moves both the points in the basic

interval [a, b) and those in the shifted interval [a + h, b + h), but it
leaves all the other points of [0, 1), if any, fixed. It is an immediate
consequence of the definition of shifts that any natural power of γh

a,b

has at least the same fixed points as γh
a,b. Thus, for each n ∈ N, we

have (with obvious notation)

fix((γh
a,b)

n) ⊃ [0, 1) \ ([a, b) ∪ [a + h, b + h)) .
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Remark 5.2. It is apparent that the order of any shift γh
a,b (de-

noted by ord(γh
a,b)) is invariant under translations of the basic in-

terval [a, b), namely,

ord(γh
a,b) = ord(γh

a+c,b+c)

for any c ∈ (−1, 1) such that 0 ≤ a + c ≤ b + c ≤ 1. In particular,
ord(γh

a,b) = ord(γh
0,b−a). Therefore, the order of a shift γh

a,b will
depend only on two parameters: its length l = b− a and its height
h.

This last remark motivates the following definition.

Definition 5.3. For any shift γh
a,b, define its ratio by rat(γh

a,b) =
h/(b− a) .

Observe that γh
a,b is total if and only if rat(γh

a,b) ∈ [1,∞), and
γh

a,b is partial if and only if rat(γh
a,b) ∈ [0, 1). In particular, γh

a,b = e

if and only if rat(γh
a,b) = 0.

The following fact is an easy consequence of the definition of
partial shift.

Lemma 5.4. Let γh
a,b 6= e be a partial shift. Then, the following

two conditions are equivalent for any positive integer n:
(i) there are r, s ∈ N such that r + s ≤ n and r(b− a) = sh ;
(ii) ord(γh

a,b) ≤ n .

The next result establishes for any shift a precise relationship
between the order and the ratio.

Theorem 5.5. Given any shift γh
a,b 6= e, the following hold:

(i) if rat(γh
a,b)∈ [1,∞), then ord(γh

a,b) = 2 ;
(ii) if rat(γh

a,b)∈ (0, 1) ∩ Q, then ord(γh
a,b) = p + q, with p/q =

rat(γh
a,b) and gcd(p, q)=1 ;

(iii) if rat(γh
a,b)∈(0, 1) ∩ (R \Q), then ord(γh

a,b) is infinite.

Proof: (i) is an immediate consequence of Remark 5.1 and the
definition of γh

a,b.
For (ii), let γh

a,b be such that

rat(γh
a,b) =

h

b− a
=

p

q
∈ (0, 1) ∩ Q ,



152 A. GIARLOTTA, V. PATA AND P. URSINO

where gcd (p, q) = 1. Then, γh
a,b is a nonidentity partial shift sat-

isfying Lemma 5.4 (i) with r = p, s = q and n = p + q. Thus,
ord(γh

a,b) ≤ p + q. To finish the proof of (ii), we show that it
cannot be ord(γh

a,b) < p + q. Otherwise, Lemma 5.4 (ii) holds with
n = p+q−1, hence there should be r, s ∈ N such that r+s ≤ p+q−1
and r(b− a) = sh. This is obviously impossible.

Finally, let

rat(γh
a,b) =

h

b− a
∈ (0, 1) ∩ (R \Q) .

In this case Lemma 5.4(i) fails for any n ∈ N. Thus, the order of
γh

a,b is unbounded. ¤

Remark 5.6. Theorem 5.5 provides some information about the
group S, since it allows us to determine the order of any element
of R. It would be interesting to derive a formula that gives the
order of the composition of particular types of rational shifts. In-
deed, in force of the correspondence σ(n) 7→ γσ, if γσ can be written
as composition of these particular shifts, then the formula would
automatically give the order of the permutation σ ∈ Sn. Not sur-
prisingly, determining the order of a composition of rational shifts
is not an easy task. Even in the simple case of a composition of
two total rational shifts, the problem is far from being elementary.
We have, however, some partial results related to compositions of
the form γ

q/n
0, p/n ◦γ

s/n
0, r/n, with p ≤ q and r ≤ s. In fact, it is possible

to classify these compositions according to the reciprocal position
of the basic and shifted intervals of the two shifts, and derive a for-
mula giving the order of their composition in each of these cases.
This topic will be developed in a forthcoming paper.

6. Topological properties of the sets A and E
In [7] Halmos studies from a topological point of view the auto-

morphisms of the measure algebra of measurable sets on the unit
interval, in the hope to shed new light onto some important topics
in ergodic theory. To this aim, he endows the group G of automor-
phisms of the measure algebra with three topologies: the “neighbor-
hood topology”, the “metric topology”and the “uniform topology”.
Besides several ergodic results, he proves some theorems which are
purely topological in nature. In particular, he shows that if G is
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endowed with the neighborhood topology (but not with the other
two, which, however, coincide on G and are stronger than the first),
the set of “permutations of intervals” is a countable dense set in G.

Here we obtain a similar result on the underlying measure space,
but using a topology which is in our opinion more expressive of the
real proximity of (equivalence classes of) functions. Specifically,
we show that, if we endow E with the topology of convergence
in measure, the group S generated by rational shifts witnesses the
separability of the space of endomorphisms. We remark again that,
by the lifting theorem, all the results we obtain are valid in the
associated measure algebra.

Denote by M the set of Lebesgue measurable R-valued functions
on [0, 1). It is well known that M endowed with the distance

d(f1, f2) =
∫ 1

0

|f1(t)− f2(t)|
1 + |f1(t)− f2(t)| dµ(t)

is a complete metric space, and the topology induced on M by this
metric is the topology of convergence in measure. Here and below
we denote this topology by τd.

It is clear that (E , d) is a closed subspace of (M, d), and hence
(E , d) is a complete metric space. Note also that (E , ◦) is a topolog-
ical monoid with respect to the topology τd. The next result shows
that (E , τd, ◦) is indeed a Polish monoid.

Theorem 6.1. The space S is τd-dense in E; that is, every en-
domorphism of [0, 1) is the limit (in the topology of convergence
in measure) of a sequence of automorphisms, each of which is a
compositions of finitely many rational shifts.

Proof: Let γ ∈ E . We construct a sequence {γn} in E which
converges in measure to γ. For any n ∈ N, and any k ∈ {1, . . . , 2n},
denote the disjoint sets

An
k = γ−1

(
[
k − 1
2n

,
k

2n
)
)

.

Clearly, µ(An
k) = 1/2n. Due to the outer regularity of the Lebesgue

measure, there exist open sets On
k ⊃ An

k such that

µ(On
k \An

k) ≤ 1
n22n+1

.
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Since an open set is a countable union of open intervals, it is easy to
find sets Bn

k ⊂ On
k which are finite union of intervals with rational

endpoints, such that

1
n22n+1

< µ(On
k \Bn

k ) ≤ 1
n22n

.

In particular, µ(Bn
k ) < 1/2n. Observing that An

k ∩Bn
k = An

k \ (On
k \

Bn
k ), we have that

µ(Bn
k ∩An

k) ≥ 1
2n

(
1− 1

n2n

)
.

Concerning the case k 6= j, we get at once the estimate

µ(Bn
j ∩An

k) ≤ µ(On
k ∩On

j ) ≤ 1
n22n

.

At this point, we introduce the disjoint sets

Wn
k = Bn

k \
⋃

j 6=k

Bn
j .

Again, µ(Wn
k ) < 1/2n. Notice also that µ(Wn

k ) ∈ Q. Moreover,
exploiting the two above inequalities,

µ(Wn
k ∩An

k) ≥ µ(Bn
k ∩An

k)−
∑

j 6=k

µ(Bn
j ∩An

k) ≥ 1
2n

(
1− 1

n

)
.

Notice that each set Wn
k is a finite disjoint union of intervals with

rational endpoints. Then we can re-define (without affecting the
measure) Wn

k in such a way that each interval is half-open on the
right. Finally, we set

Wn
0 = [0, 1) \

2n⋃

k=1

Wn
k .

It is apparent that Wn
0 is of the form

⋃m
i=1[ai, bi) (with ai, bi ∈ Q

and ai+1 > bi). Up to splitting conveniently some of the intervals
[ai, bi), we can write Wn

0 as

Wn
0 =

2n⋃

k=1

Wn
0k ,
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where each Wn
0k is still a finite disjoint union of half-open intervals

on the right with rational endpoints, and such that

µ(Wn
0k) =

1
2n
− µ(Wn

k ) .

Indeed, to build Wn
01 proceed as follows: let r be the smallest index

such that
r∑

i=1

(bi − ai) ≥ 1/2n − µ(Wn
1 ) .

If equality occurs, then let Wn
01 =

⋃r
i=1[ai − bi). Otherwise there

must exist a rational number c ∈ [ar, br) such that
r−1∑

i=1

(bi − ai) + [ar, c) = 1/2n − µ(Wn
1 )

(if r = 1 the sum disappears). Thus we define Wn
01 =

⋃r−1
i=1 [ai −

bi)
⋃

[ar, c) (or [a1, c) if r = 1). To build Wn
0k once Wn

0j are given
for j = 1, . . . , k− 1, just apply the same argument to the set Wn

0 \⋃k−1
j=1 Wn

0j . Writing now, for k = 1, . . . , 2n,

Wn
k =

nk⋃

i=1

[αk
i , β

k
i ) and Wn

0k =
mk⋃

i=1

[ak
i , b

k
i )

(with nk, mk ∈ N and αk
i , βk

i , ak
i , bk

i ∈ Q), and setting for conve-
nience αk

0 , βk
0 , ak

0, bk
0 = 0, we define the automorphism γn in the

following manner:

γn(x)=





x− αk
i +

k−1
2n

+
i−1∑

j=0

(βk
j −αk

j ) if x ∈ [αk
i , β

k
i )

x− ak
r +

k−1
2n

+
nk∑

j=0

(βk
j −αk

j )+
r−1∑

j=0

(bk
j−ak

j ) if x ∈ [ak
r , b

k
r ) ,

with
i ∈ {1, . . . , nk} and r ∈ {1, . . . , mk} .

By construction,

γn(Wn
k ) ⊂ [

k − 1
2n

,
k

2n
) .

Denoting

Un =
{

x ∈ [0, 1) : |γ(x)− γn(x)| ≤ 1
2n

}
,
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we get that Un ⊃ Wn
k ∩An

k for every k = 1, . . . , 2n, and therefore

Un ⊃
2n⋃

k=1

(Wn
k ∩An

k) .

Being the union disjoint, we conclude that

µ(Un) ≥
2n∑

k=1

µ(Wn
k ∩An

k) ≥ 1− 1
n

,

which implies the thesis. ¤

Remark 6.2. Since from every sequence converging in measure it
is possible to extract a subsequence converging pointwise almost
everywhere to the same limit, we conclude that every endomor-
phism of [0, 1) is the pointwise almost everywhere limit of finite
compositions of rational shifts.

Remark 6.3. For p ∈ [1,∞), denote by ‖ · ‖p the norm in
Lp([0, 1), µ). It is apparent that, for every γ, β ∈ E ,

1
2
‖γ − β‖1 ≤ d(γ, β) ≤ ‖γ − β‖1 ,

and
‖γ − β‖1 ≤ ‖γ − β‖p ≤ 2(p−1)/p‖γ − β‖1/p

1 .

As consequence, for every p ∈ [1,∞), the topology τd and the norm
topology τ‖·‖p

of Lp coincide on E . Moreover, it is rather easy to
check that, if γ ∈ S, then

∫ 1

0
(γ(t))p dµ(t) =

1
1 + p

.

Then, in force of Theorem 6.1 and of the equality of the two topolo-
gies, we get that, for every p ∈ [1,∞), E is a closed subset of
Lp, which is contained in S(0 , 1/(1 + p)1/p), the sphere of radius
1/(1 + p)1/p centered at zero.

Remark 6.4. Consider now Ew,p, that is, the closure of E in the
weak topology τw,p of Lp. Then, for all 1 ≤ p < ∞, we have:

(i) Ew,p is contained in the closed annulus of radii 1/2 and
1/(1 + p)1/p centered at zero;

(ii) E = Ew,p ∩ S(0 , 1/(1 + p)1/p) for p > 1 ;
(iii) τw,p 6= τ‖·‖p

on E .
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For (i), let γ ∈ Ew,p. Then, ‖γ‖p ≥ 1/2. Indeed, let {γι}ι∈I be a
net in E converging to γ in τw,p. Then, since the constant function
1 belongs to the norm dual of Lp([0, 1), µ), Remark 6.3 yields

‖γ‖1 =
∫ 1

0
γ(t) dµ(t) = lim

ι∈I

∫ 1

0
γι(t) dµ(t) = lim

ι∈I
‖γι‖1 =

1
2

,

whence ‖γ‖p ≥ 1/2 by Hölder inequality. On the other hand, we
also have ‖γ‖p≤1/(1+p)1/p, owing to Remark 6.3 and to the fact
that norm closure and weak closure coincide for any convex set.

To prove (ii), let γ ∈ Ew,p ∩ S(0 , 1/(1 + p)1/p). Then γι → γ in
τw,p for some net {γι}ι∈I in E . Note that, for each ι ∈ I, ‖γι‖p =
1/(1 + p)1/p = ‖γ‖p, since γ ∈ S(0 , 1/(1 + p)1/p). By the uniform
convexity of Lp([0, 1), µ) for p > 1, we obtain γι → γ in ‖ · ‖p,
whence, being E closed in ‖ · ‖p, γ ∈ E . This proves one inclusion
in (ii). The other inclusion is a consequence of Remark 6.3.

Finally, assume that τw,p = τ‖·‖p
on E for some 1 ≤ p < ∞.

Then, for every d−closed set C ⊂ E and every r > p, we have the
inclusions

C ⊂ Cw,r⊂ Cw,p = Cp = C .

Thus, τd = τw,r on E . Notice that Lr is reflexive (since r > 1),
hence the weak and the weak∗ topologies coincide on Lr. Then,
Banach-Alaoglu theorem implies that the closed unit ball of Lr is
weakly compact, hence, by our assumption, τd−compact. On the
other hand, it is easy to check that the sequence γn = β−1

n , with βn

as in Example 6.5 below, has no convergent subsequences (see also
the proof of Proposition 7.4). A contradiction.

We have seen that the elements of the closure of S are not nec-
essarily automorphisms. So it is a natural question to ask what
happens if we take the closure of S in L∞ (denoted by S∞), that
is, in the topology of uniform convergence almost everywhere. A
first answer is that S∞ 6⊂ A.

Example 6.5. Consider the endomorphism β(x) = 1 − |1 − 2x|
of Example 2.3, and construct the sequence βn ∈ S as follows: for
x ∈ [k/2n+1, (k + 1)/2n+1), with k = 0, . . . , 2n+1 − 1, let

βn(x) =





x +
k

2n+1
if k < 2n

x + 2− (3k + 1)
2n+1

if k ≥ 2n .



158 A. GIARLOTTA, V. PATA AND P. URSINO

It is straightforward to check that βn converges uniformly to β.

Furthermore, S∞ 6⊃ A, as the following example shows.

Example 6.6. Let T ⊂ (0, 1) be a measurable set with the follow-
ing property: for every 0 ≤ a < b ≤ 1,

0 < µ([a, b] ∩ T ) < b− a .

Define f : [−1, 1) → [−1, 1) to be

f(x) =





x if x ∈ T
x− 1 if x ∈ [0, 1) \ T
−x− 1 if x ∈ −T
−x if x ∈ (−1, 0) \ −T
0 if x = −1 .

Finally, set for each x ∈ [0, 1)

γ(x) =
1
2

[
f(2x− 1) + 1

]
.

It is easily verified that γ ∈ A. On the other hand, using the
properties of T , it is immediate to see that, given any interval
I ⊂ [0, 1) with rational endpoints, and any function g : I → [0, 1)
of the form g(x) = x+c, with c ∈ [0, 1)∩Q, there exists an element
σ ∈ S such that σ|I = g. It follows that

‖γ − σ‖∞ ≥ ess sup
x∈I

|γ(x)− g(x)| ≥ 1
4

,

whence

‖γ − S‖∞ = inf
γ0∈S

‖γ − γ0‖∞ ≥ 1
4

.

Thus γ 6∈ S∞.

7. A as a topological group

As already pointed out, it is possible to endow the group G of
automorphisms of the associated measure algebra with some topolo-
gies which make it into a Polish group. Here we prove a similar re-
sult for the group A of automorphisms of [0, 1), endowed with the
topology of convergence in measure. We begin with two lemmas,
the first of which is stated in a general form for later convenience.
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Lemma 7.1. Let X, Y, Z ⊂ R be three measurable sets having
the same positive measure. Let {γn}n∈N , γ ∈ Hom(X, Y ), and
{βn}n∈N , β ∈ Hom(Y, Z). Then:

(i) βn → β implies βn ◦ γ → β ◦ γ ;
(ii) γn → γ implies β ◦ γn → β ◦ γ .

The above convergences are in measure.

Proof: To prove (i), select ε > 0, and denote for each n ∈ N
An = {y ∈ Y : |βn(y)− β(y)| > ε} .

By hypothesis, µ(An) → 0 as n → ∞. Since, for each x ∈ X,
x ∈ γ−1(An) if and only if |βn ◦ γ(x)− β ◦ γ(x)| > ε, we get

γ−1(An) = {x ∈ X : |βn ◦ γ(x)− β ◦ γ(x)| > ε} .

The result now follows from the fact that γ ∈ Hom(X, Y ).
Next we prove (ii). Notice that, since µ(X) < ∞, γn → γ in

L1(X,µ). We will show that for every f ∈ L1(Y, µ), f ◦ γn → f ◦ γ
in L1(X, µ), which implies the thesis. For each n∈N consider the
linear maps Tn : L1(Y, µ) → L1(X, µ), defined by Tnf = f ◦ γn.
Moreover, let T : L1(Y, µ) → L1(X, µ) be such that Tf = f ◦ γ.
Therefore, it suffices to show that Tnf → Tf in L1(X,µ) for every
f ∈ L1(Y, µ). Now, since the functions γn are measure preserving,
it results (cf. [13], Proposition 4.3)

‖Tnf‖1 =
∫

X
|f(γn(x))| dx =

∫

Y
|f(y)| dy = ‖f‖1 ,

hence the sequence {‖Tn‖}n∈N is bounded. Therefore, by Banach-
Steinhaus theorem, it suffices to prove convergence for a dense set
of maps. In our case, the family of characteristic functions of
(−∞, a) ∩ Y , for a ∈ R, will do. Since µ(X) < ∞, it is enough
to show convergence in measure. Fix 0 < ε < 1, and consider the
sets

An = {x ∈ X : |f ◦ γn(x)− f ◦ γ(x)| > ε} ,

where f = χ
(−∞,a)∩Y , for some a ∈ R. Furthermore, set

Bn = {x ∈ X : |γn(x)− γ(x)| > ε}
(observe that µ(Bn) → 0 as n →∞ by hypothesis) and

Cn = {x ∈ X : γn(x) < a ≤ γ(x) or γ(x) < a ≤ γn(x)} .
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It is apparent that An ⊂ Cn . Moreover, if x ∈ Cn \ Bn, then
|γ(x) − a| ≤ ε , i.e., γ(x) ∈ [a − ε, a + ε] ∩ Y . Therefore, since
γ ∈ Hom(X, Y ), we conclude that µ(Cn \ Bn) ≤ 2ε. Finally, from
the inequality

µ(An) ≤ µ(Cn \Bn) + µ(Bn) ,

we obtain

lim sup
n→∞

µ(An) ≤ lim sup
n→∞

µ(Cn \Bn) + lim
n→∞µ(Bn) ≤ 2ε .

Now let ε → 0. ¤

Lemma 7.2. Let {γn}n∈N, {βn}n∈N ∈ A, and let e be the identity
of A. Then the following hold:

(i) γn → e and βn → e imply βn ◦ γn → e ;
(ii) γn → e implies γ−1

n → e .
The above convergences are in d.

Proof: We prove (i), and leave to the reader the easier proof of
(ii). Select ε > 0, and denote for each n ∈ N

An ={x ∈ [0, 1) : |γn(x)− x| > ε}
and

Bn ={y ∈ [0, 1) : |βn(y)− y| > ε} .

It is immediate to check the validity of the equality

γ−1
n (Bn) = {x ∈ [0, 1) : |βn ◦ γn(x)− γn(x)| > ε} .

Set for each n ∈ N
Cn = {x ∈ [0, 1) : |βn ◦ γn(x)− x| > 2ε} .

Then the inclusion
Cn ⊂ An ∪ γ−1

n (Bn)
holds; thus

µ(Cn) ≤ µ(An) + µ(γ−1
n (Bn)) = µ(An) + µ(Bn) .

By hypothesis µ(An)+µ(Bn) converges to zero as n goes to infinity,
whence (i) follows from the last inequality. ¤

We are now able to prove the main result of the section.

Theorem 7.3. (A, τd, ◦) is a topological group.
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Proof: Assume we are given two sequences γn and βn in A, with
γn → γ ∈ A and βn → β ∈ A. We have to show that βn ◦ γ−1

n →
β ◦ γ−1 as n →∞. For each n ∈ N, we have

βn ◦ γ−1
n = β ◦ (β−1 ◦ βn) ◦ (γ−1

n ◦ γ) ◦ γ−1 .

From Lemma 7.1 (ii) we obtain β−1 ◦ βn → e and γ−1 ◦ γn → e,
whence, by Lemma 7.2 (ii), γ−1

n ◦ γ → e. Therefore, Lemma 7.2 (i)
entails the convergence

β−1 ◦ βn ◦ γ−1
n ◦ γ −→ e .

Finally, apply twice Lemma 7.1 to get

β ◦ (β−1 ◦ βn ◦ γ−1
n ◦ γ) ◦ γ−1 −→ β ◦ γ−1 ,

that is,
βn ◦ γ−1

n −→ β ◦ γ−1 ,

as desired. ¤
At this point it would be interesting to investigate whether E

can be given the structure of topological group with respect to some
binary operation which extends the group structure of A. However,
the answer is negative.

Proposition 7.4. There exists no binary operation which makes
(E , τd) into a topological group for which (A, τd, ◦) is a subgroup.

Proof: Assume that such an operation ∗ : E × E → E exists,
that is, (A, ◦) @ (E , ∗). Select the element β ∈ E defined by β(x) =
1−|1−2x|, and consider the approximating sequence βn ∈ S ⊂ A as
in Example 6.5. Since E is a topological group, β−1

n must converge
to an element γ ∈ E , which is the ∗ -inverse of β. On the other
hand, as we remarked before, the convergence of βn to β is actually
uniform. As a consequence (recall that β−1

n ∈ S as well), the graph
of γ is contained in the set
{

(x, y) ∈ [0, 1)×(0, 1) :y=
x

2

}
∪

{
(x, y) ∈ [0, 1)×(0, 1) :y=−x

2
+1

}
.

We conclude that γ is an injective element of E , and therefore, by
Theorem 2.2, γ ∈ A. Hence the ∗ -inverse and the ◦ -inverse of γ
coincide, that is, β = γ−1 ∈ A. This leads to a contradiction, since
β 6∈ A. ¤
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Remark 7.5. It is actually possible to show even more, namely,
that A admits no extension A′ which is a topological group in the
topology induced by convergence in measure. Indeed, it is imme-
diate to check that the sequence β−1

n of Proposition 7.4 is not a
Cauchy sequence.

According to Theorem 7.3, (A, d, ◦) is a metric group; it is not
complete as a metric space (since its d-completion is (E , d, ◦) by
Theorem 6.1). It is possible, however, to construct a complete
metric d∗ on A which is topologically equivalent to d. Namely,
such a metric is given by

d∗(γ1, γ2) = d(γ1, γ2) + d(γ−1
1 , γ−1

2 ) .

This metric has the property that d-Cauchy sequences which do
not converge to an element of A are not d∗-Cauchy. In particular,
S is d∗-dense in A. Hence we have:

Corollary 7.6. (A, τd, ◦) is a Polish group.

Note that (A, τd, ◦) is isomorphic to the Polish group Autµ̄(A),
where (A, µ̄) is the measure algebra associated to ([0, 1), µ) (cf. [6,
7, 9]).

In the light of the results proved in the last two sections, the
statement “(S, ◦) approximates E and A from below” can now be
given a precise meaning: (S, τd, ◦) is a topological group which has
the topological monoid (E , τd, ◦) as its completion with respect to
the metric d, and the Polish group (A, τd, ◦) as its completion with
respect to the (topologically equivalent) metric d∗.

The analysis we have carried out so far concerns endomorphisms
and automorphisms of [0, 1). As already pointed out, this is hardly
a limitation. First, notice that there is no loss of generality if we
consider sets of the form [0, a), for every a > 0. Moreover, given
any two measurable sets X and Y of the same measure a > 0, there
exist by Theorem 2.4 γ ∈ Iso(X, [0, a)) and β ∈ Iso([0, a), Y ) such
that

Hom(X, Y ) = β ◦ aE ◦ γ and Iso(X, Y ) = β ◦ aA ◦ γ ,

where aE = {aγ : γ ∈ E} and aA = {aγ : γ ∈ A}. Furthermore, if
we define

RX,Y = β ◦ aR ◦ γ and SX,Y = β ◦ aS ◦ γ ,
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then, in view of Lemma 7.1, all the results of the paper hold if we re-
place R, S, A and E with RX,Y , SX,Y , Iso(X, Y ) and Hom(X,Y ),
respectively.

8. Conclusions

The purpose of this paper is to analyze some notions of approx-
imation from below in the realm of measure-preserving functions.
This topic has already been carefully studied in the literature, and
the existing investigations have focused on concepts and tools which
are very similar to those used in this paper. Nevertheless, our ap-
proach differs from the classical one in several aspects, since differ-
ent are motivations and goals.

As stated in [7], the original motivation for the introduction of
some notions of approximation into the theory of measure-preserving
functions is ergodic, namely, to develop new tools in order to inves-
tigate some of the unsolved problems in ergodic theory. As conse-
quence, the goal of these investigations has been to endow the space
of automorphisms of the associated measure algebra with suitable
topologies, in order to give a more precise meaning to the meta-
mathematical statement “in general a measure-preserving transfor-
mation is ergodic”. It has been shown (see [7, 8, 12]) that this
statement is true in a Baire-categorial sense (i.e., the set of ergodic
transformations is comeager) for some rather natural topologies. In
the course of these topological investigations the concept of “per-
mutation of intervals” has played an important role, since the set
of such transformations is dense in the space of automorphisms en-
dowed with the so-called neighborhood topology (see [7], Theorem
3).

Later on, a generalization of the notion of permutation of inter-
vals, known as cutting and stacking method, has been fully devel-
oped. Again, the motivation for this approach is ergodic. In fact,
the cutting and stacking method has been mainly (but not only,
see, e.g., [2]) used to construct specific transformations on the unit
interval: ergodic, ergodic and measure-preserving, mixing, weakly
mixing but not mixing, etc. (see [5], Chapter 6).

On the other hand, the motivation for our approach is completely
different. We aim at finding, if possible, some similarities between
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the sets R and N with respect to their “internal” structure. Specif-
ically, we wish to determine an algebraic object which plays for R
the same role that the group S∞ of permutations plays for N. Our
claim is that this object can be identified with A, the group of au-
tomorphisms of [0, 1). With this goal in mind, we have determined
an algebraic object - the group S - and a notion of approximation -
the topology of convergence in measure - in order to describe from
below the group A. One should read the results obtained in Sec-
tions 4, 6 and 7 in this perspective: Theorem 4.3 provides us with
a purely combinatorial representation of the algebraic object which
is used for the description, whereas Theorem 6.1 and Theorem 7.3
show that the approximation procedure is effective for a meaningful
topology.

Unfortunately, the main objective of our investigation is far from
being achieved. In fact, the analogy between R and N would be
strengthened if there were a (hopefully natural) group embedding
of S∞ into A. But the existence of such an embedding seems to
be difficult to establish. A possible way to approach indirectly
this problem could be to view both S∞ and A as embedded in the
larger group of authomorphisms of Pow(N)/Fin, assuming suitable
axioms (e.g., CH).

On the other hand, our approach has produced some interest-
ing combinatorial byproducts, which we aim to investigate further.
First of all, we will try to make more effective the representation of
automorphisms as limit of finite permutations, using the already ex-
isting results on permutation groups as a guideline. In fact, the con-
jugacy classes in finite symmetric groups are well characterized by
finite collections of natural numbers, which express the cycle struc-
ture of each class. In a similar way, we hope to succeed in giving a
discrete (countable) spectrum for a special class of automorphisms.
Note that the same approach has given useful results from a quite
different perspective, using the fact that an automorphism, under
appropriate conditions, can be interpreted as an operator from L2

into itself generated by its eigenvalues (see, for instance, [15]).
Furthermore, we will also try to take advantage of the correspon-

dence between elements of S and finite permutations of the natu-
ral numbers, with the objective of obtaining geometric methods
to compute the order of particular elements of symmetric groups.
Specifically, we seek to determine a formula that gives the order of
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a (particular) element γ in (S, ◦) in terms of the parameters of the
shifts of which γ is the composition. Such a formula would then
automatically give the order of the corresponding permutation in
Sn. This would be interesting in the light of the fact that many
properties of the maximum order of an element in Sn (regarded as
a function of n) are unknown (see, e.g., [4], Chapter 5). Notice
that Theorem 5.5 is a result of this type, since every partial shift
is a composition of total shifts of a certain type. Moreover, as ob-
served at the end of Section 5, we have already some partial results
related to other particular cases (composition of two total shifts
having a certain form), and it seems realistic to extend these re-
sults to somewhat more complicated elements of S. We hope that
(i) the directed-colimit connection between the group S and the
finite permutation groups Sn and (ii) the close topological relation-
ship of S to A and E may provide additional tools for considering
this problem.
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