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SPANS OF CERTAIN SIMPLE CLOSED CURVES
CROSS ARCS

THELMA WEST

Abstract. For each continuum X, where X is from the class
of concave upward y symmetric simple closed curves, we cal-
culate all of the spans of X × J where J is an interval. We
calculate the various spans of B × J where B = R2 − U and
U is the unbounded component of R2−X. Also, we calculate
all the spans of Y where Y is the boundary of B × J in R3.

1. Introduction

The concept of the span of a metric space was introduced by
Lelek in 1964 [L1]. Later, variations of the span were introduced
(cf [L2]and [L3]). Much work has been done on both the topological
and geometric aspects of the various spans. In general it is difficult
to determine the spans of even simple geometric objects. Also, the
relationships of the various spans for a particular space are usually
not easy to determine.

For a continuum X from the class of continua that we refer to as
the concave upward y symmetric simple closed curves, we calculate
the span, semispan, surjective span and surjective semispan of X×
J where J is an interval. We calculate all of the spans of B × J
where B = R2−U and U is the unbounded component of R2−X.
Also, we calculate the spans of (X×J)∪X0∪Xh where Xj = B×{j}
and J = [0, h].

2. Preliminaries

If X is a non-empty metric space, we define the span of X, σ (X),
to be the least upper bound of the set of real numbers α which
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322 THELMA WEST

satisfy the following condition: there exists a connected space C
and continuous mappings g, f : C → X such that

(σ) g(C) = f(C)

and α ≤dist[g (c) , f (c)] for c ∈ C.
The definition does not require X to be connected, but to sim-

plify our discussion we will now consider X to be connected. The
surjective span σ∗ (X), the semispan σ0 (X), and the surjective
semispan σ∗0 (X) are defined as above, except we change conditions
(σ) to the following:

(σ∗) g(C) = f(C) = X,

(σ0) g(C) ⊆ f(C),

(σ∗0) g(C) ⊆ f(C) = X,

Equivalently (see [L1 ], p. 209), the span σ (X) is the least upper
bound of numbers α for which there exist connected subsets Cα of
the product X ×X such that

(σ)′ p1(Cα) = p2(Cα)

and α ≤dist(x, y) for (x, y) ∈ Cα, where p1 and p2 denote the
projections of X × X onto X, i.e., p1 (x, y) = x and p2 (x, y) = y
for x, y ∈ X. Again, we will now consider X to be connected.
The surjective span σ∗ (X), the semispan σ0 (X), and the surjective
semispan σ∗0 (X) are defined as above, except we change conditions
(σ)′ to the following (see [L3]):

(σ∗)′ p1(Cα) = p2(Cα) = X,

(σ0)′ p1(Cα) ⊆ p2(Cα),

(σ∗0)
′ p1(Cα) ⊆ p2(Cα) = X.

By a continuum we mean a nondegenerate, compact and con-
nected metric space. We note that for a compact space X, C in the
first set of definitions and Cα in the second set can be considered
to be closed.
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The following inequalities follow immediately from the defini-
tions.

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diamX,
0 ≤ σ∗(X) ≤ σ∗0(X) ≤ σ0(X) ≤ diamX.

It can easily be shown that, if J is an arc then σ (J) = σ0 (J) =
σ∗ (J) = σ∗0 (J) = 0. A simple consequence of this is that when X
is a simple closed curve, σ (X) = σ∗ (X) and σ0 (X) = σ∗0 (X).

To simplify our exposition we define the following sets, notation,
and definitions. We define a metric ρ on X × J as follows

ρ((x, i), (y, j)) =
√

(d(x, y))2 + (i− j)2,

where d is the metric on X.
We define q1, q2 : (X × J)× (X × J) → X × J by

q1((x, l), (y, k)) = (x, l) and q2((x, l), (y, k)) = (y, k).

We define r1 : B × J → B and r2 : B × J → J by

r1(x, t) = x and r2(x, t) = t,

where B = R2−U and U is the unbounded component of R2−X.
We let O denote the origin in R2 or in R3.

Let W , V and U be points on a concave upward y symmetric
simple closed curve. By ŴV , we denote the shorter subarc on X

determined by these two points. By ŴV U, we denote the subarc
of X with endpoints W and U which contains V.

In [W3 ], we proved the following three theorems. In the following
theorem we let J = [0, h].

Theorem A. Let X be a continuum. Suppose there exists C ⊆
X × X such that C is connected, for each (x, y) ∈ C, d(x, y) ≥
σ(X), p1(C) = p2(C) = Y ⊆ X, there exists (x′, y′) ∈ C such that
d(x′, y′) = diamX, and (y′, x′) ∈ C. Then σ(X × J) =
min{

√
(σ(X))2 + h2, diamX}.

Theorem B. Let X be a continuum. Suppose there exists C ⊆
X × X such that C is connected, for any (x, y) ∈ C, d(x, y) ≥
σ0(X), p1(C) ⊆ p2(C) ⊆ X,there exists (x′, y′) ∈ C such that
d(x′, y′) = diamX, and there exists (z′, x′) ∈ C such that d(z′, x′) =
diamX. Then σ0(X × J) =min{

√
(σ0(X))2 + h2,diamX}.
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Let a, b ∈ Rn×{0} where d(a, b) = d. Let R be composition of a
translation and a rotation in Rn+1 where

R : Rn+1 → Rn+1 and R(a) = (−d
2 , 0, · · · , 0), R(b) =

(d
2 , 0, · · · , 0).
Let

RT (Y )=
{
y ∈Y |R(y)=(x1, · · · , xn+1) where x1≥0, h

2 ≤xn+1≤h
}

RB(Y )=
{
y∈Y |R(y)=(x1, · · · , xn+1) where x1≥0, 0≤xn+1≤ h

2

}

LT (Y )=
{
y∈Y |R(y)=(x1, · · · , xn+1) where x1≤0, h

2 ≤xn+1≤h
}

LB(Y )=
{
y∈Y |R(y)=(x1, · · · , xn+1) where x1≤0, 0≤xn+1≤ h

2

}
For a continuum X, let U be the unbounded component of

Rn −X. Let B = Rn − U.

Theorem C. Suppose X is a continuum contained in Rn which
satisfies the hypothesis of Theorem A. Suppose that

(i) for all subcontinua Z ⊆ B, σ0(Z) ≤ σ(X)
(ii) Y is a continuum such that X × J ⊂ Y and Y ⊆ B × J
(iii) there exists y ∈ Y such that R(y) = (0, · · · , 0, h

2 ) and
(iv) the sets RT (Y ), RB(Y ), LT (Y ) and LB(Y ) are each con-

nected, where R is based on x′ and y′.

(v) Y ⊂ closure B

(
y,

√
(diamX

2 )2+(h
2 )2

)
where

R(y) = (0, · · · , 0, h
2 ).

Then σ∗ (Y ) = σ∗0 (Y ) =min{
√

(diamX
2 )2 + (h

2 )2, σ(X × J)}.
Let f be a concave upward function where f : [0, p] → [0, q],

f(0) = q and f(p) = 0. Let P = (p, 0) and −P = (−p, 0). Let GP

denote the graph of f in R2. Let G−P denote the reflection of that
graph through the y-axis. Let X = GP ∪G−P ∪ (−P )P . We refer
to X as a concave upward y symmetric simple closed curve.

In [W2 ], we proved the following theorem.

Theorem W. Let X be a concave upward y symmetric simple
closed curve where X = GP ∪ G−P ∪ (−P )P . Then σ (X) =
σ0 (X) = σ∗ (X) = σ∗0 (X) = min {q, d (−P, GP )}.
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In the proof of this theorem we showed that the set

C = ({−P} ×GP ) ∪
(
(−P )P × {Q}

)
∪

({P} ×G−P ) ∪ (GP × {−P})∪
({Q} × (−P )P ) ∪ (G−P × {P})

satisfies these conditions:
i) p1 (C) = p2 (C) = X,
ii) C is connected,
iii) for each (x, y) ∈ C, d (x, y) ≥ min{q, d (−P, GP )}.
iv) there exists a point (x, y) ∈ C, such that d (x, y) =min

{q, d (−P, GP )}.
Also, it is clear that

v) diam(X) = max{2p,
√

p2 + q2} and (−P, P ) , (P,−P ) ,
(−P,Q) , (Q,−P ) ∈ C.

In [W2 ], we also proved the following theorems.

Theorem W′. Let Y be a continuum such that Y ⊆ B where
X is a concave upward y symmetric simple closed curve given by
X = GP ∪ G−P ∪ (−P )P and B is the closure of the bounded
component of R2−X. Then α (Y ) ≤ α (X) where α = σ, σ0, σ

∗, σ∗0.

Theorem W′′. If X is a concave upward y symmetric simple
closed curve where X = GP ∪G−P ∪ (−P )P , then σ(B) = σ0(B) =
min{q, d(−P, GP )} where B is the closure of the bounded component
of R2 −X.

3. Main results

Theorem 1 Let X be a concave upward y symmetric simple closed
curve given by X = GP ∪G−P ∪ (−P )P and let J = [0, h]. Then

σ (X × J) = min{
√

(σ (X))2 + h2,diamX}.
Proof: Note that the set C used in the proof of Theorem W and
given above, satisfies the conditions of Theorem A. So, σ (X × J) =
min{

√
(σ(X))2+h2, diamX}. Note that diamX =max{2p,

√
p2+q2}

and that by Theorem W , σ(X) = {min{q, d(−P, GP )}. ¤
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Theorem 2 Let X be a concave upward y symmetric simple closed
curve given by X = GP ∪G−P ∪ (−P )P and let J = [0, h]. Then

σ0 (X × J) = min{
√

(σ0 (X))2 + h2,diamX}.
Proof: Similar to the proof of Theorem 1. Use Theorem W and
Theorem B. ¤
Theorem 3. Let X be a concave upward y symmetric simple closed
curve given by X = GP ∪G−P ∪ (−P )P with B the closure of the
bounded component of R2 −X and let J = [0, h]. Then

σ (B × J) = min{
√

(σ (B))2 + h2, diamB}.
Proof: By Theorem W ′′, σ(B) = σ(X). Note that the set C, given
above and used in the proof of Theorem W, satisfies the conditions
of Theorem B. ¤
Theorem 4. Let X be a concave upward y symmetric simple closed
curve given by X = GP ∪G−P ∪ (−P )P with B the closure of the
bounded component of R2 −X. Then

σ0 (B × J) = min{
√

(σ0 (B))2 + h2, diamB}.
Proof: By Theorem W ′′, σ0(B) = σ(X). Note that the set C, given
above and used in the proof of Theorem W, satisfies the conditions
of Theorem B. ¤
Theorem 5. Let X be a concave upward y symmetric simple closed
curve given by X = GP ∪G−P ∪ (−P )P with B the closure of the
bounded component of R2 −X.
If p ≥ q, then

σ∗ (B × J) = σ∗0 (B × J) = min{
√

p2 + (
h

2
)2, σ (B × J)}

If p < q , then

σ∗ (B × J) = σ∗0 (B × J) = min{
√

(
p2 + q2

2q
)2 + (

h

2
)2, σ (B × J)}

Proof:
Case 1. p ≥ q,
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As noted before, X satisfies the conditions of Theorem A (see
proof of Theorem 1). By Theorem W ′ and Theorem W , i of Theo-
rem C is satisfied. Clearly conditions ii, iii,and iv,and v of Theorem
C are satisfied. Hence,

σ∗ (B × J) = σ∗0 (B × J) = min{
√(

diamX

2

)2

+ (
h

2
)2, σ (B × J)}.

Case 2. p < q ≤ √
3p,

In this case, q > p and 0 < q2−p2

2q < q. Also, d((−p, 0), (0, q2−p2

2q ))

= d((p, 0), (0, q2−p2

2q )) = d((0, q), (0, q2−p2

2q )) = q2+p2

2q .

Let T−p be the closure of the subset of B bound by (0, q2−p2

2q ) (0, q),

(0, q2−p2

2q ) (p, 0) and GP . Let Tp be the closure of the subset of B

bound by (0, q2−p2

2q ) (0, q), (0, q2−p2

2q ) (−p, 0) and G−P . Let Tq be the

closure of the subset of B bound by (−p, 0) (0, q2−p2

2q ), (0, q2−p2

2q ) (p, 0)

and (−p, 0) (p, 0).
Define subsets of (B × J)× (B × J) as follows:

C = {(−p, 0, 0)} × (T−p × [
h

2
, h]) ∪ {(−p, 0, h)} × (T−p × [0,

h

2
])∪

{(p, 0, 0)} × (Tp × [
h

2
, h]) ∪ {(p, 0, h)} × (Tp × [0,

h

2
])∪

{(0, q, 0)} × (Tq × [
h

2
, h]) ∪ {(0, q, h)} × (Tq × [0,

h

2
])

D = {(−p, 0, 0)} × (GP × {h}) ∪ (−p, 0, 0) (p, 0, 0)× {(0, q, h)}∪
{(p, 0, 0)} × (G−P × {h}) ∪ (GP × {0})× {(−p, 0, h)}∪
{(0, q, 0)} × (−p, 0, h) (p, 0, h) ∪ (G−P × {0})× {(p, 0, h)}∪

{(−p, 0, h)} × (GP × {0}) ∪ (−p, 0, h) (p, 0, h)× {(0, q, 0)}∪
{(p, 0, h)} × (G−P × {0}) ∪ (GP × {h})× {(−p, 0, 0)}∪
{(0, q, h)} × (−p, 0, 0) (p, 0, 0) ∪ (G−P × {h})× {(p, 0, 0)}

E = {((−p, 0, t)(p, 0, h− t)) | t ∈ [0, h]}
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Let C∗ = C ∪C−1 ∪D ∪D−1 ∪E ∪E−1. We can see that C∗ is
connected and q1(C∗) = q2(C∗) = B×J. For each point (x, y) ∈ C∗,

ρ(x, y) ≥ min{
√

(
q2 + p2

2q
)2 + (

h

2
)2,

√
(min{q, d(−P,GP )})2 + h2, diamB}.

Hence,

σ∗(B × J) ≥ min{
√

(
q2 + p2

2q
)2 + (

h

2
)2,

√
(min{q, d(−P, GP )})2 + h2, diamB}.

We need to show that

σ∗0(B × J) ≤ min{
√

(
q2 + p2

2q
)2 + (

h

2
)2,

√
(min{q, d(−P, GP )})2 + h2, diamB}.

For each (x, y, z) ∈ B × J, ρ((x, y, z), (0, q2−p2

2q , h
2 ) ≤√

( q2+p2

2q )2 + (h
2 )2. So σ∗0(B × J) ≤

√
( q2+p2

2q )2 + (h
2 )2.

Let D∗ ⊆ (B×J)×(B×J) be a connected set such that q1(D∗) ⊆
q2(D∗) = B × J. Consider the functions r1 ◦ q1, r1 ◦ q2 : D∗ →
X. The set D∗ is connected, r1 ◦ q1, r1 ◦ q2 are continuous, and
r1 ◦ q1(D∗) ⊆ r1 ◦ q2(D∗) = B. Hence, there exists a point d∗ ∈ D∗
such that d(r1 ◦ q1(d∗), r1 ◦ q2(d∗)) ≤ σ∗0(B) and ρ(q1(d∗), q2(d∗)) ≤√

(σ(B))2 + h2 =
√

(min{q, d(−P,GP )})2 + h2.
Now consider the functions r2 ◦ q1, r2 ◦ q2 : D∗ → J. The set D∗

is connected, r2 ◦ q1 and r2 ◦ q2 are continuous, and r2 ◦ q1(D∗) ⊆
r2 ◦ q2(D∗) = J. Since J is an arc, there exists a point d′ ∈ D∗ such
that d(r2 ◦ q1(d′), r2 ◦ q2(d′)) = 0. Hence ρ(q1(d′), q2(d′)) ≤diamX.

Consequently

σ∗0(B × J) ≤ min{
√

(
q2 + p2

2q
)2 + (

h

2
)2,

√
(min{q, d(−P, Gp)})2 + h2, diamX},
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and

σ∗(B × J) = σ∗0(B × J) = min{
√

(
q2 + p2

2q
)2 + (

h

2
)2, σ(B × J).

Case 3.
√

3p < q
In this case, let C and D be the sets as defined in case 2. Let

E = {((−p, 0, t), (0, q, h− t)) | t ∈ [0, h]}
Let C∗ = C ∪ C−1 ∪D ∪D−1 ∪ E ∪ E−1. The rest of the proof

in this case is similar to case 2. In this case our conclusion is that

σ0(B × J) = σ∗0(B × J) = min{
√

(
q2 + p2

2q
)2 + (

h

2
)2,

√
(min{q, d(−P, Gp)})2 + h2, diamB}

= {
√

(
q2 + p2

2q
)2 + (

h

2
)2, σ(B × J)}. ¤

Let L be the line which is the perpendicular bisector of (−P ) Q.
Let (b, 0) be the point where L intersects the x-axis.

Note the following:
If p ≥ q then b ≤ 0.
If p < q ≤ √

3p then 0 < b ≤ p.
If
√

3p < q then p < b.
Clearly, when

√
3p < q the line L intersects GP − {P, Q}. Also

L ∩ GP must contain exactly one point, say S. This is true since
the line segment SP must be above the corresponding arc ŜP on
X. It is clear that the only point of intersection of S (b, 0) and SP
is S.

Let U−P and UQ be the two components of R2 −L where −P ∈
U−P and Q ∈ UQ. Suppose that p < q ≤ √

3p and U−P ∩GP is not
empty. Based on the construction of X, we see that there must be
points R and T of GP such that Q̂R ⊂ UQ ∪L, R̂T ⊂ U−P ∪L and
T̂P ⊂ UQ ∪ L.

Let the points S, R and T be as given above. Let S
′
= (−x, y)

where S = (x, y) , R
′
= (−x, y) where R = (x, y) and T

′
= (−x, y)

where T = (x, y)
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Theorem 6. Let X be a concave upward y symmetric simple closed
curve.
If p ≥ q, then

σ∗(X × J)=σ∗0(X × J)=min{
√

p2 + (
h

2
)2,

√
q2 + h2, diamX}.

If p < q ≤ √
3p and U−P ∩GP = φ, then

σ∗(X × J) = σ∗0(X × J) = min{
√

(σ∗(X))2 + (
h

2
)2,

√
q2 + (

h

2
)2, diamX}.

If p < q ≤ √
3p and U−P ∩GP 6= φ, then

σ∗(X × J) = σ∗0(X × J) = min{
√

(d(−P, R̂Q))2 + (
h

2
)2,

√
(d(−P, T̂P ))2 + (

h

2
)2,

√
(σ∗(X))2 + h2,

√
(d(Q,R))2 + (

h

2
)2,

√
q2 + (

h

2
)2,diamX}.

If
√

3p < q, then

σ∗(X × J) = σ∗0(X × J) = min{
√

(d(−P, ŜQ))2 + (
h

2
)2,

√
(d(−P, ŜP ))2 + h2,

√
d(Q,S))2 + (

h

2
)2,

√
q2 + (

h

2
)2,diamX}.

Proof. We consider the four cases.
Case 1: p ≥ q
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Let

C ={(−p, 0, 0)} × ({(x, y) ∈ X | x ≥ 0} × [
h

2
, h])∪

({(x, y) ∈ X | x ≤ 0} × [0,
h

2
])× {(p, 0, h)}∪

{((−p, 0, t), (p, 0, h− t)) | t ∈ [0, h]}∪

{(−p, 0, h)} × ({(x, y) ∈ X | x ≥ 0} × [0,
h

2
])∪

({(x, y) ∈ X | x ≤ 0} × [
h

2
, h])× {(p, 0, 0)}∪

(−p, 0, 0) (p, 0, 0)× {(0, q, h)}∪

{(p, 0, 0)} × ({(x, y) ∈ X | x ≤ 0} × [
h

2
, h])∪

({(x, y) ∈ X | x ≥ 0} × [0,
h

2
])× {(−p, 0, h)}∪

{((p, 0, t), (−p, 0, h− t)) | t ∈ [0, h]}∪

{(p, 0, h)} × ({(x, y) ∈ X | x ≤ 0} × [0,
h

2
])∪

({(x, y) ∈ X | x ≥ 0} × [
h

2
, h])× {(−p, 0, 0)}.

The set C is connected, q1(C) = q2(C) = X × J, and for each

(x, y) ∈ C, ρ(x, y) ≥ min{
√

p2 + (h
2 )2,

√
q2 + h2, 2p}. Hence,

σ∗(X × J) ≥ min{
√

p2 + (h
2 )2,

√
q2 + h2, 2p}.

We need to show that σ∗0(X×J) ≤min{
√

p2+(h
2 )2,

√
q2+h2, 2p}.

Clearly,

d((x, y, z), (0, 0, h
2 )) ≤ d((−p, 0, 0), (0, 0, h

2 )) =
√

p2 + (h
2 )2 for

all (x, y, z) ∈ X × J. Hence, σ∗0(X × J) ≤
√

p2 + (h
2 )2.

Suppose D∗ ⊆ (X × J)× (X × J) such that q1(D∗) ⊆ q2(D∗) =
X×J. Consider p1◦r1◦q1, p1◦r1◦q2 : D∗ → [−p, p]. These functions
are continuous functions from a connected set into an arc. Hence,
there exists a d∗ ∈ D∗ such that p1◦r1◦q1(d∗) = p1◦ r1◦q2(d∗)) and
ρ(q1(d∗), q2(d∗)) ≤

√
q2 + h2. Consider the functions r2 ◦ q1, r2 ◦

q2 : D∗ → J These are continuous functions from the connected
set D∗ into an arc such that r2 ◦ q1(D∗) ⊆ r2 ◦ q2(D∗). Hence,
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there exists a d
′ ∈ D∗ such that d

(
r2 ◦ q1(d

′
), r2 ◦ q2(d

′
)
)

= 0.

So ρ(q1(d
′
), q2(d

′
)) = ρ((x, t), (y, t)) ≤ 2p =diamX where t = r2 ◦

q1(d
′
) = r2 ◦ q2(d

′
). Consequently,

σ∗0(X × J) ≤ min{
√

p2 + (
h

2
)2,

√
q2 + h2, 2p} and

σ∗(X × J) = σ∗0(X × J) = min{
√

p2 + (
h

2
)2,

√
q2 + h2,diamX}.

Case 2. p < q ≤ √
3p and GP ∩ U−P = ∅

Let

C ={(−p, 0, 0)} × (GP × [
h

2
, h]) ∪ (G−P × [0,

h

2
])× {(p, 0, h)}∪

{((−p, 0, t), (p, 0, h− t)) | t ∈ J}∪

{(−p, 0, h)} × (GP × [0,
h

2
]) ∪ (G−P × [

h

2
, h])× {(p, 0, 0)}∪

((−p, 0, 0) (p, 0, 0)× [0,
h

2
])× {(0, q, h)}∪

((−p, 0, 0) (p, 0, 0)× [
h

2
, h])× {(0, q, 0)}∪

{(p, 0, 0)} × (G−P × [
h

2
, h]) ∪ (GP × [0,

h

2
])× {(−p, 0, h)}∪

{((p, 0, t), (−p, 0, h− t)) | t ∈ [0, h]}∪

{(p, 0, h)} × (G−P × [0,
h

2
]) ∪ (GP × [

h

2
, h])× {(−p, 0, 0)}∪

{0, q, h)} × ((−p, 0, 0) (p, 0, 0)× [0,
h

2
])∪

{(0, q, 0)} × ((−p, 0, 0) (p, 0, 0)× [
h

2
, h]).

The set C is connected and q1(C) = q2(C) = X × J. Also, for
each (x, y) ∈ C,

ρ(x, y) ≥ min{
√

(d(−P, GP ))2 + (
h

2
)2,

√
q2 + (

h

2
)2, 2p}.

Hence,

σ∗(X × J) ≥ min{
√

(d(−P, GP ))2 + (
h

2
)2,

√
q2 + (

h

2
)2, 2p}.
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Now we need to show that

σ∗0(X × J) ≤ min{
√

(d(−P, GP ))2 + (
h

2
)2,

√
q2 + (

h

2
)2, 2p}.

For the point (0, 0, h
2 ), ρ((0, 0, h

2 ), (x, y, z)) ≤
√

q2 + (h
2 )2 for all

points (x, y, z) ∈ X × J. Hence σ∗0(X × J) ≤
√

q2 + (h
2 )2.

Since GP ∩ U−P = ∅, for each (x, y) ∈ GP ,

d((x, y), (−p, 0)) ≥ d((x, y), (0, q)).

By the construction of X we can see that for each (x′, y′) ∈ X,

d((x′, y′), (x, y)) ≤ d((x, y), (−p, 0)).

Consequently,

d((x, y,
h

2
), (x′, y′, 0)) ≤

√
(d((−p, 0), (x, y)))2 + (

h

2
)2.

Hence

σ∗0(X × J) ≤
√

(d(−P,GP ))2 + (
h

2
)2.

Let D∗ ⊆ (X × J) × (X × J) such that D∗ is connected and
q1(D∗) ⊆ q2(D∗) = X × J. Consider the functions r2 ◦ q1, r2 ◦ q2 :
D∗ → J. These functions are continuous . Since D∗ is connected
and J is an arc, there exists a d∗ ∈ D∗ such that d(r2 ◦ q1(d∗),
r1◦q2(d∗)) = 0 Hence, ρ(q1(d∗), q2(d∗) ≤diamX. Hence σ∗0(X×J) ≤
diamX. Consequently,

σ∗0(X × J) ≤ min{
√

q2 + (
h

2
)2,

√
(d(−P, GP ))2 + (

h

2
)2, 2p}.

So,

σ∗(X × J) = σ∗0(X × J) = min{
√

q2 + (
h

2
)2,

√
(σ∗(X))2 + (

h

2
)2, diamX}.

Case 3. p < q ≤ √
3p and U−P ∩GP 6= ∅
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Let

C ={(−p, 0, 0)} × [(T̂P × [
h

2
, h]) ∪ (R̂T × {h}) ∪ (R̂Q× [

h

2
, h])]∪

[(−̂PT ′×[0,
h

2
]) ∪ (T̂ ′R′×{0}) ∪ (R̂′Q×[0,

h

2
])]×{(p, 0, h)}∪

((R̂′(−P ) ∪ −PP ∪ P̂R)× [0,
h

2
])× {(0, q, h)}∪

{(0, q, 0)} × [(R̂P ∪ −PP ∪ −̂PR′)× [
h

2
, h]]

∪ {((−p, 0, t), (p, 0, h− t)) | t ∈ [0, h]}∪

{(−p, 0, h)}×[(T̂P×[0,
h

2
]) ∪ (R̂T×{0})∪(R̂Q×[0,

h

2
])]∪

[(−̂PT ′×[
h

2
, h])∪(T̂ ′R×{h})∪(R̂′Q×[

h

2
, h])]× {(p, 0, 0)}∪

((R̂′(−P ) ∪ (−P )P ∪ P̂R)× [
h

2
, h])× {(0, q, 0)}∪

{(0, q, h)} × ((R̂P ∪ (−P )P ∪ ̂(−P )R′)× [0,
h

2
]).

Let D = C∪C−1. We can see that D is connected and that q1(D) =
q2(D) = X × J. Also for each ((x, y, j), (x′, y′, j′)) ∈ D,

ρ((x, y, j),(x′, y′, j′)) ≥ min{
√

(d(−P, R̂Q))2 + (
h

2
)2,

√
(d(−P, T̂P ))2 + (

h

2
)2,

√
(d(−P, GP ))2 + h2,

√
(d(Q, (R̂P ∪OP )))2 + (

h

2
)2, 2p}.

So,

σ∗(X × J) ≥ min{
√

(d(−P, R̂Q))2 + (
h

2
)2,

√
(d(−P, T̂P ))2 + (

h

2
)2,

√
(d(−P, GP ))2 + h2,

√
(d(Q, (R̂P ∪OP )))2 + (

h

2
)2, 2p}.
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We need to show that

σ∗0(X × J) ≤ min{
√

(d(−P, R̂Q))2 + (
h

2
)2,

√
(d(−P, T̂P ))2 + (

h

2
)2,

√
(d(−P, GP ))2 + h2,

√
(d(Q, (R̂P ∪OP )))2 + (

h

2
)2, 2p}.

Consider the vertical line through R and the horizontal line
through R. Note that the subarc R̂P of GP is contained in the
lower right quadrant determined by these two lines. Consequently,
d(Q, R̂P ) = d(Q,R). Note that d(Q, (−P )P ) = d(Q,O). Hence,
d(Q, R̂P ∪ PO) = min{d(Q, R), d(Q,O)}.

Consider the following observations:
Let (x, y) ∈ Q̂R, then d(−P, (x, y)) ≥ d(Q, (x, y)) and

d(−P, (x, y)) ≥ d((x′, y′), (x, y)) for all (x′, y′) ∈ X. Hence

(*) σ∗0(X × J) ≤
√

(d(−P, R̂Q))2 + (
h

2
)2.

Let (x, y) ∈ R̂T , then d(Q, (x, y)) ≥ d(−P, (x, y)) and
d(Q, (x, y)) ≥ d((x′, y′), (x, y)) for all (x′, y′) ∈ X. Also, d(Q, R̂P ) =
d(Q, R̂T ) = d(Q,R). So

(**) σ∗0(X × J) ≤
√

(d(Q,R))2 + (
h

2
)2.

For any point (0, 0, h
2 ) and for any point (x′, y′) ∈ X,

ρ((0, 0,
h

2
), (x′, y′, t)) ≤ ρ((0, 0,

h

2
), (0, q, 0))

=

√
(d(Q, (−P )P ))2 + (

h

2
)2 =

√
q2 + (

h

2
)2.

Also d(Q, R̂P ∪ PO) = min{d(Q, R), q}. Hence

σ∗0(X × J) ≤
√

(d(Q, R̂P ∪ PO))2 + (
h

2
)2 =

√
(min{d(Q,R), q})2 + (

h

2
)2.

(***)
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For each (x, y) ∈ T̂P , d(−P, (x, y)) ≥ d(Q, (x, y)) and
d(−P, (x, y)) ≥ d((x′, y′), (x, y)) for all (x′, y′) ∈ X. Hence,

(****) σ∗0(X × J) ≤
√

(d(−P, T̂P ))2 + (
h

2
)2.

Suppose D∗ ⊆ (X×J)× (X×J) such that q1(D∗) ⊆ q2(D∗) and
for all d∗ ∈ D∗, ρ(q1(d∗), q2(d∗)) ≥ σ∗0(X × J). Now consider the
continuous functions r1◦q1, r1◦q2 : D∗ → X. Since D∗ is connected
and r1 ◦ q1(D∗) ⊆ r1 ◦ q2(D∗) = X, there is a d∗ ∈ D∗ such that
d(r1 ◦ q1(d∗), r1 ◦ q2(d∗)) ≤ σ∗0(X) = min{q, d(−P,GP )}. Hence,
(*****)

d(q1(d∗), q2(d∗)) ≤
√

(σ∗0(X))2 + h2 ≤
√

(d(−P, GP ))2 + h2.

Now consider the continuous functions r2 ◦ q1, r2 ◦ q2 : D∗ → J.
Since D∗ is connected and r2 ◦ q1(D∗) ⊆ r2 ◦ q2(D∗) = J , there is a
d∗ ∈ D∗ such that d(r2 ◦ q1(d∗), r2 ◦ q2(d∗)) = 0. Hence,

(******) d(q1(d∗), q2(d∗)) ≤ 2p = diamX.

By (∗) through (∗ ∗ ∗ ∗ ∗∗), we see that

σ∗0(X × J) ≤ min{
√

(d(−P, R̂Q))2+(
h

2
)2,

√
(d(−P, T̂P ))2+(

h

2
)2,

√
(d(−P, GP ))2+h2,

√
(d(Q, (R̂P ∪OP )))2+(

h

2
)2, 2p}.

So

σ∗(X × J) = σ∗0(X × J) = min{
√

(d(−P, R̂Q))2 + (
h

2
)2,

√
(d(−P, T̂P ))2 + (

h

2
)2,

√
(σ∗(X))2 + h2,

√
(d(Q, (R̂P ∪OP )))2 + (

h

2
)2, diamX}.

Case 4.
√

3p < q
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Let

C = {(−p, 0, 0)} × [(ŜP × {h}) ∪ (ŜQ× [h2 , h])]∪

[(−̂PS′ × {0}) ∪ (Ŝ′Q× [0, h
2 ])]× {(p, 0, h)}∪

{(0, q, 0)} × ((ŜP ∪ (−P )P )× [h
2 , h])∪

((Ŝ′(−P ) ∪ (−P )P )× [0, h
2 ])× {(0, q, h)}

∪{((−p, 0, t), (0, q, h− t))|t ∈ [0,h]}∪

{(−p, 0, h)} × [(ŜP × {0}) ∪ (ŜQ× [0, h
2 ])]∪

[(−̂PS′ × {h}) ∪ (Ŝ′Q× [h
2 , h])]× {(p, 0, 0)}

∪{(0, q, h)} × ((ŜP ∪ (−P )P )× [0, h
2 ])∪

[(Ŝ′(−P ) ∪ (−P )P )× [h
2 , h]]× {(0, q, 0)}.

Let D = C ∪C−1. Clearly, D is connected and q1(D) = q2(D) =
X × J. Also for each ((x, y, j), (x′, y′, j′)) ∈ D,

ρ((x, y, j), (x′, y′, j′)) ≤ min{
√

(d(−P, ŜQ))2 + (
h

2
)2,

√
(d(−P, ŜP ))2 + h2,

√
(d(Q, (ŜP ∪ (−P )P )))2 + (

h

2
)2,

√
q2 + p2}.

So,

σ∗(X × J) ≥ min{
√

(d(−P, ŜQ))2 + (
h

2
)2,

√
(d(−P, ŜP ))2 + h2,

√
(d(Q, (ŜP ∪ (−P )P )))2 + (

h

2
)2,

√
q2 + p2}.
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We need to show that

σ∗0(X × J) ≤ min{
√

(d(−P, ŜQ))2 + (
h

2
)2,

√
(d(−P, ŜP ))2 + h2,

√
(d(Q, (ŜP ∪ (−P )P )))2 + (

h

2
)2,

√
q2 + p2}.

For (x, y) ∈ Q̂S, d(−P, (x, y)) ≥ d(Q, (x, y)) and d(−P, (x, y)) ≥
d((x′, y′), (x, y)) for all (x′, y′) ∈ X. Hence,

(*) σ∗0(X × J) ≤
√

(d(−P, Q̂S))2 + (
h

2
)2.

For (x, y) ∈ ŜP , d(Q, (x, y)) ≥ d(−P, (x, y)) and d(Q, (x, y)) ≥
d((x′, y′), (x, y)) for all (x′, y′) ∈ X. So,

(**) σ∗0(X × J) ≤
√

(d(Q, ŜP ))2 + (
h

2
)2.

For any point (0, 0, h
2 )

ρ((0, 0,
h

2
), (0, q, 0)) =

√
q2 + (

h

2
)2,

and for all point (x′, y′, t′) ∈ X × J,

(***) ρ((x′, y′, t′), (0, 0,
h

2
)) ≤

√
q2 + (

h

2
)2.

Consider the vertical line and the horizontal line through S. The
arc ŜP is in the lower right quadrant formed by these two lines.
Hence, d(Q, ŜP ) = d(Q, S) and

(****) d(Q, ŜP ∪ (−P )P ) = min{q, d(Q,S)}.
Suppose D∗ ⊆ (X×J)× (X×J) such that q1(D∗) ⊆ q2(D∗) and

for all d∗ ∈ D∗, ρ(q1(d∗), q2(d∗)) ≥ σ∗0(X × J). Now consider the
continuous functions r1◦q1, r1◦q2 : D∗ → X. Since D∗ is connected
and r1 ◦ q1(D∗) ⊆ r1 ◦ q2(D∗) = X, there is a d∗ ∈ D∗ such that
d(r1 ◦ q1(d∗), r1 ◦ q2(d∗)) ≤ σ∗0(X) = min{q, d(−P,Gp)}. Hence,
(*****)

d(q1(d∗), q2(d∗)) ≤
√

(σ∗0(X))2 + h2 ≤
√

(d(−P, GP ))2 + h2.
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Now consider the continuous functions r2 ◦ q1, r2 ◦ q2 : D∗ → J.
Since D∗ is connected and r2 ◦ q1(D∗) ⊆ r2 ◦ q2(D∗) = J , there is a
d∗ ∈ D∗ such that d(r2 ◦ q1(d∗), r2 ◦ q2(d∗)) = 0. Hence,

(******) d(q1(d∗), q2(d∗)) ≤
√

q2 + p2 = diamX.

By (∗) through (∗ ∗ ∗ ∗ ∗∗) given immediately above, we see that

σ∗0(X × J) ≤ min{
√

(d(−P, ŜQ))2 + (
h

2
)2,

√
(d(−P, ŜP ))2 + h2,

√
(d(Q, (ŜP ∪ (−P )P )))2 + (

h

2
)2,

√
q2 + p2}.

So

σ∗(X × J) = σ∗0(X × J) = min{
√

(d(−P, ŜQ))2 + (
h

2
)2,

√
(d(−P, ŜP ))2 + h2,

√
(d(Q, (ŜP ∪ (−P )P )))2 + (

h

2
)2, diamX}. ¤

In Theorems 7 and 8, let X be a concave upward y symmetric
simple closed curve given by X = GP ∪G−P ∪ (−P )P .

Theorem 7. Let Y = (X ×J) ∪ X0 ∪ Xh, then σ (Y ) = σ0 (Y ) =
σ (X × J) =

min{
√

(σ (X))2 + h2,diam X}.
Proof: Since Y ⊃ (X × J), σ(Y ) ≥ σ(X × J). Since Y ⊂ B ×
J, σ(Y ) ≤ σ(B × J). Hence σ(Y ) = σ(B × J) = σ(X × J) =
min{

√
(σ (X))2 + h2,diam X}. Similarly, σ0(Y ) = σ0(X × J). ¤

Theorem 8. Let Y = (X × J) ∪X0 ∪Xh,
If p ≥ q, then σ∗ (Y ) = σ∗0 (Y ) = σ∗(X × J).

If p < q, then σ∗ (Y ) = σ∗0 (Y ) = min{σ∗(X×J),
√

( q2+p2

2q )2+h2}.
Proof: Case 1 p ≥ q.

Let C∗ = C ∪D ∪D−1 where C is as in Theorem 6 case 1, and

D = {(−p, 0, 0)} × {(x, y, h) ∈ Xh | x ≥ 0}∪

{(x, y, 0) ∈ X0 | x ≤ 0} × {(p, 0, h)}∪

{(−p, 0, h)} × {(x, y, 0) ∈ X0 | x ≥ 0}∪

{(x, y, h) ∈ Xh | x ≤ 0} × {(p, 0, 0)}.
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The set C∗ is connected, q1(C∗) = q2(C∗) = Y, and for all
c∗ ∈ C∗,

ρ(q1(c∗), q2(c∗)) ≥ min{
√

p2 + (
h

2
)2,

√
q2 + h2, 2p}.

So, σ∗(Y ) ≥ min{
√

p2 + (h
2 )2,

√
q2 + h2, 2p}. Clearly, σ∗0(Y ) ≤√

p2 + (h
2 )2. Since (0, 0, h

2 ) ∈ Y and for all (x′, y′, t′) ∈ Y,

ρ((0, 0,
h

2
), (x′, y′, t′)) ≤

√
p2 + (

h

2
)2.

By proofs similar to the ones in Theorem 6 case 1, showing that
σ∗0(X × J) ≤

√
q2 + h2. and that σ∗0(X × J) ≤ 2p, it can be shown

that σ∗0(Y ) ≤
√

q2 + h2 and σ∗0(Y ) ≤ 2p. Hence,

σ∗(Y ) = σ∗0(Y ) = min{
√

p2 + (
h

2
)2,

√
q2 + h2, 2p} = σ∗(X × J).

Case 2 p < q ≤ √
3p and GP ∩ U−P = ∅

Let

E = {(−p, 0, 0)} × (T−p × {h}) ∪ {(p, 0, 0)} × (Tp × {h})∪

{(0, q, 0)} × (Tq × {h}) ∪ {(−p, 0, h)} × (T−p × {0})∪

{(p, 0, h)} × (Tp × {0}) ∪ {(0, q, h)} × (Tq × {0}).
Let C be as in case 2 Theorem 6. Let F = C ∪ E ∪ E−1.

We observe that for all (x, y, z) ∈ Y, ρ((x, y, z), (0, q2−p2

2q , h)) ≤√
( q2+p2

2q )2 + h2. This observation together with an argument sim-
ilarly to the one in case 2 of Theorem 6 leads us to conclude that

σ∗0(Y ) = σ∗(Y ) = min{σ∗(X × J),
√

( q2+p2

2q )2 + h2}.
Case 3 p < q ≤ √

3p and GP ∩ U−P 6= ∅.
Let D be as in case 3 in Theorem 6. Let F = D ∪ E ∪ E−1.

As in case 2, we conclude that σ∗0(Y ) = σ∗(Y ) = min{σ∗(X ×
J),

√
( q2+p2

2q )2 + h2}
Case 4

√
3p < q.
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Let D be as in case 4 in Theorem 6. Let F = D∪E∪E−1. As in
case 2 and case 3, we conclude that σ∗0(Y ) = σ∗(Y ) = min{σ∗(X ×
J),

√
( q2+p2

2q )2 + h2}. ¤
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