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ON UNIVERSAL MINIMAL COMPACT G-SPACES

VLADIMIR USPENSKIJ

Abstract. For every topological group G one can define the
universal minimal compact G-space X = MG characterized
by the following properties: (1) X has no proper closed G-
invariant subsets; (2) for every compact G-space Y there ex-
ists a G-map X → Y . If G is the group of all orientation-
preserving homeomorphisms of the circle S1, then MG can be
identified with S1 (V. Pestov). We show that the circle can-
not be replaced by the Hilbert cube or a compact manifold of
dimension > 1. This answers a question of V. Pestov. More-
over, we prove that for every topological group G the action
of G on MG is not 3-transitive.

1. Introduction

With every topological group G one can associate the universal
minimal compact G-space MG. To define this object, recall some
basic definitions. A G-space is a topological space X with a continu-
ous action of G, that is, a map G×X → X satisfying g(hx) = (gh)x
and 1x = x (g, h ∈ G, x ∈ X). A G-space X is minimal if it has no
proper G-invariant closed subsets or, equivalently, if the orbit Gx
is dense in X for every x ∈ X. A map f : X → Y between two
G-spaces is G-equivariant, or a G-map for short, if f(gx) = gf(x)
for every g ∈ G and x ∈ X.

All maps are assumed to be continuous, and ‘compact’ includes
‘Hausdorff’. The universal minimal compact G-space MG is char-
acterized by the following property: MG is a minimal compact
G-space, and for every compact minimal G-space X there exists a
G-map of MG onto X. Since Zorn’s lemma implies that every com-
pact G-space has a minimal compact G-subspace, it follows that
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for every compact G-space X, minimal or not, there exist a G-map
of MG to X.

The existence of MG is easy: consider the product of a represen-
tative family of compact minimal G-spaces, and take any minimal
closed G-subspace of this product for MG. It is also true that MG

is unique, in the sense that any two universal minimal compact G-
spaces are isomorphic [1]. For the reader’s convenience, we give a
proof of this fact in the Appendix.

If G is locally compact, the action of G on MG is free [7] (see also
[5, Theorem 3.1.1]), that is, if g 6= 1, then gx 6= x for every x ∈ MG.
On the other hand, MG is a singleton for many naturally arising
non-locally compact groups G. This property of G is equivalent
to the following fixed point on compacta (f.p.c.) property: every
compact G-space has a G-fixed point. (A point x is G-fixed if
gx = x for all g ∈ G.) For example, if H is a Hilbert space,
the group U(H) of all unitary operators on H, equipped with the
pointwise convergence topology, has the f.p.c. property (Gromov
– Milman); another example of a group with this property, due
to Pestov, is H+(R), the group of all orientation-preserving self-
homeomorphisms of the real line. We refer the reader to beautiful
papers by V. Pestov [3, 4, 5] on this subject.

Let S1 be a circle, and let G = H+(S1) be the group of all
orientation-preserving self-homeomorphisms of S1. Then MG can
be identified with S1 [3, Theorem 6.6]. The question arises whether
a similar assertion holds for the Hilbert cube Q. This question is
due to V. Pestov, who writes in [3, Concluding Remarks] that his
theorem “tends to suggest that the Hilbert cube Iω might serve
as the universal minimal flow for the group Homeo (Iω)”. In other
words, let G = H(Q) be the group of all self-homeomorphisms of
Q = Iω, equipped with the compact-open topology. Are MG and
Q isomorphic as G-spaces?

The aim of the present paper is to answer this question in the
negative. Let us say that the action of a group G on a G-space X is
3-transitive if |X| ≥ 3 and for any triples (a1, a2, a3) and (b1, b2, b3)
of distinct points in X there exists g ∈ G such that gai = bi,
i = 1, 2, 3.

Theorem 1.1. For every topological group G the action of G on
the universal minimal compact G-space MG is not 3-transitive.
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Since the action of H(Q) on Q is 3-transitive, it follows that
MG 6= Q for G = H(Q). Similarly, if K is compact and G is a
3-transitive group of homeomorphisms of K, then MG 6= K. This
remark applies, for example, if K is a manifold of dimension > 1
or a Menger manifold and G = H(K).

Question 1.2. Let G = H(Q). Is MG metrizable?

A similar question can be asked when Q is replaced by a compact
manifold or a Menger manifold.

Let P be the pseudoarc (= the unique hereditarily indecompos-
able chainable continuum) and G = H(P ). The action of G on P is
transitive but not 2-transitive, and the following question remains
open:

Question 1.3. Let P be the pseudoarc and G = H(P ). Can MG be
identified with P?

2. Proof of the main theorem

The proof of Theorem 1.1 depends on the consideration of the
space of maximal chains of closed sets. For a compact space K let
ExpK be the (compact) space of all non-empty closed subsets of K,
equipped with the Vietoris topology. Recall the definition of this
topology. Given open sets U1, . . . , Un in K, let V(U1, . . . , Un) be
the set of all F ∈ ExpK such that F ⊂ ⋃n

i=1 Ui and F meets each
Ui, i = 1, . . . , n. The collection of all sets of the form V(U1, . . . , Un)
is a base for the Vietoris topology on ExpK.

A subset C ⊂ ExpK is a chain if for any E, F ∈ C either E ⊂ F
or F ⊂ E. If C ⊂ ExpK is a chain, so is the closure of C. It
follows that every maximal chain is a closed subset of ExpK and
hence an element of Exp ExpK. Let Φ ⊂ Exp ExpK be the space
of all maximal chains. Then Φ is compact:

Proposition 2.1. Let K be compact. The set Φ of all maximal
chains of closed subsets of K is closed in ExpExpK and hence
compact.

Proof: It is easy to see that the closure of Φ consists of chains.
Assume C ∈ ExpExpK is a non-maximal chain. We construct a
neighbourhood W of C in Exp ExpK which is disjoint from Φ. One
of the following cases holds: (1) the first member of C has more than
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one point, or (2) the last member of C is not K, or (3) the chain C
contains “big gaps”: there are F1, F2 ∈ C such that |F2 \ F1| ≥ 2
and for every F ∈ C either F ⊂ F1 or F2 ⊂ F . For example,
consider the third case (the first two cases are simpler). Find open
sets U , V1, V2 in K with pairwise disjoint closures such that F1 ⊂
U and F2 meets both V1 and V2. Let W = {D ∈ ExpExpK :
every member of D either is contained in U or meets both V1 and
V2 }. Then W is a neighbourhood of C which does not meet Φ.
Indeed, suppose D ∈ W ∩ Φ. Let E1 be the largest member of D
which is contained in Ū . Let E2 be the smallest member of D which
meets both V̄1 and V̄2. For every E ∈ D we have either E ⊂ E1

or E2 ⊂ E, and |E2 \ E1| ≥ 2. Pick a point p ∈ E2 \ E1. The
set E1 ∪ {p} is comparable with every member of D but is not a
member of D. This contradicts the maximality of D. ¤

Suppose G is a topological group and K is a compact G-space.
Then the natural action of G on ExpK is continuous, hence ExpK
is a compact G-space, and so is Exp ExpK. Since the closed set
Φ ⊂ ExpExpK is G-invariant, Φ is a compact G-space, too. A
chain C ∈ Φ is G-fixed if and only if for every F ∈ C and g ∈ G we
have gF ∈ C. Note that members of a G-fixed chain need not be
G-fixed.

Proposition 2.2. Let G be a topological group. Pick p ∈ MG, and
let H = {g ∈ G : gp = p} be the stabilizer of p. There exists a
maximal chain C of closed subsets of MG such that C is H-fixed:
if F ∈ C and g ∈ H, then gF ∈ C.

Proof: Every compact G-space X has an H-fixed point. Indeed,
there exists a G-map f : MG → X, and since p is H-fixed, so is
f(p) ∈ X.

Let Φ ⊂ ExpExpMG be the compact space of all maximal chains
of closed subsets of MG. We saw that Φ is a compact G-space. Thus
Φ has an H-fixed point. ¤

Theorem 1.1 follows from Proposition 2.2:
Proof of Theorem 1.1. Assume that the action of G on X =

MG is 3-transitive. Our definition of 3-transitivity implies that
|X| ≥ 3. Pick p ∈ X, and let H = {g ∈ G : gp = p}. According to
Proposition 2.2, there exists an H-fixed maximal chain C of closed
subsets of X. The smallest member of C is an H-fixed singleton.
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Since G is 2-transitive on X, the only H-fixed singleton is {p}.
Indeed, if q ∈ X and q 6= p, there exists f ∈ G such that f(p) = p
(hence f ∈ H) and f(q) 6= q, so q is not H-fixed. Thus {p} ∈ C,
and all members of C contain p. Since |X| ≥ 3 and C is a maximal
chain, there exists F ∈ C such that F 6= {p} and F 6= X. Pick
a ∈ F \ {p} and b ∈ X \F . The points p, a, b are all distinct. Since
G is 3-transitive on X, there exists g ∈ G such that gp = p, ga = b
and gb = a. Since a ∈ F and b /∈ F , we have b = ga ∈ gF and
a = gb /∈ gF . Thus a ∈ F \gF and b ∈ gF \F , so F and gF are not
comparable. On the other hand, the equality gp = p means that
g ∈ H. Since C is H-fixed and F ∈ C, we have gF ∈ C. Hence F
and gF must be comparable, being members of the chain C. We
have arrived at a contradiction. ¤

Example 2.3. Consider the group G = H+(S1) of all orientation-
preserving self-homeomorphisms of the circle S1. According to
Pestov’s result cited above, MG = S1. This example shows that
the action of G on MG can be 2-transitive. Pick p ∈ S1, and let
H ⊂ G be the stabilizer of p. Proposition 2.2 implies that there
must exist H-fixed maximal chains of closed subsets of S1. It is
easy to see that there are precisely two such chains. They consist
of the singleton {p}, the whole circle and of all arcs that either
“start at p” or “end at p”, respectively.

Remark 2.4. Let P be the pseudoarc, and let G = H(P ). Pick a
point p ∈ P , and let H ⊂ G be the stabilizer of p. Then there
exists an H-fixed maximal chain C of closed subsets of P . Namely,
let C be the collection of all subcontinua F ⊂ P such that p ∈ F .
Since any two subcontinua of P are either disjoint or comparable,
it follows that C is a chain. The chain C can be shown to be
maximal, and it is obvious that C is H-fixed. Thus Proposition 2.2
does not contradict the conjecture that MG = P . This observation
motivates our question 1.3.

3. Appendix: Uniqueness of MG

Let us prove the uniqueness of MG up to a G-isomorphism.
Let G be a topological group. The greatest ambit X = S(G) for G

is a compact G-space with a distinguished point e ∈ X such that for
every compact G-space Y and every e′ ∈ Y there exists a unique G-
map f : X → Y such that f(e) = e′. The greatest ambit is defined
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uniquely up to a G-isomorphism preserving distinguished points.
We can take for S(G) the compactification of G equipped with the
right uniformity, which is the compactification of G corresponding
to the C∗-algebra R(G) of all bounded right uniformly continuous
functionson G, that is, the maximal ideal space of that algebra. (A
complex function f on G is right uniformly continuous if

∀ε > 0∃V ∈ N (G)∀x, y ∈ G (xy−1 ∈ V =⇒ |f(y)− f(x)| < ε),

where N (G) is the filter of neighbourhoods of unity.) The G-space
structure on S(G) comes from the natural continuous action of G
by automorphims on R(G) defined by gf(h) = f(g−1h) (g, h ∈ G,
f ∈ R(G)). Thus we can (and shall) identify G with a subspace
of S(G). The distinguished point of S(G) is the unity of G. See
[3, 4, 5] for more details. A semigroup is a set with an associative
multiplication. A semigroup X is left-topological if it is a topological
space and for every y ∈ X the self-map x 7→ xy of X is continuous.
(Some authors use the term right-topological for this.)

Theorem 3.1. For every topological group G the greatest ambit
X = S(G) has a natural structure of a left-topological semigroup
with a unity such that the multiplication X ×X → X extends the
action G×X → X.

Proof: Let x, y ∈ X. In virtue of the universal property of X,
there is a unique G-map ry : X → X such that ry(e) = y. Define
xy = ry(x). Let us verify that the multiplication (x, y) 7→ xy
has the required properties. For a fixed y, the map x 7→ xy is
equal to ry and hence is continuous. If y, z ∈ X, the self-maps
rzry and ryz of X are equal, since both are G-maps sending e to
yz = rz(y). This means that the multiplication on X is associative.
The distinguished element e ∈ X is the unity of X: we have ex =
rx(e) = x and xe = re(x) = x. If g ∈ G and x ∈ X, the expression
gx can be understood in two ways: in the sense of the exterior action
of G on X and as a product in X. To see that these two meanings
agree, note that rx(g) = rx(ge) = grx(e) = gx (the exterior action
is meant in the last two terms; the middle equality holds since rx

is a G-map). ¤

If f : X → X is a G-self-map and a = f(e), then f(x) = f(xe) =
xf(e) = xa = ra(x) for all x ∈ G and hence for all x ∈ X. Thus
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the semigroup of all G-self-maps of X coincides with the semigroup
{ry : y ∈ X} of all right multiplications.

A subset I ⊂ X is a left ideal if XI ⊂ I. Closed G-subspaces
of X are the same as closed left ideals of X. An element x of a
semigroup is an idempotent if x2 = x. Every closed G-subspace of
X, being a left ideal, is moreover a left-topological compact semi-
group and hence contains an idempotent, according to the following
fundamental result of R. Ellis (see [6, Proposition 2.1] or [2, Theo-
rem 3.11]):

Theorem 3.2. Every non-empty compact left-topological semigroup
K contains an idempotent.

Proof: Zorn’s lemma implies that there exists a minimal element
Y in the set of all closed non-empty subsemigroups of K. Fix a ∈ Y .
We claim that a2 = a (and hence Y is a singleton). The set Ya,
being a closed subsemigroup of Y , is equal to Y . It follows that the
closed subsemigroup Z = {x ∈ Y : xa = a} is non-empty. Hence
Z = Y and xa = a for every x ∈ Y . In particular, a2 = a. ¤

Let M be a minimal closed left ideal of X. We have just proved
that there is an idempotent p ∈ M . Since Xp is a closed left ideal
contained in M , we have Xp = M . It follows that xp = x for
every x ∈ M . The G-map rp : X → M defined by rp(x) = xp is a
retraction of X onto M .

Proposition 3.3. Every G-map f : M → M has the form f(x) =
xy for some y ∈ M .

Proof: The composition h = frp : X → M is a G-map of X into
itself, hence it has the form h = ry, where y = h(e) ∈ M . Since
rp ¹ M = Id, we have f = h ¹ M = ry ¹ M . ¤

Proposition 3.4. Every G-map f : M → M is bijective.

Proof: According to Proposition 3.3, there is a ∈ M such that
f(x) = xa for all x ∈ M . Since Ma is a closed left ideal of X
contained in M , we have Ma = M by the minimality of M . Thus
there exists b ∈ M such that ba = p. Let g : M → M be the G-
map defined by g(x) = xb. Then fg(x) = xba = xp = x for every
x ∈ M , therefore fg = 1 (the identity map of M). We have proved
that in the semigroup S of all G-self-maps of M , every element has
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a right inverse. Hence S is a group. (Alternatively, we first deduce
from the equality fg = 1 that all elements of S are surjective and
then, applying this to g, we see that f is also injective.) ¤

We are now in a position to prove that every universal compact
minimal G-space is isomorphic to M . First note that the minimal
compact G-space M is itself universal: if Y is any compact G-
space, there exists a G-map of the greatest ambit X to Y , and its
restriction to M is a G-map of M to Y . Now let M ′ be another
universal compact minimal G-space. There exist G-maps f : M →
M ′ and g : M ′ → M . Since M ′ is minimal, f is surjective. On
the other hand, in virtue of Proposition 3.4 the composition gf :
M → M is bijective. It follows that f is injective and hence a
G-isomorphism between M and M ′.
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