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ON THE SURJECTIVE SPANS OF CONVEX SETS
IN R2

THELMA WEST

Abstract. Let B be a closed convex disc in the plane. A
lower bound for the surjective span of B is determined. For
any t such that 1

2
≤ t ≤ 1, a closed convex disc in the plane is

given such that the surjective span of B divided by the span
of B is equal to t.

1. Introduction

The concept of the span of a metric space was introduced in [L1].
Various modified versions of the span have been defined since then
(cf. [L2] and [L3]). In general it is difficult to calculate the spans
of even simple geometric objects.

Let B be a closed convex set in the plane. It has been determined
that the surjective span of B, σ∗(B), is larger than or equal to one
half of the span of B, σ(B) (see [W2]). It has been shown that
the span of B is equal to the breadth of B, b(B) (see [T1]). We
show that the surjective span of B is larger than or equal to the
minimum of one half of the diameter and the breadth of B. Also,
we give an example of closed disc Bt for each t ∈ [12 , 1] such that
the surjective span of Bt divided by the span of Bt is equal to t.

2. Preliminaries

If X is a non-empty metric space, we define the span of X, σ(X),
to be the least upper bound of the set of real numbers α for which
there exist connected subsets Cα of the product X ×X such that

(σ) p1(Cα) = p2(Cα)

and α ≤ dist(x, y) for (x, y) ∈ Cα, where p1 and p2 denote the
projections of X × X onto X, i.e., p1(x, y) = x and p2(x, y) = y
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for x, y ∈ X. We will now consider X to be connected. The surjec-
tive span σ∗(X), the semispan σ0(X), and the surjective semispan
σ∗0(X) are defined as above, except we change conditions (σ) to the
following (see [L3])

(σ∗) p1(Cα) = p2(Cα) = X,

(σ0) p1 (Cα) ⊆ p2 (Cα) ,

(σ∗0) p1 (Cα) ⊆ p2 (Cα) = X.

Later Davis in [D] defined the symmetric span of X, s(X), and
the surjective symmetric span of X, s∗(X). The definitions of s(X)
and s∗(X) are the same as σ(X) and σ∗(X), respectively, except
the requirement that Cα = C−1

α was added.
We note that for a compact space X, Cα can be considered to

be closed. The following inequalities follow immediately from the
definitions.

0 ≤ σ∗ (X) ≤ σ (X) ≤ σ0 (X) ≤ diam X,

(*) 0 ≤ σ∗ (X) ≤ σ∗0 (X) ≤ σ0 (X) ≤ diam X.

0 ≤ s (X) ≤ σ (X) ≤ diam X

0 ≤ s∗ (X) ≤ σ∗ (X) ≤ diam X.

Let X be a planar continuum. Let Lα denote the line passing
through the origin such that the angle between the positive x-axis
and Lα, measured counterclockwise, is α, where α ∈ [0, π). The
directional diameter dα (X) of X, in the direction α, is the length
of the longest line segment (or segments) with endpoints on X, that
is parallel to Lα.

The breadth of a continuum X is defined by

inf{dα (X) : α ∈ [0, π)}
and is denoted by b(X). These definitions for X, a simple closed
curve, were originally given in [T1, T2]. The notation for breadth
was changed from d(X) to b(X) in [W1].

The following two results are used in this paper.

Theorem T. Let B be a convex space in the plane. Let D be the
simple closed curve which is the boundary of B. Then

b(D) = σ(D) = σ0(D) = σ∗(D) = σ∗0(D) [T1].
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Theorem W. Let B be a convex space in the plane. Let D be the
simple closed curve which is the boundary of B. For any continuum
Y ⊆ B, τ(Y ) ≤ τ(D) where τ = σ, σ0, σ∗ or σ∗0 [W1].

Clearly, b(D) = b(B) = σ(D) = σ(B).

3. Main results

Lemma. Let B be a closed convex disc in the plane. Let a, b ∈
∂B = D such that d(a, b) = diam D. Then there is a connected set
C ⊂ D ×D such that p1(C) = p2(C) = D, d(p1(c), p2(c)) ≥ b(D)
for all c ∈ C, C = C−1 and (a, b) ∈ C.

Proof: Pick a, b ∈ D such that d(a, b) = diam D. Let h : S1 → D
be a homeomorphism such that h(eio) = a. We put an ordering on
D in the following manner: let x, y ∈ D, then x ≤ y if and only if
h(eiθ1) = x, h(eiθ2) = y, and θ1 mod 2π ≤ θ2 mod 2π. Let 0 < ε <
b(D) ≤diamD. We can pick a sequence of points x1, x2 , · · ·xm on
D where x1 = a < x2 < · · · < xl = b < · · · < xm, such that
diam(Ai i+1) ≤ ε

2 and diam(Am1) ≤ ε
2 , where Ai i+1 is the subarc

on D with endpoints xi and xi+1 with the smaller diameter. Also,
Am1 is the subarc on D with endpoints xm and x1 with the smaller

diameter. Let P =
m−1⋃
i=1

xixi+1∪xmx1, clearly P is a convex polygon

and H(D, P ) ≤ ε
2 . It is clear from the definition of breadth that

b(D) ≥ b(P ). It has been shown that b(D)−ε ≤ b(P ) (see Theorem
1 in [W3]).

For any points xi, xi+1, · · ·xi+j, where j > 1 such that Ai i+j =
xixi+j , we eliminate the points xi+1 to xi+j−1. Similarly, if Ai1 =
xix1 and i < m, we eliminate the points xi+1 to xm.

We relabel the remaining points in the following manner:

a = P1 < P2 < · · · < Pk = b < · · · < Pn.

Clearly, for each A, where A = Ai i+1 or A = An 1, either diam(A) ≤
ε
2 or A is a straight line segment. Clearly,

P =
m−1⋃

i=1

xixi+1 ∪ xmx1 =
n−1⋃

i=1

PiPi+1 ∪ PnP1.

We can rotate and translate our whole space so that b is moved
to the origin and a is moved to the point (0,diam P ). Note that the
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x-axis intersects P only at b and that the line,L,through a which
is parallel to the x-axis intersects P only at a. This is true since a
and b are of distance the diameter of P apart.

We can assume without loss of generality that the ordering of
the vertices of P is clockwise. Let a′ be the next vertex of P in
clockwise ordering after a. Let b

′
be the next vertex of P in clockwise

ordering after b. Not both a′ and b
′
can be on the y-axis, otherwise

P would not be a convex polygon. If one of these points is on the
y-axis, we can assume without loss of generality that it is b

′
. In

which case, b
′
= a = P1 and k = n. Consider the angle α formed

by the line segment aa′ = P1P2 and the line L where 0 < α < 90◦.
Also, consider the angle β formed by the line segment bb′ (where
either bb′ = PkPk+1 if k < n or bb′ = PkP1 = PnP1 if k = n) and
the x-axis where 0 < β ≤ 90◦. Again without loss of generality
we can assume that 0 < α ≤ β < 90◦, since we could accomplish
this relationship of the angles merely by changing the labels for the
points a and b.

In [W1] we described the movements of two points F and G
around a convex polygon such as P. We will define a set in D ×D
based on the movements of these two points. The two points move
around P in the following way. The point F starts at P1 = a
and G starts at Pk = b. On the first step G remains at Pk while
F moves from P1 to P2. On each succeeding step, based on the
given algorithm, one of the points remains at a vertex of P while
the other point covers the next succeeding side of P . Such steps
continue until F reaches Pk and G reaches P1. We can repeat this
pattern and let F move from Pk to P1 (as G moved previously) and
let G move from P1 to Pk (as F moved previously).

We showed that the distance between F and G is always at least
b(P ). Also, since σ (P ) = b (P ) (see Theorem T), we know that at
some time the distance between F and G is exactly b(P ).

In this section we use Pn+1 as a second labeling for the vertex P1.

We showed in [W1] that the movements of F and G determine two
increasing functions f and g. The function f is defined as follows

f : { 1, 2, · · · , k} → {k, · · · , n , n + 1 }
given by f(1) = l1 = k and f(j) = lj where Plj is a vertex of P
such that F is at the vertex Pj and G is at the vertex Plj and lj is
the largest index for which this is true. By a previous observation,
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we see that f(1) = k and f(k) = lk = n + 1. The function g is
defined as follows

g : { k , k + 1, · · · , n, n + 1} → {1, 2, · · · , k }
given by g(j) = lj where Plj is a vertex of P such that G is at
the vertex Pj and F is at the vertex Plj and lj is the largest such
index. By previous observation we see that g(k) = lk ≥ 2 and
g(n + 1) = ln+1 = k.

Let m = min{l | f(l) = n+1} and j = min{ i | g(i) = m}.Clearly,
k ≤ j < n + 1.

Case 1: m < k
We define Cε as follows:

Cε = Pk ×A1 g(k) ∪Ak f ◦ g(k) × Pg(k) ∪ Pf ◦ g(k) ×Ag(k) g ◦ f ◦ g(k)

∪ · · · ∪Aj n+1 × Pm ∪ Pn+1 ×Am k

Case 2: m = k
Let l = min{ i | f(i) = j}. We define Cε as follows:

Cε = Pk ×A1 g(k) ∪Ak f ◦ g(k) × Pg(k) ∪ Pf ◦ g(k) ×Ag(k) g ◦ f ◦ g(k)

∪ · · · ∪ Pj ×Al k ∪ Pj n+1 × Pk

Since the point F covers the sides of P from P1P2 to Pk−1Pk and
G covers the sides of P from PkPk+1 to PnP1, we see that

p1

(
Cε ∪ C−1

ε

)
= D,

p2

(
Cε ∪ C−1

ε

)
= D.

We have shown that when F is at a vertex Pi and G covers a
side PlPl+1 of P , that d(Pi, PlPl+1) ≥ b(P ) ≥ b(D) − ε, clearly,
d(Pi, Al l+1) ≥ d ( Pi , PlPl+1 ). Hence, for all points (x, y) ∈ Cε ∪
C−1

ε , d(x, y) ≥ b(D) − ε. Hence, there exists a connected set C in
D×D such that C = C−1, for each (x, y) ∈ C, d(x, y) ≥ b(D), and
p1(C) = p2(C) = D. It is clear that (a, b), (b, a) ∈ C. ¤

A simple consequence of this lemma is the following theorem
which was previously proven in [DF].

Theorem 1. Let B be a closed convex disc in the plane. Let
D be the simple closed curve which is the boundary of B. Then
s(D) = b(D).
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Proof: It has been shown that σ(D) = b(D) (see [T1]). From the
lemma we see that b(D) ≤ s(D). By (*) we see that s(D) ≤ σ(D),
so s(D) = σ(D). ¤
Theorem 2. Let B be a closed convex set in the plane. Then

s∗(B) ≥ min{diamB

2
, b(B)}.

Proof: We know that σ(B) = σ0(B) = s(D) = s∗(D) = σ(D) =
σ0(D) = b(B) = b(D) where D = ∂B. Let a, b ∈ B such that
d(a, b) =diam(B) =diam(D). Let C be the subset of B × B as
established in the lemma. Let T be the composition of a rotation
and a translation such that T (b) = (d

2 , 0) and T (a) = (−d
2 , 0). Let

BL = {x ∈ B| p1(T (x)) ≤ 0} and BR = {x ∈ B| p1(T (x)) ≥ 0}.
Let C∗ = C ∪ (BL × {b}) ∪ ({a} ×BR) ∪ ({b} ×BL) ∪ (BR × {a}).
Clearly C∗ is connected, p1(C∗) = p2(C∗) = B, C∗ = (C∗)−1 ,
and for all (x, y) ∈ C∗, d(x, y) ≥ min{diamB

2 , b(B)}. Consequently,
s∗(B) ≥ min{diamB

2 , b(B)}. ¤
Corollary 1. Let B ⊂ R2 be a closed convex set in the plane then

σ∗(B) ≥ min{diamX

2
, σ(B)}.

So, 1
2 ≤ σ∗(B)

σ(B) ≤ 1.

Proof: Clearly, σ∗(B)
σ(B) ≤ σ(B)

σ(B) = 1. If σ∗(B) = diamB
2 then σ∗(B)

σ(B) =
1
2(diamB

σ(B) ) ≥ 1
2 . ¤

Example: There exists a set Bt in the plane such that
σ∗(Bt)/σ(Bt) = t, for 1

2 ≤ t ≤ 1.

Proof: Let Et be an ellipse in the plane where the length of the
minor axis is 2a and the length of the major axis is 2b = 4ta. Let
Dt be the bounded component of R2 − Et and let Bt = Et ∪ Dt.
Then σ(Bt) = σ(Et) = 2a, σ∗(Bt) = min{diamBt

2 , 2a} = 2ta and
σ(Bt)/σ∗(Bt) = 2ta

2a = t. ¤
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