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TIMES OF DIFFUSION IN HAMILTONIAN
SYSTEMS*

ENRICO VALDINOCT!

ABSTRACT. In the context of Arnold diffusion, we consider
several Hamiltonian systems close to integrability and we show
that the times of diffusion are polynomial in the inverse of the
splitting.

After the pioneering work of Poincaré, the problem of the stabil-
ity of nearly-integrable Hamiltonian systems has been widely stud-
ied. Very roughly, the problem is whether a very small perturbation
of an “integrable” (i.e., completely stable) system can produce an
appreciable instability of the action variables. This question natu-
rally arises in models related with celestial mechanics, in which the
action variables represent the length of the semiaxes of the ellipses
on which the planets run or the inclination of a planet’s axis. The
study of this problem has now interest in many fields of mathemat-
ics, such as ergodic theory, PDEs and differential geometry; the
development of the theory made use of techniques based on func-
tional analysis, renormalization group, statistical physics and field
theory. A crucial role were also played by some arithmetic condi-
tions. Moreover, the machinery developed to address this problem
has become a strong tool of applied mathematics with the advent

*This report presents the results contained in the paper UpperBounds
on Arnold Diffusion Time via Mather Theory, written in collaboration with
Professor Ugo Bessi and Professor Luigi Chierchia, submitted to Journal de
Mathématiques Pures et Appliquées.

f It is a pleasure to thank Prof. Ugo Bessi and Prof. Luigi Chierchia for the
opportunity of working with them on the problem presented in this note.
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of computer assisted proofs and of constructive methods to asses
the reliability of numerical experiments.

The example in [A] first showed the possibility of an order one
drift of the action variables in perturbations of integrable Hamil-
tonian systems. This phenomenon, known as Arnold diffusion, hap-
pens in systems with more than two degrees of freedom; two degree
of freedom systems are stable to perturbation, since the chaotic
regions are necessarily sandwiched between KAM tori'. Indeed, if
n = 2, we can reduce the four-dimensional phase space to a three-
dimensional energy surface, since one of the action can be recov-
ered by energy conservation. From the KAM results, it is known
that this space is densely covered by two-dimensional tori and this
provide a topological obstruction to diffusion, since the trajectories
trapped in-between these tori can only experience a small variation
of the actions, for any time and for any initial datum.

If the number of degrees of freedom is n > 2, the orbits are not
enclosed anymore by the KAM tori, so that a drift of order one in
the actions may occur even in systems arbitrarily close to integra-
bility. In this situation, the dynamics can be very intricate, due to
the coexistence of stable and chaotic motions: indeed the KAM re-
sults yield metric stability, i.e. perpetual stability for the majority
of initial data, whereas topological instability can be produced by a
drift in the actions.

The KAM tori and their stable and unstable manifolds are the
building blocks to construct drifting orbit (see, for example, [CV]
and references therein). Roughly, this instability is due to the trans-
verse intersection between stable and unstable manifolds of differ-
ent KAM tori. The stable and unstable manifolds of the KAM tori
are usually called whiskers. The so called problem of the splitting
consists in proving that the whiskers intersect transversally and in
giving a quantitative estimate of this transversality. This is usually
a very delicate matter, and the estimate relies on averaging tech-
niques or graph theory and make use of the arithmetic properties
of the frequencies. For a construction of the whiskered tori see,
for example, [Gr], [T] and [V]; for the problem of the splitting see

'Here, KAM means that these tori are constructed by a Kolmogorov-Arnold-
Moser technique (see, for instance, [M]).
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[DG], [DGJS] and [GGM]. For a tutorial on the main ideas in KAM
theory see [Ll].

Heuristically, one may think that the splitting is the “angle”
formed by the intersection of the whiskers: a rigorous definition
involves a quantitative statement on the nondegeneracy of a mini-
mum of the Melnikov function (see, for instance, Proposition 1 of

[BCV)).

The geometry of our system is then given by a chain of whiskered
tori; the splitting measures the transversality of the intersection
of the approaching and departing whiskers. Thus, by elementary
considerations, one sees that the distance between the first and the
last torus of the chain is given by the product between the splitting
and the number of the tori in the chain.

By a topological argument, from this geometry it is possible to
prove the existence of orbits of diffusion in a very general setting.
However, it is not easy to deduce only from this geometry a good
bound on the times in which such diffusion takes place: for instance,
the proof presented in [CG| and [CV] would lead to time estimates
that are much worse than exponential.

The scope of this note is to consider several examples for which
the existence of the mechanism of Arnold diffusion has been proven,
and to show that the diffusion time is of the order of an inverse
power of the splitting. The exposition of this note will be quite
informal: we will not enter here in detailed proofs of our statements,
and we will just highlight some of the ideas involved. For full details
we refer to [BCV].

The problem of the time of stability in this context goes back to
[N]. Several estimates on the speed of Arnold diffusion have been
recently considered also by [Be] and [Cr]. Related results have been
announced by [Bo] and [BBJ.

Here, we consider the following families of Hamiltonians:

e A priori unstable system (see [CG]):
(1) H=|I?>+p*+cosqg—1+cf(p,q).
e Isochronous system (see [G]):

(2) H=w-T+p*+cosq—1+ef(p,q).



312 ENRICO VALDINOCI

e Linear and quadratic degenerate systems (see [B]):

(3) H=cw-I+p*+e%(cosq—1)+e¥f(¢,q)  and

(4) H = elI)? +p? + e cosq — 1) + ¥ f(¢,q) -

Here and in the sequel, (I, ¢) € R" ! xT" ! and (p,q) € RxT will
be canonically conjugated (action-angle) variables. The constants
d and d’ above are assumed? to verify 1 <d <2and d >3+d/2,
f is a suitable nondegenerate perturbation, € is a small (positive)
parameter. We will also assume suitable Diophantine condition on

the frequency w. All these assumptions are quite natural, and they
are made in order to apply the results of [B], [CG], [G] and [GGM].

We notice that all the above mentioned Hamiltonians are ob-
tained by coupling pendula, rotators and oscillators. They are sim-
plified models for some problems arising in celestial mechanics, and
the example of [A] is included in (1) as a particular case. The result
addressed in this note is the following:

Theorem 1. Under suitable nondegeneracy conditions, all the sys-
tems above have orbits exhibiting a drift of order one (i.e. indepen-
dent of €) in the action variables, for which the time of drift is of
the order of an inverse power of the splitting. The energy of these
orbits is controlled independently of €.

More precisely, since it is known (see [B], [CG]) that the splitting
is of the order of a power of ¢ in cases 1-4, a quantitative version
of the previous result is the following:

Theorem 2. Under suitable nondegeneracy conditions, the systems
introduced above have an orbit <I(t), (b(t),p(t),q(t)) satisfying

. Cy
|[I(T)—1(0)] > Cy with OSTSETS,
where the C;’s are suitable constants, independent of €.

The detailed proof of this result is in [BCV]: the proof is a com-
bination of the known KAM results and a variational technique.
The orbit of diffusion corresponds to a local minimum of an oppor-
tune functional. Roughly speaking, this functional is constructed

2If d and d’ do not fall in the range mentioned here, exponentially long times
of stability have been proven by [B] for all initial conditions.
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by adding together suitable action functionals. Such variational
tool is similar in spirit to Mather theory (see [Mal).

Other systems could be also considered, by using the “abstract”
version of the result discussed here, contained in Proposition 1 of
[BCV]. Indeed, the techniques discussed here do not rely much on
the particular form of the Hamiltonians, but mainly on the geomet-
ric structure and on the quantitative relations among the parame-
ters. Grossly, we have:

Let H = h(L;e)+P(p,q;e)+F(¢,q) be a Hamiltonian system, in
which h is convex, P is “pendulum-like” and F is a small perturba-
tion. Assume that the “usual” KAM structure (whiskered tori and
splitting) holds. Let o be the splitting. Let 6 be the time needed to
travel on the whisker from the Poincaré section to a meighborhood
of the torus where the KAM normal form holds. Then the time of
diffusion can be bounded by

(o) L

In this way, it is also possible to consider some “a-priori stable”
stable systems as

for a suitable constant C'.

(5)  H=w-T+p*+e(cosq— 1)+ plcosq— 1) f(9).
Here, we assume n = 2 and w = (1, 1+2\/5); f is an appropriate

analytic function and pu = €P, for a suitable p > 1: this system has
been studied in [DGJS] and [DG]|, where an exponential upper and
lower bound on the splitting is given. In this case, the proof we will
present here still gives times of diffusion that are polynomial in the
splitting and hence exponential in the perturbation:

Theorem 3. System (5) has an orbit (I(t),qb(t),p(t),q(t)) satis-
fying

II(T) = I(0)] > C;  with  0<T < CpeC/e™

where the C;’s are suitable constants, independent of ¢.

The main steps of the proof of Theorems (1), (2) and (3) are the
following;:
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The Lagrangian formulation. First of all, we transform our
Hamiltonian systems into Lagrangian ones. This is done in order to
apply in the sequel a variational technique close to Mather theory,
which has a more convenient setting in Lagrangian formulation. We
will denote the corresponding Lagrangian by £. Since in some of
the examples above we do not have strict uniform convexity of the
unperturbed Hamiltonian, it is convenient to add a small kinetic
energy, depending on a parameter x > 0, vanishing as k goes to
zero. The results will be independent of x, hence we can pass
# — 0 and obtain our result by a limit argument.

The KAM results. The constructive results of [B], [CG], [GGM]
and [V] are set into a variational form. In particular, we consider
the preservation of a family of KAM tori 73,...,7y with stable
whiskers W7, ..., W5 and unstable whiskers W{*,..., Wy with a
Diophantine rotation frequency. These whiskered tori lie on the
energy surface {H{ = E}. Near the tori, the Hamiltonian can be
put into a “normal form”, in which the orbits have a very explicit
and simple form, namely a linear ergodic flow on the torus and a
hyperbolic motion on the whiskers.

The difference between the action of a point in 77 from the action
of a point in 7y is of order one.

Since these manifold are Lagrangian, there exist smooth func-
tions ®7, depending on the angles, such that each stable whisker
W? is described by the graph of ¢; + V®;, and an analogous state-
ment holds for W.

Also, it is convenient® to “smooth out” the above constants c¢;:
therefore we consider a smooth bump function S;, with domain in
the space of the angles, supported in a neighborhood of the point
where the splitting is evaluated, and such that VS; = ¢;41 — ¢;.
Thus, we define ¢;(¢, q) := ¢; + VSi(¢, q).

Here and in the following, it is also convenient to replace the
space of the angles T" by its cover T"~! x R (i.e. we look at the
cover of the ¢ variable), and consider Poincaré sections P; := {q =
m+2in} fori=0,...,N —1.

3This is done in order to have a smooth Lagrangian in the argument described
in Figure 3.
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Figure 1: symbolic representation of a KAM torus and its whiskers.
The sides should be thought as identified.

For any i = 1,..., N, we consider the natural projection of 7; on
the space of the angles T"~! x R. We denote this projection by T}
and we fix a point z; € T;. By periodicity, we may and do assume
the g—coordinate of T} to be close to 2iw. The position of the tori
T; with respect to the Poincaré sections P; is described in Figure
2.

Mather theory. We now introduce the variational principle that
will provide the desired orbit of diffusion.

The basic idea is that much information on the system is coded
inside the action functional: we then select suitable orbits in the
intricate phase portrait of our system by requiring of them to satisfy
global variational properties instead of the local ones that every
orbit satisfies. This technique has a long tradition, since it goes
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27 2m(i+1)

Figure 2: position of the tori T; with respect to the

Poincaré sections P; in the space of the angles.

back to Morse and Hedlund and it has been extensively applied
by Mather, Bangert and Mané. Following [Ma], we introduce the
following function: for X, Xo € T",

B (X1, Xy) 1= min/o LOX(7), X'(7)) — &(X (7)) - X'(7) + Edt,

where the minimum is taken over all the absolutely continuous
curves X : [0,¢t] — T" satisfying X (0) = X3, X(t) = Xa2. The
existence of such minimum is given by a Theorem of Tonelli. Also
we define h$° := liminf; . k!, that can be roughly considered as
the minimal action of the orbits connecting X; and X5 in an in-
finite time. Mather theory assures that this limit is finite, and it
provides a connection between the derivative of h° and the stable
and unstable manifolds. Indeed, if z; lies on the KAM torus T;, we
have that 0,h{°(z, 2;) coincides (up to a sign) with the derivative of
the function ®; that parameterizes the stable manifold. A similar
result holds in the unstable case.
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The variational argument. We consider suitable functionals
built by the functions k! and h{°. The functional involving h$®
will heuristically represent the action of a chain of pseudo-orbits
connecting the KAM tori, while the functional involving h! will be
the key tool towards the existence of the drifting orbit. In detail:
forany:=1,..., N, we select a point z; on the torus 7;, and define

F(f) = h?o(zl,ﬂjl) + hgo(l’l,ZQ) + hSO(Z2,$2) +---+

+hN_1(en—1,2n-1) + A (TN-1,2N) ,
where 7 := (x1,...,2n5-1), and z; lie on the Poincaré section P,
near the point of evaluation of the splitting.

From the relations between h{° and the whiskers, and making use
of the results on the splitting, it follows that F' has a nondegenerate
minimum.

We also define
G(%,1) := h{°(21, 1) + hb (w1, 29) + R (22, 3) + -+ - +

FRY 2 (an g, an—1) + WP (TN-1, 2N)

where t := (t1,...,tN_2), with ¢; > 0. A local minimum of G
corresponds to an orbit starting near the first torus and arriving
near the last one in a time T :=t1 + - - - + tny_oa.

Indeed, if (%,%) is a local minimum for G, we consider the orbit
(qﬁ(t),q(t)) obtained by gluing the orbit realizing h{°(z1,z1) for

times ¢ € (—o0,0], the orbit realizing hb' (1, x2) for ¢ € (0,¢1], the
orbit realizing h%? (w2, z3) for t € (t1,t; + to], ete.

We have that such orbit must satisfy the Fuler-Lagrange equa-
tions in

(0,81) U (t1,t1 +t2) U---U (b1 + - +tn_s, t1+ - +tn_2),

since, on these intervals, it minimizes the action functional. The
Euler-Lagrange equations are also satisfied in ¢; + --- 4 ¢;: this
is a consequence of the fact that the orbit above must cross the
Poincaré section with positive speed and of a standard variational
argument (see Figure 3).
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, (@), )

Figure 3: a small variation of the orbit.

The fact that the speed of the crossing of the Poincaré section at
time t;+- - -+1; is positive can be proven by a comparison argument
with the homoclinic of the pendulum: for details, see Appendix 2
of [BCV].

We now show that this orbit, that by the above discussion satis-
fies the Euler-Lagrange equations in [0, 7], exhibits a drift of order
one in the actions. Indeed:

e Considering small variations in the ¢ coordinates, it is easy
to prove that ¢(t) is continuous at t = 0.

e Since, on (—00,0), (¢(t),q(t)> realizes h{°(z1,x1), Mather

theory implies that the Legendre transform of (d)’ ,0,q, q) ’
lies on the stable manifold of the first KAM torus 77.

t=0—

From these two facts, it follows that the initial action of the orbit
above is close to the action of 7;. With a similar argument, the final
action is close to the action of 7y, proving that the orbit considered
has a drift of order one in its action variables.
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Let us briefly discuss now the existence of such local minimum
for G. It is reasonable to expect that, for big t;, G and F' are close
to each other, and that the existence of a nondegenerate minimum
of F' implies the existence of a minimum of G. This is exactly
what happens in our case: the proof of this, contained in Lemma
3 of [BCV], uses the dynamics on the whiskers and involves some
surgery argument on minimal orbits, in order to compare suitable
trajectories. This will give reciprocal bounds between h! and h$°,
allowing a control of G with respect to F' and, thus, the existence
of the desired minimum.

We finally remark that one of the main reasons why we obtain a
polynomial bound is that in one of the above mentioned surgeries
and comparisons, the ergodization of a KAM torus under its Dio-
phantine linear flow is involved: at this step, we use a well known
result (see, for instance, [BGW]) asserting that the ergodization
time of a Diophantine linear flow on a torus is polynomial.
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