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A CONTINUOUS DECOMPOSITION OF THE
PLANE INTO ACYCLIC CONTINUA EACH OF

WHICH CONTAINS AN ARC

CARL R. SEAQUIST

Abstract. Since 1950 several decompositions of the plane
into pseudo-arcs have been described. We construct a contin-
uous decomposition of the plane into nondegenerate acyclic
continua none of which is a pseudo-arc. In fact each decom-
position element contains a straight line segment.

1. Introduction

In the early 1950’s R. D. Anderson [A1952] constructed a con-
tinuous decomposition of the plane into nondegenerate acyclic con-
tinua and announced [A1950] that there exists a continuous decom-
position of the plane into pseudo-arcs. A pseudo-arc can be charac-
terized as a chainable, hereditarily indecomposable continuum. In
his dissertation [B1958], M. Brown describes a construction which
when applied to the plane results in a decomposition consisting of
a single point and concentric hereditarily indecomposable continua
each of which separates the plane. W. Lewis and J. J. Walsh [L1978]
used a very geometrical construction to continuously decompose the
plane into pseudo-arcs. Recently in [P1998] and in [K2000] Whit-
ney maps have been used to refine continuous decompositions into
continuous decompositions made up of pseudo-arcs. For example,
in [K2000] M. Brown’s decomposition of the plane is modified and
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then refined using Whitney maps to obtain a new continuous de-
composition of the plane into pseudo-arcs.

In 1976, Michel Smith [S1976] using results from E. Dyer [D1953]
and W. S. Mahavier [M1967] proved that any continuous decom-
position of the plane into acyclic continua must have elements that
are indecomposable. In [M1989] L. Mohler and L. G. Oversteegen
constructed an example to answer in the negative an old question of
B. Knaster; namely, whether every continuously irreducible contin-
uum must contain an hereditarily indecomposable tranche. Similar
questions about continuous decompositions of the plane naturally
arise. This paper addresses the general question of how “nice” the
decomposition elements must be; for example, must there always
exist a decomposition element that is hereditarily indecomposable?
Here we answer this question in the negative by using the tech-
niques of Lewis and Walsh [L1978] to construct a continuous de-
composition of plane into chainable continua each of which contains
an arc. In fact the geometric nature of these techniques actually
allows us to say that each of the decomposition elements contains
a straight line segment of a given length. Specifically we will prove
the following theorem.

Theorem 1.1. Given an ε > 0 there exists a continuous decom-
position of the plane into chainable continua so that each element
of the decomposition contains a straight line segment with length
larger than ε.

Many other questions about continuous decompositions of the
plane naturally occur.

Question 1.2. Given a continuous decomposition G of the plane
into nondegenerate acyclic continua, must it be the case that given
any ε > 0 there exists an nondegenerate indecomposable continuum
C and a g ∈ G such that diam(C) < ε and C ⊂ g?

Question 1.3. What can be said about the elements of a continuous
decomposition of the plane into acyclic continua where all the the
elements are homeomorphic?

Question 1.4 (Lewis). Is there a continuous decomposition of the
plane into acyclic continua none of which are chainable [L1996]?
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2. Our continuous decomposition

Our strategy in describing our decomposition will be to define
a sequence {Pn}∞n=1 of partitions of the plane into cells with non-
overlapping interiors so that the conditions of the following lemma
from [L1978] are satisfied. Also see [S1995]. Before stating our
version of the lemma we introduce the following notation. If P
is a collection of sets, then P ∗ denotes the union of members of
P . If p is a set, then st1(p, P ) = {p′ ∈ P : p′ ∩ p 6= ∅} and
inductively sti+1(p, P ) = st1(sti(p, P )∗, P ). We abbreviate st1(p, P )
by st(p, P ). By Nε(x) we mean the set of points in the plane which
are less than an ε distance from some point in x.

Lemma 2.1 (Lewis and Walsh). Let X be locally compact and
{Pn}∞n=1 be a sequence so that for each n ∈ Z+:

(1) The collection Pn is a locally finite family of non-empty
closed subsets of X with P ∗

n = X, with the elements of Pn

having pairwise disjoint interiors, and with Cl(Int(pn)) =
pn for each pn ∈ Pn.

(2) For each pn ∈ Pn, st3(pn, Pn+1)∗ ⊂ st(pn, Pn)∗.
(3) There is a positive number L such that for each pair pn, p′n ∈

Pn with pn ∩ p′n 6= ∅, we have that pn ⊂ NL/2n(p′n).
(4) There is a positive number K such that for each pn+1 ∈

Pn+1, there is a pn ∈ Pn with pn+1 ∩ pn 6= ∅ and pn ⊂
NK/2n+1(pn+1).

Let G be defined by g ∈ G if g = ∩∞n=1 st(pn, Pn)∗ where ∩∞n=1pn 6= ∅;
then G is a continuous decomposition of X.

In the following construction we follow [L1978]. See also [S1994].
The sequence, {Pn}∞n=1, is defined inductively. Assuming we have
already constructed {Pi}n

i=1, we start stage n + 1 of the induction
given R̂n+1, a division of the plane into either congruent vertical or
congruent horizontal strips. Instead of defining the cells Pn+1 di-
rectly, we first define cells Qn+1 which are much simpler to describe.
The cells of Pn+1 are the images of the cells of Qn+1 under a home-
omorphism Hn+1 that is also described inductively. There are three
positive rational numbers an+1, bn+1, and cn+1 that constrain the
construction at stage n + 1. Given a vertical (resp. horizontal) di-
vision, R̂n+1, we refine the division by dividing each strip into finer
strips, each with the width an+1 and infinite length. We denote the
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new division by Rn+1. The construction alternates between work-
ing with horizontal strips and vertical strips starting with vertical
strips when n = 1. Thus when (n + 1) is odd the strips of Rn+1

run vertically with width an+1.
We partition the plane into a collection of cells Qn+1 with non-

overlapping interiors by partitioning each strip into cells. The cells
qn+1 ∈ Qn+1 that partition a vertical strip are exactly as in Figure 1
and are called vertical cells. All the cells qn+1 ∈ Qn+1 are identical.
The vertical cell qn+1 has the width of an+1; has the height of
exactly bn+1 + cn+1; and has the thickness; i.e., vertical transverse
thickness, of bn+1. Thus the top boundary of a vertical cell is simply
the vertical displacement of the bottom boundary by the constant
bn+1. Note that in our construction cn+1 is always much larger than
bn+1. Each vertical cell is symmetrical about a vertical line; the
two identical halves being referred to as chevrons. Each chevron is
also vertically symmetrical and consists of two half-chevrons. Thus
each vertical cell consists of four congruent half-chevrons. Each
half-chevron is a parallelogram. We refer to the short sides of this
parallelogram as the side boundaries of the half-chevron. The cells
that partition horizontal strips are like those described above except
that they are rotated a quarter turn clockwise. They are called
horizontal cells.

Once we have the collection Qn+1 defined, a homeomorphism
hn+1 : R2 → R2 is defined so that h−1

n+1 “straightens” the bound-
aries between the cells. When (n + 1) is odd we define hn+1 so
it maps vertical lines onto themselves by translation so that the
preimage of any given vertical cell qn+1 ∈ Qn+1 is a rectangle with
width an+1 and height bn+1. Note that hn+1 restricted to the side
boundaries of cells is the identity. The set Pn+1 is defined to be
{Hn+1(qn+1) : qn+1 ∈ Qn+1}, where Hn+1 = Hn ◦hn = h1 ◦ · · · ◦hn.
When (n + 1) is even hn+1 maps each horizontal line onto itself by
translation and for each qn+1 ∈ Qn+1, we have that h−1

n+1(qn+1) is
a rectangle of width bn+1 and height an+1. To finish stage n + 1
we use {h−1

n+1(qn+1) : qn+1 ∈ Qn+1} to define R̂n+2, a horizontal
(resp. vertical) division of R2 with strips defined by horizontal
(resp. vertical) lines placed at a distance of bn+1 apart.

To completely define our construction then we need only to define
how to choose a1, b1, and c1, and h1 and how to choose an+1, bn+1,
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Figure 1. A Cell in Qn.

and cn+1, and hn+1 when we have completed stage n. We can begin,
for example, by setting δ1 = 1/4, c1 = 4, a1 = δ1/2, b1 = a1/2, and
H1 = Id, where Id is the identity on R2. Define h1 as described
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above so that h−1
1 “straightens” the boundaries of the cells q1 ∈ Q1

defined by a1, b1, and c1.
At stage n + 1 we proceed as follows:
(1) Pick δn+1 > 0 so that

|x− x′| < δn+1 =⇒ |Hn+1(x)−Hn+1(x′)| < 1/2n+1

for all x, x′ ∈ R2 where Hn+1(x) = Hn ◦ hn.
(2) Set cn+1 = (3/4)an.
(3) Pick an+1 < δn+1/2 and so that an+1 divides evenly into

(bn/4).
(4) Set bn+1 = an+1/2.
(5) Define hn+1 as described above so that h−1

n+1 “straightens”
the boundaries of the cells qn+1 ∈ Qn+1 defined by an+1,
bn+1, and cn+1.

The fact that Condition 1 of Lemma 2.1 holds follows immedi-
ately. To prove that Condition 2 holds it suffices to show that if
pn ∈ Pn, then

st3(H−1
n+1(pn),H−1

n+1(Pn+1))∗ ⊂ st(H−1
n+1(pn),H−1

n+1(Pn))∗.

This follows from the fact that 3an+1 < bn and cn+1 + 3bn+1 <
an. We turn our attention to Condition 3. If qn+1, q

′
n+1 ∈ Qn+1

and qn+1 ∩ q′n+1 6= ∅, then qn+1 ⊂ Nε(q′n+1) where ε = an+1 +
bn+1. Since ε < δn+1 Condition 3 holds. To show that Condition 4
holds consider qn+1 ∈ Qn+1. Since cn+1/2 > 1

4an we know that
there is a qn ∈ Qn so that qn ∩ hn(qn+1) 6= ∅ and so that qn ⊂
Nε(hn(qn+1)) where ε = an + bn but ε < δn and so Hn(qn) ⊂
NK/2n+1(Hn+1(qn+1)) where K = 2. Thus Condition 4 holds.

Therefore by Lemma 2.1 our decomposition is continuous. We
will denote this decomposition by G. As in [L1978] each element of
G is chainable.

3. Proof of Theorem 1.1

We extend the notion of half-chevron of a cell to that of the half-
chevron of st(qn, Qn)∗. A half-chevron of st(qn, Qn)∗ is defined to be
a parallelogram that consists of three cell half-chevrons taken from
the cells in st(qn, Qn). Thus st(qn, Qn)∗ contains 12 half-chevrons.
The side boundaries of a half-chevron of st(qn, Qn)∗ are the short
sides of the parallelogram, which are vertical when n is odd and
horizontal when n is even.
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We say that st(qn+1, Qn+1)∗ crosses a half-chevron of st(qn, Qn)∗,
say qp

n, when st(hn(qn+1), hn(Qn+1))∗ intersects qp
n and extends

beyond both the side boundaries of qp
n by at least 3bn+1. This

definition ensures that if st(qn+1, Qn+1)∗ crosses a half-chevron qp
n

of st(qn, Qn)∗ then for any half-chevron qp
n+1 of st(qn+1, Qn+1) we

have that hn(qp
n+1)∩ qp

n is a parallelogram that intersects both side
boundaries of qp

n.
Now we let g ∈ G; i.e., g = ∩∞n=1 st(pn, Pn) where ∩∞n=1pn 6= ∅.

For each n ∈ Z+ we let qn = H−1
n (pn) and Qn = H−1

n (Pn). We will
now show that g must contain an arc A.

First we observe that for every n ∈ Z+ there exists at least one
half-chevron of st(qn, Qn)∗ that is crossed by st(qn+1, Qn+1). This
follows from the fact that (cn+1−3bn+1)/2 > an/4. For each n ∈ Z+

we denote by qp
n one such half-chevron.

Next observe that if R ⊂ qp
n+1 is a parallelogram that intersects

both side boundaries of qp
n+1, then hn(R) ∩ qp

n = R′ is a parallelo-
gram that intersects both side boundaries of qp

n. This follows from
the definition of hn and the fact that hn(R) must extend at least
3bn+1 beyond each side boundary of qp

n.
For each given n ∈ Z+ we will denote the parallelogram qp

n by
Rn

n. For k ∈ {1, 2, ..., n} we define Rk
n+1 inductively as Rk

n+1 =
hk(Rk+1

n+1) ∩ qp
k. Thus R1

n+1 is a parallelogram that intersects both
side boundaries of R1

1 = qp
1 . Since Rn

n+1 ⊂ Rn
n we have that in

general

Rk
n+1 = hk(Rk+1

n+1) ∩ qp
k ⊂ hk(Rk+1

n ) ∩ qp
k = Rk

n

for all k ∈ {1, 2, ..., n} and in particular that

R1
1 ⊃ R1

2 ⊃ · · · ⊃ R1
n ⊃ · · ·.

Finally observe that because the lengths of the side boundaries
of qp

n are 3bn, the lengths of the short sides of the parallelograms
R1

n approach zero as n increases. Thus we have that A = ∩∞n=1R
1
n

is a line segment that is contained in g and since A intersects both
side boundaries of qp

1 it has length greater than c1− 3b1, which can
be made arbitrarily large.

The proof of Theorem 1.1 is complete.
The author would like to thank Karol Albus, Michael Levin,

Wayne Lewis, Angela Menke, and Janusz Prajs for many useful
discussions.
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