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ON TRANSITIVE OPERATORS

V. T. TODOROV∗

Abstract. Let X be a topological space and Y ⊂ X. The
map f : Y → X is said to be transitive if there exists an
element x0 ∈ Y for which the forward orbit O+f(x0) =
{fn(x0)|n = 1, 2, . . . } is a dense subset of X. It is proved
in this paper that the shift operators are transitive.

1. Introduction

Let X be a topological space and Y ⊂ X. The map f : Y →
X is said to be transitive if there exists an element x0 ∈ Y for
which the forward orbit O+f(x0) = {fn(x0)|n = 1, 2, · · · } is a
dense subset of X. We will call such a point x0 a cyclic element
of f . It is well known ([1], ch. 18) that if X is complete space
without isolated points and f is continuous function then the set
of all cyclic elements of f is Gδ dense subset of X.

Note that transitivity is a topological property:

Proposition 1.1. Suppose that f : X → X is transitive and let
g : X → Y be a homeomorphism. Then h = g ◦ f ◦ g−1 is also
transitive.

This paper contains sufficient conditions and some examples for
two types of transitive operators.

The first part is devoted to shift operators in products of spaces.

For the product X =
∞∏

n=1
Xn the left shift l : X → X is defined by

the formula l(x) = (x(2), x(3), . . . , x(n + 1), . . . ) where for x ∈ X
we have x = (x(1), x(2), . . . , x(n), . . . ). To define a generalized shift
operator we need the notion of the shift map:
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The injective map ν : N → N of integers is said to be a shift
map whenever the following condition holds:

(S)
∞⋂

n=1

νn(N) = ∅

Furthermore, for every integer n, let Xn be a topological space
and let gn : Yν(n) → Xn be a map which is defined on a dense
separable subset Yν(n) of Xν(n) and for which we have g(Yν(n)) =

Xn. In the sequel we let Y =
∞∏

n=1
Yn

Definition 1.2. The map g : Y → X defined by the formula

gν(x) = g(x) = (g1(x(ν(1))), g2(x(ν(2))), . . . , gn(x(ν(n))), · · · )
is called a generalized shift operator (shortly G-shift operator, or
just a shift operator).

2. Transitivity of the shift operators

Denote for an integer n ∈ N by In the set I(n) = {1, 2, . . . , n}.
In proving the main theorem we will use the following two lemmas.

Lemma 2.1. For every k there exists an integer nk ∈ N such that
for n ≥ nk we have I(k) ∩ νn(N) = ∅.

Proof: We have ∅ =
∞⋂

n=1
νn(N). The map ν is injective, hence

∅ = I(k) ∩
∞⋂

n=1
νn(N) =

∞⋂
n=1

(νn(N) ∩ I(k)). Because the set I(k) is

finite, it follows from the above that νnk(N) ∩ I(k) = ∅ for some
nk ∈ N. From the inclusion νn+1(N) ⊂ νn(N) we obtain that
I(k) ∩ νn(N) = ∅ for n ≥ nk. Evidently sequence {nk} may be
choose to be increasing.

Lemma 2.2. If ν is a shift function then there exists a sequence
p1 < p2 < · · · of integers such that if k 6= l then νpk(I(k)) ∩
νpl(I(l)) = ∅.
Proof: We may put for example pk = n1 + · · · + nk. Thus for
k < l we have ∅ = I(k) ∩ νnk(N) = νpk(I(k) ∩ νnk(N)). Thus
for the injective function νpk we obtain νpk(I(k)) ∩ νpk+nk(N) =
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∅. Furthermore evidently pl ≥ pk + nk and νpl(I(l)) ⊂ νpl(N) ⊂
νpk+nk(N), so νpk(I(k)) ∩ νpl(I(l)) = ∅.

Now we can prove the main result of the paper.

Theorem 2.3. The operator g is transitive.

Proof: Let for An, n = 1, 2, . . . be a dense subset of Yn ⊂ Xn. For
every integer n let us denote with zn some fixed point of Yn ⊂ Xn

and then consider a countable subset

An = A1 ×A2 × · · · ×An × {zn+1} × {zn+2} × · · ·
of X. Let A =

∞⋃
n=1

An. We will show that A is dense in X, i.e.

that A ∩ V 6= ∅ for an arbitrary non - empty open set V ⊂ X. We
may of course assume that V = U1× · · ·×Un×Xn+1×Xn+2× · · ·
where for i = 1, · · · , n Ui is an open subset of Xi. Let ai ∈ Ai ∩ Ui

for every i = 1, · · · , n. Clearly for a = (a1, · · · , an, zn+1, · · · ) we
have a ∈ A ∩ V .

We are going to construct in the sequel an element c ∈ X whose
forward orbit O+(g)(c) is a dense set in X. For this purpose, let
us define for each a ∈ A the weight w(a) of a by means of the
formula w(a) = max{i|a(i) 6= zi}. It is easy to verify that the set
A is countable and moreover that it can be written as a sequence
A = {a1,a2, · · · } such that the condition w(an) ≤ n holds for every
n ∈ N. So we can write an = (an1, . . . , ann, zn+1, . . . ).

Furthermore let

M =
∞⋃

k=1

(I(k)× {pk})

and let ν∞ be the function ν∞ : M → N defined by ν∞(i, pk) =
νpk(i) where pk is as in Lemma 2.2. Clearly ν∞ is injective and
ν∞(Ik × {pk}) ∩ ν∞(Il × {pl}) = ∅ for k 6= l since ν∞(I(k)) =
νpk(I(k)) for every k ∈ N.

Now we can point out the construction of the element c ∈ X:
(a) c(j) = zj ∈ Yj if j /∈ ν∞(M).
(b) if j ∈ ν∞(M) then j = νpk(i) for some k and i ∈ I(k).

Choose now c(j) ∈ h−1(aki) where h = gi ◦ gν(i) ◦ · · · ◦ gνpk−1(i).
It remains to show that the forward orbit O+(g)(c) = {gn(c)|n =∈

N} is a dense set. Let as above V be an open subset of X and
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V = U1 × · · · × Un ×Xn+1 × · · · . Then for some k ≥ n one should
have ak = (ak1, . . . , akk, zk+1, . . . ) ∈ A ∩ V where aki ∈ Ui. It fol-
lows now by the construction of the element c that gpk(c) has the
form

gpk(c) = (ak1, ak2, . . . , akk, ωk+1, . . . )
where ωn for n ≥ k + 1 is some (arbitrary) element of Xn. Clearly
gpk(c) ∈ V , which finishes the proof.

Denote with X the set of all irrational numbers in the interval
[0, 1]. Every element x ∈ X can be written as a continued fraction:
x = [0;x1, x2, · · · ].
Example 2.4. The function f : X → X defined by the equation

f([0;x1, x2, x3, · · · ]) = [0;x2, x3, · · · ]
is transitive.

Proof: The space X is homeomorphic to the product NN under
the function g : NN → X; g(x1, x2, · · · ) = [0;x1, x2, · · · ] [2]. Ex-
ample 2.4 follows now by Proposition 1.1.

Example 2.5. Let K be the Cantor set and for x ∈ K let
x = 0, x1x2 · · · be the expression of x in ternary number system.
The function f : K → K; f(x) = 0, x2x3 · · · is transitive.

The spaces K and {0, 2}N are homeomorphic, moreover the
equality f(x1, x2, . . . ) = 0, x1x2 . . . give the desired homeomeor-
phism [2].

A rich class of examples may be obtained by usung results in
[3]. It is described in [3] the class of infinite - dimensional linear
topological spaces which are homeomorphic to RN. The following
statement obtains from the Anderson - Kadec Theorem ([3], ch.
VI):

Example 2.6. For every infinite - dimension separable Frechet
space X there exists a transitive operator f : X → X which is
conjugate of the left shift in RN.

3. Linear transitive operators

This part contains some examples of transitive operators in Frechet
spaces as well in different spaces which are homeomorphic to prod-
ucts.
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It contains also the following some examples of linear transitive
operators which are similar to the shifts. In particular we con-
sider shifts relatively given basis in given linear topological space.
Our tool in this part is based on the following sufficient condition
concerning tranzitivity of the linear operators:

Theorem 3.1. Let L : X → X be a linear operator defined on the
Frechet space X. Suppose that the following conditions are fulfilled:

(a)
∞⋃

n=1
L−n(0) is a dense set in X.

(b) There exists a continuous right inverse B of L such that
Bn(x) → 0 for every x ∈ X, where 0 ∈ X is the zero element of
X.
Then L is transitive.

Proof: Let % be a invariant metric in X (i.e. %(x, y) = %(x −
y, 0)) which is compatible with the topology in X. Denote M =
∞⋃

n=1
L−n(0) and for x ∈ M let deg(x) = min{n ∈ N|Ln(x) = 0} be

the degree of x. Let A = {a1, a2, . . . , an, . . . } be a countable dense
subset of M - note that A is dense in X.

Now we choose by induction a sequence k1 < k2 < · · · < kn < . . .
of integers which satisfies the following conditions:

(i) %(0, Bkn−km(an)) ≤ 1
2n for m ≤ n and

(ii) kn+1 − kn > deg an for n ∈ N.
Let us set k1 = deg a1 and suppose that the integers km are

defined for m < n. Because lim
l→∞

Bl(an) = 0 there exists an integer

pn such that %(Bl(an),0) < 1
2n whenever l > pn. Now we can

take for example kn = pn + deg an + kn−1. Note that it follows
from the choice of pn that %(Bkn(an),0) < 1

2n . To continue on put
bn = Bkn(an) and cn = b1 + · · · + bn. We are going to prove that
there exists c = lim

n→∞ cn and that the forward orbit O+L(c) of c is
a dense set in X.

Note for this purpose that for m > n we have %(cm, cn) = %(cm−
cn,0) = %(bn+1 + · · · + bm,0). Hence %(cm, cn) ≤ %(bn+1,0) +
· · · %(bm, 0) ≤ 1

2n+1 + · · ·+ 1
2m < 1

2n which means that the sequence
{cn} is convergent.
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In the same way one can prove also that for every n the sequence
{Akn(cm)} is convergent when m →∞. Indeed for m > l we have

%(Akn(cm), Akn(al)) = %(Akn(am − al),0) = %(
m∑

i=l+1

Bki−kn(ai),0)

Thus %(Akn(cm), Akn(al)) ≤
m∑

i=l+1

%(Bki−kn(ai),0) ≤
m∑

i=l+1

1
2i < 1

2l

which shows that {Akn(cm)} is a Cauchy sequence.
It remains to prove that O+L(c) is a dense set in X. Take for

this purpose an arbitrary x ∈ X and ε > 0. Because A is a dense
set, there exists n ∈ N such that %(x, an) < ε. Now for m > n we

have Akn(cm) =
m∑

i=1
Akn(bi) and it follows from (ii) that Akn(cm) =

an +
m∑

i=n+1
Bki−kn(ai) = an + b, where b =

m∑
i=n+1

Bki−kn(ai). Hence

%(Akn , x) = %(an + b, x) = %(an−x+ b,0) = %(an−x,−b) ≤ %(an−
x,0) + %(0,−b) = %(an, x) + %(b,0). It follows now from (i) that

%(Akn(cm), x) ≤ ε +
m∑

i=n+1
%(Bki−kn(ai),0) ≤ ε +

m∑
i=n+1

1
2i < ε + 1

2n .

In the inequality %(Akn(cm), x) < ε + 1
2n we let m → ∞ to obtain

that %(Akn(c), x) < ε + 1
2n .

Keeping in mind that in the above considerations the integer n
may be choosen arbitrarilly large we obtain that the forward orbit
O+L(c) is a dense subset of X.

Theorem 3.1 gives a sufficient condition only. The example below
shows that it is not necessary. In Example 3.2 we consider the space
C∞(R) of all smooth real functions with the standard topology
generated for example by the metric:

%(f, g) =
∞∑

n=1

2−n ‖f − g‖n

1 + ‖f − g‖n

where for f ∈ C∞(R) we have ‖f‖n = sup{|f (i)(x)||i ≤ n; x ∈
[−n, n]}.
Example 3.2. There exists a function f ∈ C∞(R) for which the
sequence {gn|n ∈ N} where gn(x) = f(x+n); x ∈ R forms a dense
subset of C∞.
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Note that this example states that the operator L : C∞(R) →
C∞(R); L(f)(x) = f(x + 1) is transitive and in the same time it is
obvious that the conditions (a) and (b) from Theorem 3.1 do not
hold.

Proof: Let {a(m,n)} be a sequence of integers which has the
following property:

|a(m,n)− a(p, q)| > 2(m + n + p + q)
for (m, n) 6= (p, q).

Furthermore denote the intervals [a(m,n)− n, a(m,n) + n] with
∆(m,n). Note that ∆ =

⋃
m,n

∆(m,n) is a closed subset of the real

line because {∆(m,n)}m,n is a discret system of intervals.
Now let P = {p1, p2, . . . } be a countable dense set in C∞(R) and

denote by pm,n the restriction of the function pm over the interval
[−n, n]. We define the function f̄ : ∆ → R by setting f̄(x) =
pmn(x−a(m,n)) for x ∈ ∆(m,n). Evidently f̄ ∈ C∞(∆), and as it
is well known, f̄ can be extended to a smooth function f over the
real line R. We are going to prove that f is the desired function.

For that purpose let us choice h ∈ C∞, ε > 0 and an integer n.
To complete the proof it is sufficient to find a functon gm for which
the inequality ‖gm − h‖n < ε holds. Clearly one may suppose in

additional that
∞∑

i=n
2−i < ε

2 . Because of density of P, one can find

a function pm ∈ P for which ‖pm − h‖n < ε
2 . Actually we would

have ‖pm−h‖j < ε
2 for j ≤ n, since ‖·‖j ≤ ‖·‖n. Note furthermore

that for x ∈ [−n, n] we have

gmn(x) = f(x + a(m,n)) = pmn(x + a(m,n)− a(m,n)) = pm(x)

That’s why

%(ga(m,n), h) ≤
n∑

i=1

1
2i

‖pmn − h‖i

1 + ‖pmn − h‖i
+

∞∑

i=n+1

1
2i

Because of the choice of n we have

%(ga(m,n), h) ≤ ε

2

n∑

i=1

1
2

+
∞∑

i=n+1

1
2i

< ε
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which completes the proof.

Theorem 3.1 is applicable in different situations; below we point
out some examples.

Example 3.3. [4] The operator d
dx = L : C∞ → C∞ is transitive.

It is easy to verify that L satisfies the conditions (a) and (b)

of Theorem 3.1. More precisely, the set
∞⋃

n=1
L−n(0) contains all

polynomials and one can put B(f)(x) =
x∫
0

f(t)dt.

Similarly as an easy consequence from Theorem 3.1 one can ob-
tain that every linear differential operator with constant coefficients
is transitive [5] as well as for different types of partial differential
operators [4].

A weighted shift operator L on (complex) Hilbert space H is an
operator that maps each vector in some orthonormal basis {en}
into a scalar multiple of the next vector: L(en) = wnen+1 [6]. It
follows from Theorem 3.1 that:

Example 3.4. Let L be a weighted shift operator. If

lim
n→∞ sup

k
|wkwk+1 · · ·wk+n−1| = ∞

then L is transitive.
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