Topology Proceedings

Web: http://topology.auburn.edu/tp/

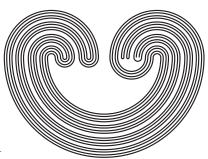
Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.



A SUFFICIENT CONDITION THAT THE HIGSON CORONA OF THE HALF OPEN INTERVAL $[0,\infty)$ IS A DECOMPOSABLE CONTINUUM

KAZUO TOMOYASU

ABSTRACT. The Higson compactification (cf. [5]) is a metric dependent compactification. In this paper, we will give a sufficient condition that the Higson corona of the half open interval is a decomposable continuum.

1. Introduction

All spaces considered in this paper are assumed to be locally compact and Hausdorff. By $C^*(X)$ (resp. C(X)), we denote the ring of all bounded real-valued (resp. real valued) continuous functions on X. It is well-known that there is a one-to-one correspondence between the compactifications of a space X and the closed subrings of $C^*(X)$ containing the constants and generating the topology of X. Let $f: X \to Y$ be a continuous function between metric spaces (X,d) and (Y,ρ) . We say that the function f satisfies the $(*)_{d-condition}$ provided that

$$(*)_d$$
 $\lim_{r\to\infty} \operatorname{diam}_{\rho} f(B_d(x,r)) = 0$ for each $r > 0$,

that is, for each r > 0 and each $\varepsilon > 0$, there is a compact set $K = K_{r,\varepsilon}$ in X such that $\operatorname{diam}_{\rho} f(B_d(x,r)) < \varepsilon$ for each $x \in X \setminus K$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D35; 54D40.

Key words and phrases. Higson compactification; Stone-Čech compactification; Corona; Indecomposable continuum; Decomposable continuum.

Let $C_d^*(X) = \{ f \in C^*(X) \mid f \text{ satisfies } (*)_d \}$. Then $C_d^*(X)$ is a closed subring of $C^*(X)$.

The Higson compactification \overline{X}^d of a proper metric space (X,d) is the compactification associated with the closed subring $C_d^*(X)$ of $C^*(X)$ [5], where a metric d on a space X is said to be proper provided that every bounded subset in X has the compact closure. The remainder $\overline{X}^d \setminus X$ is called the Higson corona and we denote the Higson corona of X by $\nu_d X$. For undefined notations and terminologies, see [1] and [3].

In ([4], Theorem 1.6), we showed the following theorem: Let d be a proper metric on $J = [0, \infty)$ satisfying the following condition (†): d(x,y) + d(y,z) = d(x,z) for each $x, y, z \in J$ with x < y < z. Then the Higson corona $\nu_d J$ is an indecomposable continuum. Of course, the usual metric on $[0, \infty)$ satisfies the condition (†). This condition says that the metric d is induced by a homeomorphism between half-open intervals $[0, \infty)$.

In fact, if a proper metric d satisfies (\dagger) , then the map h: $[0,\infty) \to [0,\infty)$ defined by h(x) = d(0,x) is a homeomorphism satisfying d(x,y) = |h(x) - h(y)| for each $x,y \in [0,\infty)$. On the contrary, for any given homeomorphism $h: [0,\infty) \to [0,\infty)$, define d(x,y) = |h(x) - h(y)| for $x,y \in [0,\infty)$. Then we obtain a proper metric d satisfying (\dagger) .

In the above argument, the Higson corona of the half-open interval with a proper metric induced by a homeomorphism between half-open intervals $[0, \infty)$ is an indecomposable continuum. Then we are interested in the Higson corona of the half-open interval with a proper metric induced by a subspace metric of the Euclidean plane \mathbb{R}^2 . In this paper, we give a sufficient condition that the Higson corona of the half-open interval with a proper metric induced by a subspace metric of \mathbb{R}^2 is a decomposable continuum.

2. Indecomposable continua and decomposable continua

Given our theorem, we may recall some basic properties concerning the Higson compactification.

Proposition 2.1 ([2], Theorem 1.4). Let X be a proper metric space with a proper metric d and let Y be a closed subset with

the induced metric d_Y . Then $\operatorname{cl}_{\overline{X}^d}Y$ is homeomorphic to \overline{Y}^{d_Y} $(\operatorname{cl}_{\overline{X}^d}Y \cong \overline{Y}^{d_Y})$.

Proposition 2.2 (cf. [4], Lemma 1.5). Let (X, d) be a non-compact proper metric space and let N_r be an r-dense ¹ closed subspace of X, where r > 0. Then the Higson corona $\nu_d X$ is equal to $\operatorname{cl}_{\overline{X}^d} N_r \setminus N_r$.

Now, a finite system $\{E_1,\ldots,E_n\}$ of subsets of a proper metric space (X,d) diverges if, for each R>0 the intersection of the R-neighborhoods of the sets $E_i,\ i=1,\ldots,n$, is a bounded subset of X. Equivalently, a system $\{E_1,\ldots,E_n\}$ diverges if and only if the function $F:X\to J$ defined by $F(x)=\sum_{i=1}^n d(x,E_i)$ satisfies the condition $\lim_{x\to\infty} F(x)=+\infty$. From Tamanov theorem (cf. [3], Theorem 3.5.5) we can state the following characterization which was essentially proved by A.N. Dranishnikov, J. Keesling and V.V. Uspenskij.

Proposition 2.3 (cf. [2], Proposition 2.3). Let X be a non-compact metric space with a proper metric d. Then the following conditions are equivalent:

- (1) A compactification αX of X is equivalent to \overline{X}^d , and
- (2) For disjoint closed subsets $A, B \subset X$, the system $\{A, B\}$ diverges if and only if $\operatorname{cl}_{\alpha X} A \cap \operatorname{cl}_{\alpha X} B = \emptyset$

Definition 2.4. A topological space is said to be *generalized continuum* (resp. *strongly generalized continuum*) if it is a locally compact connected separable space (resp. connected proper metric space ²). A connected space is said to have the *complementation property* if the complement of every compact subset has at most one non-relatively compact component.

Lemma 2.5. Let X be a non-compact locally connected strongly generalized continuum with a proper metric d having the complementation property. Then $\nu_d X$ is a non-metric continuum.

Proof: Recall that a compact subset K of a locally connected generalized continuum X is contained in a compact subset C such

¹A subset A of a metric space (X, d) is r-dense provided that for any $x \in X$, $B_r(x, d) \cap A \neq \emptyset$.

²Every proper metric space is always locally compact σ -compact.

that $X \setminus C$ has only finitely many components (cf. [6], page 237 9.26). Since X is σ -compact, there exists a compact cover $\{K_n\}_{n<\omega}$ of X such that $K_n \subset \operatorname{int}_X K_{n+1}$ for each $n < \omega$. Using the above fact, for each K_n , there exists a compact subset C_n containing K_n such that $X \setminus C_n$ has only finitely many components. Since X has the complementation property, $X \setminus C_n$ has exactly one non-relatively compact component V_n . Thus, $\operatorname{cl}_{\overline{X}^d} V_n$ is connected and contains $\nu_d X$. Then note that $\nu_d X = \bigcap_{n<\omega} \operatorname{cl}_{\overline{X}^d} V_n$ and therefore connected.

Proposition 2.6. Let (X,d) be a locally connected strongly generalized continuum having the complementation property. If $X = Y \cup Z$ such that Y and Z are locally connected strongly generalized continua having the complementation property. Then if there exist non-compact closed subsets $A \subset Y \setminus Z$ and $B \subset Z \setminus Y$ such that $\{A, Z\}$ and $\{Y, B\}$ diverge, then $(\operatorname{cl}_{\overline{X}^d} Y \setminus Y) \setminus (\operatorname{cl}_{\overline{X}^d} Z \setminus Z) \neq \emptyset$, $(\operatorname{cl}_{\overline{X}^d} Z \setminus Z) \setminus (\operatorname{cl}_{\overline{X}^d} Y \setminus Y) \neq \emptyset$, and thus the Higson corona $\nu_d X$ is a non-metric decomposable continuum.

Proof: Note that

$$\nu_d X = (\operatorname{cl}_{\overline{X}^d} Y \setminus Y) \cup (\operatorname{cl}_{\overline{X}^d} Z \setminus Z)$$

Put $\Sigma_0 = \operatorname{cl}_{\overline{X}^d} Y \setminus Y$ and $\Sigma_1 = \operatorname{cl}_{\overline{X}^d} Z \setminus Z$. Note that $\Sigma_0 \supset \operatorname{cl}_{\overline{X}^d} A \setminus A$ and $\Sigma_1 \supset \operatorname{cl}_{\overline{X}^d} B \setminus B$. From Proposition 2.3 $\Sigma_0 \setminus \Sigma_1 \neq \emptyset$ and $\Sigma_1 \setminus \Sigma_0 \neq \emptyset$. From Proposition 2.1 we note that $\Sigma_0 \cong \nu_{d_Y} Y$ and $\Sigma_1 \cong \nu_{d_Z} Z$, where d_Y and d_Z are subspace metrics induced by d in X and Y, respectively. From Lemma 2.5 $\nu_{d_Y} Y$ and $\nu_{d_Z} Z$ are nonmetric continua. Then we have shown that $\nu_d X$ is a non-metric decomposable continuum, and the proof is complete.

Here, it is natural to ask a question whether such subsets A and B exist as in the above Proposition 2.6. In the following Lemma 2.9, we will give a sufficient condition guaranteeing that such subsets A and B exist.

Definition 2.7. Let (Z, σ) be a connected metric space. A non-compact closed system $\{X, Y\}$ of Z satisfies the *condition* (\sharp) provided that there exists a compact connected cover $\{K_n\}_{n<\omega}$ of Z with $K_n \subset \operatorname{int}_Z K_{n+1}$ and $K_{n+1} \setminus \operatorname{int}_Z K_n$ is connected and $X \cap$

 $Y \cap (K_{n+1} \setminus \text{int}_Z K_n) \neq \emptyset$ for each $n < \omega$ satisfies the following conditions:

- $(\sharp 1) \sup_{n < \omega} \operatorname{diam}(X \cap Y \cap (K_{n+1} \setminus \operatorname{int}_Z K_n)) < +\infty,$
- (#2) If $x \in (K_{n+1} \setminus \operatorname{int}_Z K_n) \cap X$ (resp. $y \in (K_{n+1} \setminus \operatorname{int}_Z K_n) \cap Y$), then $\sigma(x, Y) = \sigma(x, X \cap Y \cap (K_{n+1} \setminus \operatorname{int}_Z K_n))$ (resp. $\sigma(y, X)$) $= \sigma(y, X \cap Y \cap (K_{n+1} \setminus \operatorname{int}_Z K_n))$.
- (#3) $\sup_{n<\omega} \operatorname{diam}(X \cap (K_{n+1} \setminus \operatorname{int}_Z K_n)) = +\infty \text{ and } \sup_{n<\omega} \operatorname{diam}(Y \cap (K_{n+1} \setminus \operatorname{int}_Z K_n)) = +\infty, \text{ and}$
- ($\sharp 4$) $X \cap (K_{n+1} \setminus \operatorname{int}_Z K_n)$ and $Y \cap (K_{n+1} \setminus \operatorname{int}_Z K_n)$ are connected.

Example 2.8. Put $Z = [0, \infty) \times \mathbb{R}$ and σ is a subspace metric of \mathbb{R}^2 . Let X and Y be defined as below:

$$X = \{(x,y) : x \ge 0 \text{ and } 0 \le y \le x\}$$

 $Y = \{(x,y) : x \ge 0 \text{ and } -x \le y \le 0\}$

Put $K_n = \{(x,y) : x \leq n\}$ for each $n < \omega$. Then we can easily verify that a non-compact closed system $\{X,Y\}$ of Z satisfies the condition (\sharp) .

Lemma 2.9. Let (Z, σ) be a proper metric space and $\{X, Y\}$ a non-compact closed system of Z satisfying the condition (\sharp) . Then there exist sequences $\{x_k\}_{k<\omega}$ and $\{y_k\}_{k<\omega}$ with $x_k \in X \setminus Y$ and $y_k \in Y \setminus X$ for each $k < \omega$ such that $\{\{x_k\}_{k<\omega}, Y\}$ and $\{X, \{y_k\}_{k<\omega}\}$ diverge.

Proof: Let $\{K_n\}_{n<\omega}$ be as in Definition 2.7. Put

$$L_n = K_{n+1} \setminus \operatorname{int}_Z K_n,$$

$$a_n = \operatorname{diam}(X \cap L_n),$$

$$b_n = \operatorname{diam}(Y \cap L_n),$$

$$c_n = \operatorname{diam}(X \cap Y \cap L_n),$$

$$A_n = (X \cap L_n) \setminus Y,$$

$$B_n = (Y \cap L_n) \setminus X, \text{ and }$$

$$C_n = X \cap Y \cap L_n$$

for each $n < \omega$. From the condition (#1) $c = \sup_{n < \omega} c_n$ is bounded. From conditions (#1) and (#3) we can take a natural number n_0 and

choose a point $x_0 \in A_{n_0}$ with $\sigma(x_0, Y) > 0$. By a similar argument, there exists an $n_1 > n_0$ such that $a_{n_1} > \max\{\sigma(x_0, Y), 3 + 2c(= 1 + 2(c+1))\}$. Then we show the following fact:

Fact. There exists an $x_1 \in A_{n_1}$ such that $\sigma(x_1, Y) > 1$.

Assume the contrary that for each $x \in A_{n_1}$ with $\sigma(x,Y) \leq$ 1. Note that $A_{n_1} \subset B_{1+\varepsilon}(Y,\sigma)$ for some $\varepsilon > 0$ with $\varepsilon < 1/3$. Now, $a_{n_1} = \text{diam}(X \cap L_{n_1}) = \text{diam}(A_{n_1} \cup C_{n_1}) \le \text{diam}(A_{n_1} + C_{n_1})$ $\sigma(A_{n_1}, C_{n_1})$ +diam C_{n_1} . At first, we will verify that $\sigma(A_{n_1}, C_{n_1}) = 0$. Assume the contrary that $\sigma(A_{n_1}, C_{n_1}) > 0$. Put $\delta = \sigma(A_{n_1}, C_{n_1})/2$. Choose arbitrarily points $x \in A_{n_1}$ and $y \in C_{n_1}$. From the condition (#4) $A_{n_1} \cup C_{n_1}$ is compact connected. Then there exist a sequence $\{u_k\}_{k\leq m}\subset A_{n_1}\cup C_{n_1}$ such that $x=u_0,u_1,\ldots,u_m=y$ and $\sigma(u_i, u_j) < \delta$ for each $i, j \in \{0, ..., m\}$ (See [3], page 359, 6.1.D). Thus, we can choose points u_k and u_{k+1} such that $u_k \in$ A_{n_1} and $u_{k+1} \in C_{n_1}$. Note that $\sigma(u_k, u_{k+1}) \geq \sigma(A_{n_1}, C_{n_1}) > \delta$ and then we obtain a contradiction. Secondly, we will verify that $\operatorname{diam} A_{n_1} < 3 + c$. In fact, there exists $\alpha_{n_1}, \beta_{n_1} \in A_{n_1}$ such that $\sigma(\alpha_{n_1},\beta_{n_1}) > \text{diam}A_{n_1} - \varepsilon$. From the condition (#2) there exist points $y(\alpha_{n_1}), y(\beta_{n_1}) \in C_{n_1}$ such that diam $A_{n_1} < \sigma(\alpha_{n_1}, \beta_{n_1}) + \varepsilon \le$ $\sigma(\alpha_{n_1}, y(\alpha_{n_1})) + \sigma(y(\alpha_{n_1}), y(\beta_{n_1})) + \sigma(y(\beta_{n_1}), \beta_{n_1}) + \varepsilon$. From this estimation, note that $\operatorname{diam} A_{n_1} < 3 + c$. By the above arguments, we can verify that $a_{n_1} < 3 + 2c$. This is a contradiction.

Then continuing in this fashion, we can obtain a sequence $\{x_k\}_{k<\omega}$ satisfying the following conditions:

- (1) $n_k < n_{k+1} \text{ and } x_k \in A_{n_k}$,
- (2) $a_{n_{k+1}} > \max\{\sigma(x_k, Y), 1 + 2(c+k)\}, \text{ and }$
- (3) $\sigma(x_k, Y) > k$

for each $k < \omega$. Then, finally, we will prove the following claim:

Claim. $\{\{x_k\}_{k<\omega}, Y\}$ diverges.

In fact, fix a natural number $k < \omega$ and take an element $x \in Z - B_k(K_{n_k}, \sigma)$. Note that there exist $l < \omega$ and $y_x \in Y$ such that $\sigma(x, \{x_k\}_{k<\omega}) + \sigma(x, Y) = \sigma(x, x_l) + \sigma(x, y_x) \ge \sigma(x_l, y_x) \ge \sigma(x_l, Y) > l$. Here, without loss of generality, we may assume that $x_l \notin B_k(K_{n_k}, \sigma)$. Then note that l > k. This implies that $\sigma(x, \{x_k\}_{k<\omega}) + \sigma(x, Y) > k$.

Mimicking the proof above, we can obtain a sequence $\{y_k\}_{k<\omega}\subset Y$ satisfying the following conditions:

(4)
$$m_k < m_{k+1} \text{ and } y_k \in B_{m_k}$$
,

- (5) $b_{m_{k+1}} > \max\{\sigma(y_k, Y), 1 + 2(k+c)\}, \text{ and }$
- (6) $\sigma(y_k, X) > k$

for each $k < \omega$. In particular, $\{X, \{y_k\}_{k < \omega}\}$ diverges.

Now, we will write J_f as $\{(x, f(x)) : x \in J\}$ for $f \in C(J)$. In the rest of this section, J_f is equippted with a subspace metric of σ defined by $\sigma((x, y), (x', y')) = \sqrt{(x - x')^2 + (y - y')^2}$ for each $(x, y), (x', y') \in J \times \mathbb{R}$.

Theorem 2.10. If $f \in C^*(J)$, then the Higson corona $\nu_{\sigma}J_f$ is an indecomposable continuum.

Proof: Put $X = J \times [\inf_{x \in J} f(x), \sup_{x \in J} f(x)]$. From Lemma 2.5 $\nu_d X$ is an non-metric continuum. From Proposition 2.1 and 2.2 $\nu_\sigma J_f \cong \nu_\sigma X \cong \nu_\sigma J_{\overline{0}}$, where $\overline{0}$ is the constant function taking value 0. From Theorem 1.6 in [4] $\nu_\sigma J_{\overline{0}}$ is an indecomposable continuum. Thus, from these arguments above we conclude that $\nu_\sigma J_f$ is an indecomposable continuum and then the proof is complete.

Theorem 2.11. Let X, Y, and Z be non-compact locally connected closed strongly generalized continuum of $J \times \mathbb{R}$ having the complementation property with $Z = X \cup Y$ and a system $\{X,Y\}$ satisfy the condition (\sharp) , and let J_f be as in the above with $J_f \subset Z$. If $J_f \cap X$ and $J_f \cap Y$ are r-dense in X and Y, respectively, for some r > 0, then $\nu_{\sigma} J_f$ is a decomposable continuum.

Proof: From Propositions 2.1 and 2.2 $\nu_{\sigma}J_{f}\cong\operatorname{cl}_{\overline{Z}^{\sigma}}J_{f}\setminus J_{f}\cong\nu_{\sigma}Z$. By Lemma 2.5 and the last argument $\nu_{\sigma}J_{f}$ is a non-metric continuum. Here, $\operatorname{cl}_{\overline{Z}^{\sigma}}J_{f}\setminus J_{f}=\operatorname{cl}_{\overline{Z}^{\sigma}}(J_{f}\cap X)\setminus (J_{f}\cap X)\cup\operatorname{cl}_{\overline{Z}^{\sigma}}(J_{f}\cap Y)\setminus (J_{f}\cap Y)$. Put $\Sigma_{0}=\operatorname{cl}_{\overline{Z}^{\sigma}}(J_{f}\cap X)\setminus (J_{f}\cap X)$ and $\Sigma_{1}=\operatorname{cl}_{\overline{Z}^{\sigma}}(J_{f}\cap Y)\setminus (J_{f}\cap Y)$. By Proposition 2.2 $\Sigma_{0}\cong\nu_{\sigma}X$ and $\Sigma_{1}\cong\nu_{\sigma}Y$. Using Lemma 2.5, Σ_{0} and Σ_{1} are non-metric continua. From Propositions 2.1 and 2.2 $\Sigma_{0}\cong\operatorname{cl}_{\overline{Z}^{\sigma}}X\setminus X$ and $\Sigma_{1}\cong\operatorname{cl}_{\overline{Z}^{\sigma}}Y\setminus Y$. By Proposition 2.6 and Lemma 2.9 we note that $\Sigma_{0}\setminus\Sigma_{1}\neq\emptyset$ and $\Sigma_{1}\setminus\Sigma_{0}\neq\emptyset$. Then $\nu_{\sigma}J_{f}$ is a decomposable continuum. Thus, the proof is complete.

Example 2.12. Let X and Y be as in the above Example 2.8. Put $Z = X \cup Y$ and $f(x) = x \sin x$ for each $x \in J$. By Theorem 2.11 the Higson corona of J_f with a subspace metric of \mathbb{R}^2 is a decomposable continuum.

Acknowledgment. The author would like to express his sincere gratitude to Professors T. Hoshina, K. Kawamura and K. Yamazaki for their helpful comments.

References

- [1] R.E. Chandler, *Hausdorff Compactifications*, Marcel Dekker, Inc., New York-Basel, 1976.
- [2] A.N. Dranishnikov, J. Keesling and V.V. Uspenskij, On the Higson corona of uniformly contractible spaces, Topology, 37 (1998), 791-803.
- [3] R. Engelking, General Topology, Helderman Verlag, Berlin, 1989.
- [4] Y. Iwamoto and K. Tomoyasu, Higson compactifications obtained by expanding and contracting the half-open interval, to appear in Tsukuba J. Math.
- [5] J. Keesling, The one-dimensional Čech cohomology of the Higson compactification and its corona, Topology. Proc., 19 (1994), 129-148.
- [6] R.C. Walker, The Stone-Čech Compactification, Springer-Verlag, Berlin Heidelberg New York, 1974.

MIYAKONOJO NATIONAL COLLEGE OF TECHNOLOGY, MIYAKONOJO-SHI MIYAZAKI 885-8567, JAPAN

E-mail address: tomoyasu@cc.miyakonojo-nct.ac.jp