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Abstract

A topological space (X, τ ) is called upholstered
provided that for any quasi-pseudometric q on X
such that τq ⊆ τ there is a pseudometric p on X
such that τq ⊆ τp ⊆ τ. Each upholstered space is
shown to be a perfect paracompact regular space
and every perfect compact regular space is shown
to be upholstered.

Each semi-stratifiable paracompact regular space
is upholstered and each quasi-metrizable uphol-
stered space is metrizable. The property of up-
holsteredness is preserved under closed continuous
surjections.
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1. Introduction

The paper is an attempt to improve our understanding of non-
symmetric distance functions. We define and study a class of
topological spaces that are so intrinsically symmetric that their
topology is — in some sense — completely determined by sym-
metric distance functions. Nonsymmetric distance functions do
not make any essential contribution to the description of the
internal structure of their topology.

Let us formulate this idea more precisely. It is well known
that those topologies that can be generated by a family of pseu-
dometrics are the completely regular ones. (On the other hand,
it is clear that any topology can be generated by some family of
quasi-pseudometrics (see e.g. [5]).)

In this paper we define and study the class of those topolog-
ical spaces (X, τ ) which have the property that for any quasi-
pseudometric q on X such that τq ⊆ τ there is a pseudometric
p on X such that τq ⊆ τp ⊆ τ.

Let us compare this definition with a similar definition given
in [5] : A topological space (X, τ ) is called transitive provided
that for any quasi-pseudometric q on X such that τq ⊆ τ there is
a non-archimedean quasi-pseudometric n on X such that τn ⊆ τ
and Uq ⊆ Un. (Here Uq (resp. Un) denote the quasi-uniformities
determined by q (resp. n) on X.)

If we had just modelled our definition according to the def-
inition of transitivity we were led to the following concept: A
topological space (X, τ ) is, say, strongly upholstered, provided
that for each quasi-pseudometric q on X such that τq ⊆ τ there
is a pseudometric p on X such that Uq ⊆ Up and τp ⊆ τ.

However, this condition is easily seen to be equivalent to the
condition that in X each open set is closed (or, equivalently,
that for any point x in X, {x} is the smallest neighborhood of
x). Hence it is too restrictive to be of any interest. This explains
the choice above.
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Let us also note that we can obtain an interesting notion of
weak transitivity that is completely analogous to our concept.
We shall say that a topological space (X, τ ) is called weakly
transitive provided that for each quasi-pseudometric q on X such
that τq ⊆ τ there is a non-archimedean quasi-pseudometric n on
X such that τq ⊆ τn ⊆ τ.

Clearly any quasi-pseudometric space that is not non-
archimedeanly quasi-pseudometrizable (e.g. the Kofner plane,
see [5]) is not weakly transitive. On the other hand, a non-
archimedeanly quasi-pseudometrizable space that is not transi-
tive would yield an example of a weakly transitive space that
is not transitive. Unfortunately, it is unknown whether such
a space exists. (In fact, it is straightforward to verify that if
there exists a weakly transitive nontransitive space, then there
exists a non-archimedean quasi-pseudometric space that is not
transitive.)

Let us finally observe that the basic idea behind the definition
of the concept of upholsteredness can be used to define numerous
other properties that may be of interest elsewhere. In general, we
could say that a topological space (X, τ ) has property [P/Q] pro-
vided that for any topology τ1 satisfying τ1 ⊆ τ and having prop-
erty P, there is a topology τ2 satisfying τ1 ⊆ τ2 ⊆ τ and possess-
ing property Q. Obviously, in this terminology the upholstered
spaces are just the [quasi-pseudometrizable/pseudometrizable]
ones.

We refer the reader to [5] for concepts of the theory of quasi-
uniform spaces that are not explained in this paper. We just
mention here that we shall be dealing mainly with three compat-
ible quasi–uniformities of a topological space X, the fine quasi–
uniformity FINE, the fine transitive quasi–uniformity FT and
the point–finite quasi–uniformity PF . The first consists of all
normal neighbornets of X, the second is (the filter) generated by
all transitive neighbornets of X while the third one is generated
by all neighbornets of the form DU , where U is a point–finite
open family of X (here the neighbornet DU is defined by the
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condition DU(x) =
⋂

(U)x, where (U)x = {U ∈ U : x ∈ U}).
Note that the quasi–uniformity FT can also be generated by
open families, since transitive neighbornets of X are exactly the
relations of the form V = DU , where U is an interior–preserving
open family of X.

2. Main Results

A quasi-pseudometric q on a set X is a map q : X ×X → [0,→ [
such that

(i) q(x, x) = 0 whenever x ∈ X,
(ii) q(x, y) ≤ q(x, z) + q(z, y) whenever x, y, z ∈ X.
If q also satisfies
(iii) q(x, y) = q(y, x) whenever x, y ∈ X,
then we shall say, as usual, that q is a pseudometric. For any

ε > 0 and any x ∈ X set Bq
ε (x) = {y ∈ X : q(x, y) < ε}. The

collection {Bq
ε (x) : x ∈ X, ε > 0} is a base for a topology τq,

said to be induced by q on X.

Definition 1. Let (X, τ ) be a topological space. We shall say
that X (or τ ) is upholstered provided that whenever q is a quasi-
pseudometric on X such that τq ⊆ τ, then there is a pseudomet-
ric p on X such that τq ⊆ τp ⊆ τ.

Remark 1. (a) Each pseudometrizable space is upholstered and
each quasi-pseudometrizable upholstered space is pseudometriz-
able.

(b) An upholstered space that can be condensed onto a T0-
quasi-pseudometrizable space is submetrizable.

Proof. The assertions are obvious. 2

Lemma 1. Each upholstered space (X, τ ) is a perfect and para-
compact regular space.
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Proof. Let G be open in X and let q be a quasi-pseudometric on
X that induces the quasi-uniformity fil{(G×G)∪ [(X \G)×X]}
on X. Because X is upholstered, there is some pseudometric p
on X such that G ∈ τq ⊆ τp ⊆ τ. Since τp is perfect, we conclude
that τ is perfect. Furthermore it follows from the argument that
τ is the supremum of pseudometrizable topologies. Hence it is
completely regular.

Let C = {Cα : α < β} be a well-monotone open increasing
cover in (X, τ ). Let q be a quasi-pseudometric on X that induces
the quasi-uniformity fil{DC}. Then there is a pseudometric p
on X such that C ⊆ τq ⊆ τp ⊆ τ. Since τp is paracompact, we
conclude that C has a τp-locally finite τp-open refinement. Hence
C has a locally finite open refinement in (X, τ ). It follows that
X is paracompact [13, Corollary 6]. 2

Corollary 1. Each quasi-developable upholstered T0-space X is
metrizable.

Proof. Each quasi-developable perfect space is developable [6,
p. 480]. Hence X is metrizable by Bing’s Theorem [6, p. 426],
since it is paracompact. 2

The following result shows that upholstered spaces are tran-
sitive in a very strong sense.

Lemma 2. The fine quasi-uniformity FINE of each upholstered
space is equal to its point-finite quasi-uniformity PF .

Proof. Let 〈Vn〉n∈ω be a normal sequence of neighbornets of an
upholstered space (X, τ ), and let q be a quasi-pseudometric on X
that is compatible with the quasi-uniformity generated by {Vn :
n ∈ ω}. Let p be a pseudometric on X such that τq ⊆ τp ⊆ τ.
Hence 〈Vn〉n∈ω is a normal sequence of neighbornets on (X, τp).
Since the fine quasi-uniformity of a pseudometrizable space is
equal to its point-finite quasi-uniformity (by [9, Corollary 4.13]),
we conclude that the fine quasi-uniformity of (X, τ ) is equal to
its point-finite quasi-uniformity. 2
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In many situations, we do not need the full strength of the
condition FINE = PF , since the weaker condition FT = PF
often suffices. The last condition has a natural formulation
which does not involve quasi–uniformities. In [11], a closure–
preserving closed family K of a topological space X is called
special provided that X has a point–finite open family U such
that we have X \K =

⋃{U ∈ U : U ∩K = ∅} for every K ∈ K.
Since a family K of subsets of X is closure–preserving if, and
only if, the family {X \ K : K ∈ K} is interior–preserving, we
see that the equality FT = PF holds for a space X if, and
only if, every closure–preserving closed family of X is special.
In particular, we have the following consequence of Lemma 2.

Corollary 2. Every closure–preserving family of closed subsets
of an upholstered space is special.

Remark 2. Note that a result of Sconyers [19] (for a proof, see
[10]) and an argument similar to that used in the proof of Lemma
1 show that any space having FINE = PF (or just FT = PF)
is hereditarily metacompact.

Next we intend to show that the properties of upholstered
spaces mentioned in Lemmas 1 and 2 actually yield a character-
ization of upholsteredness. We shall need the following auxiliary
result.

Lemma 3. Let U be a σ–point–finite family of open subsets of a
perfect paracompact regular space X. Then U is an open family
in some coarser pseudometrizable topology.

Proof. The proof depends on A.H. Stone’s “Coincidence The-
orem” [22] according to which paracompact regular spaces are
“fully normal” in the sense of J.W. Tukey [24]. Note that the
result of the lemma follows easily once we prove the correspond-
ing result for “point–finite” instead of “σ–point–finite”. Hence
we may assume that U is point–finite.
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For every n ∈ N, let Vn = {⋂U ′ : U ′ ⊆ U and |U ′| = n};
further, let 〈Fn,k〉∞k=1 be a sequence of closed subsets of the per-
fect space X such that

⋃∞
k=1 Fn,k =

⋃Vn. Note that, for all
n, k ∈ N, the family Wn,k = Vn ∪ {X \ Fn,k} is an open cover
of X and therefore, by full normality, there exists a continuous
pseudometric dn,k on X such that, for every x ∈ X, we have
that {y ∈ X : dn,k(x, y) < 1} ⊆ St(x,Wn,k); we may assume
that dn,k is bounded by 1.

Let d = Σn,k∈N2−n−kdn,k and observe that d is a continuous
pseudometric on X. Also note that, for every x ∈ X, there exist
i, j ∈ N such that we have St(x,Wi,j) =

⋂
(U)x; then the set⋂

(U)x is a neighborhood of x in the topology τdi,j and hence
also in the topology τd. It follows that U ⊆ τd. 2

Remark 3. The above result remains true with “collectionwise
normal” replacing “paracompact”, but then the proof is a slightly
more complicated adaption of the Michael–Nagami technique
(see [16] and [17]).

Proposition 1. A topological space is upholstered if, and only
if, the space is perfect, paracompact and regular and the equality
PF = FINE holds.

Proof. We have already seen that the stated conditions are nec-
essary for a space to be upholstered. To show that they are
sufficient, assume that a space (X, τ ) satisfies them. Let d be a
quasi–pseudometric on X such that τd ⊆ τ . For every n ∈ N,
the neighbornet Vn of (X, τ ), where Vn(x) = {y ∈ X : d(x, y) <
1
n
} for each x ∈ X, is normal; it follows, since PF = FINE,

that there exists a point–finite open family Un of the space (X, τ )
such that DUn ⊆ Vn. By the previous lemma, there exists a con-
tinuous pseudometric ρ in the space (X, τ ) such that the family⋃

n∈N Un is open in τρ. It is easily seen that we have τd ⊆ τρ. 2
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Remark 4. Remarks 2 and 3 together with the result that every
metacompact and collectionwise normal regular space is para-
compact ([16] and [17]) indicate that the result of Proposition
1 remains true if “paracompact” is weakened to “collectionwise
normal”.

Now we can easily exhibit one quite large class of upholstered
spaces.

Proposition 2. Every paracompact semi–stratifiable regular
space is upholstered.

Proof. Every semi–stratifiable space is perfect and hence the
result follows from [9, Corollary 4.13] and Proposition 1. 2

Note that it has been earlier shown by S. Oka [18] and Ju.
Bregman [1] that every paracompact (Hausdorff) σ–space is
“weakly upholstered” in the sense that every closure–preserving
and closed family of such a space is closure–preserving and
closed in some coarser metrizable topology (the latter condi-
tion formulated for “pseudometrizable” instead of “metrizable”
is equivalent to “upholsteredness for non–archimedean quasi–
pseudometrics”).

We shall next derive another characterization for upholstered-
ness using the concept of mosaical families, due to K. Tamano
[23]. Recall that a family L of subsets of a topological space X
is said to be mosaical if the partition of X generated by L (in
other words, the family {⋂

(L)x\
⋃

(L \ (L)x) : x ∈ X}) has a σ–
discrete closed refinement; such a refinement is called a mosaic
for the family L. Let us say that a space X is cp–mosaical if ev-
ery closure–preserving family of closed subsets of X is mosaical.
It is obvious that a family L of subsets of X is mosaical if, and
only if, the family {X \L : L ∈ L} is mosaical; as a consequence,
X is cp–mosaical if, and only if, every interior–preserving family
of open subsets of X is mosaical.
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Cp–mosaical spaces first appeared (implicitly) in [20], where
the proof of the main result showed that every σ-space is cp–
mosaical; later, Theorem 4.8 of [9] established that every semi-
stratifiable space is cp–mosaical.

Lemma 4. Every upholstered space is cp–mosaical.

Proof. Let X be an upholstered space and let K be a closure–
preserving family of closed subsets of X. By Corollary 2, there
exists a point–finite open family U of X such that we have X \
K =

⋃{U ∈ U : U ∩ K = ∅} for every K ∈ K. For every
n ∈ ω, let Hn = {x ∈ X : |(U)x| = n} and note that Hn is the
difference of two closed subsets of X. By Lemma 1, X is perfect;
consequently, for every n ∈ ω, we can write Hn =

⋃
k∈ω Fn,k,

where the sets Fn,k are closed in X. For every n ∈ ω, the family
Hn = {Hn ∩ ⋂V : V ⊆ U and |V| = n} is discrete and closed in
the subspace Hn of X; it follows that, for each k ∈ ω, the family
Fn,k = {Fn,k ∩ H : H ∈ Hn} is discrete and closed in X. It is
easily seen that the family F =

⋃{Fn,k : n, k ∈ ω} is a mosaic
for U . Since we have that X \ K =

⋃{U ∈ U : U ∩ K = ∅}
for every K ∈ K, we see that U generates a finer partition of X
than K. It follows that F is also a mosaic for K. 2

Remark 5. Note that the above proof actually establishes a
stronger result: a space is cp–mosaical provided that the space
is perfect and every closure–preserving family of closed subsets
of the space is special.

We shall next indicate some properties of cp–mosaical spaces.
To start with, we give weak versions of Lemmas 1 and 2 for cp–
mosaical spaces.

Lemma 5. (a) Every cp–mosaical space is perfect and subpara-
compact.

(b) We have FT = PF in every metacompact cp–mosaical
space.
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Proof. The argument used in the last paragraph of the proof of
Lemma 1 and Theorem 2 of [2] prove part (a) of the lemma. A
straightforward modification of the proof of [9, Theorem 4.12]
proves part (b). 2

Recall that a space Y is right–separated (left–separated) if
there exists a well–order ≺ on Y such that the set {z ∈ Y : z ≺
y} is open (closed) for every y ∈ Y . A space is right–separated
if, and only if, it is scattered. The following result shows that,
in a cp–mosaical space, all right–separated subspaces and all
closed left–separated subspaces are σ–discrete.

Lemma 6. (a) Every right–separated subspace of a perfect sub-
paracompact space is σ–discrete.

(b) Every closed left–separated subspace of a cp–mosaical space
is σ–discrete.

Proof. Since every subspace of a perfect subparacompact space
is perfect and subparacompact, part (a) follows directly from [2,
Theorem 2].

(b) Let S be a closed left–separated subspace of a cp–mosaical
space X. Let ≺ be a well–order on S such that the set Fy =
{z ∈ S : z ≺ y} is closed in S for every y ∈ S. Note that, for
every A ⊆ S, we have either

⋃
y∈A Fy = S or

⋃
y∈A Fy = Fv for

some v ∈ S; in both cases, the set
⋃

y∈A Fy is closed in S and
hence also in X. By the foregoing, the family F = {Fy : y ∈ S}
is closure–preserving and closed in X. Since X is cp–mosaical,
the family F is mosaical. It is easily seen that the partition of
X generated by F consists of the set X \ S together with the
singletons {y}, for y ∈ S. Since the partition has a σ–discrete
refinement, the subspace S is σ–discrete. 2

Corollary 3. Every hereditarily cp–mosaical space has a
σ–discrete dense subset.

Proof. This follows from the previous lemma together with the
result of I. Juhász [8] that every space has a left–separated dense
subset. 2
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Note that it follows from the corollary that every hereditarily
cp–mosaical Lindelöf–space is hereditarily separable.

Since collectionwise normal subparacompact regular spaces
are paracompact ([15]), Lemmas 4 and 5 together with Propo-
sition 1 establish the following characterization of upholstered
spaces.

Proposition 3. A space is upholstered if, and only if, the space
is collectionwise normal, cp–mosaical and transitive.

Since every suborderable space (i.e., every GO–space) is both
collectionwise normal ([14] and [21]) and transitive ([12]), we
have the following consequence of Proposition 3.

Corollary 4. Every cp–mosaical suborderable space is uphol-
stered.

Next we shall show that, for compact regular spaces, per-
fectness alone is sufficient for upholsteredness. We shall need
the following auxiliary result, which establishes the equality
FINE = PF for every hereditarily metacompact compact reg-
ular space. In fact, each hereditarily metacompact locally com-
pact regular space satisfies the latter equality. This follows either
by modifying the proof given below or by combining Proposition
4 with known results (see e.g. [5, Theorem 6.19], [11, Theorem
1.2 and Theorem 7.4]).

Proposition 4. Let O be a neighbornet of a hereditarily meta-
compact compact regular space X. Then there exists a point–
finite open family V of X such that DV ⊆ O3.

Proof. Without loss of generality we suppose that O(x) is open
whenever x ∈ X. We shall modify the proof of Theorem 6.7 of
[11]. Here we are not able to consider a game G(J ,X) for some
ideal J of closed subsets of X. Instead, we shall use as our
collection of “small” sets the family
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{S ⊆ X : S is closed and there exists x ∈ X such that

S ⊆ O(x) ∩ O−1(x)} ,

which is not, in general, an ideal. Moreover, we are not able
to define the sets s(F ) witnessing the existence of a “winning
strategy for Player I” for all closed sets F ⊆ X, but only for the
sets belonging to the following family:

F = {F ⊆ X : F is closed and there exists x ∈ X such that

x ∈ F ⊆ O(x)} .

For every F ∈ F , we define a point pF and closed subset
s(F ) of F as follows: for pF we pick any point x satisfying
x ∈ F ⊆ O(x) and then we set s(F ) = F ∩ O−1(pF ). These
choices give us something corresponding to a “winning strategy”:

Claim 1: There is no infinite sequence 〈Fn〉 of members of F
such that we have Fn+1 ⊆ Fn \ s(Fn) for every n ∈ ω.

Proof of Claim 1. Assume that 〈Fn〉 is such a sequence. Let
K =

⋂
n∈ω Fn. The set O(K) is a neighborhood of the set K

and it follows by compactness of X, since 〈Fn〉 is a decreasing
sequence of closed sets, that there exists k ∈ ω such that Fk ⊆
O(K). We now have that pFk

∈ O(K), in other words, that
O−1(pFk

) ∩ K 6= ∅. Since K ⊆ Fk, it follows from the foregoing
that s(Fk) ∩ K 6= ∅; however, from this it further follows, since
Fk+1 ∩ s(Fk) = ∅, that K 6⊆ Fk+1, and this is a contradiction.

We set G = {V ⊆ X : V is open and V ∈ F}.
Claim 2: To every open subset U of X there corresponds a finite
family G(U) ⊆ G such that

⋃G(U) = U .

Proof of Claim 2. For every x ∈ U , let Vx be an open neighbor-
hood of x such that Vx ⊆ O(x). Let A be a finite subset of U
such that U ⊆ ⋃

x∈A Vx and let G(U) = {Vx ∩ U : x ∈ A}.
We shall now modify the proof of Theorem 6.7 of [11] to get

the following result:
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Claim 3: There exists a point–finite family U ⊆ G such that the
family H = {U ∩ s(U) : U ∈ U} covers X.

Proof of Claim 3. Let U ∈ G. By regularity and hereditary
metacompactness of X there exists a point–finite family V(U)
of open subsets of X such that we have

⋃
{V : V ∈ V(U)} =

⋃
{V : V ∈ V(U)} = U \ s(U ) .

Note that, by Claim 2, we may assume that V(U) ⊆ G: if this
were not already the case, we could replace V(U) by

⋃{G(V ) :
V ∈ V(U)}.

We define inductively point–finite families Un ⊆ G by setting
U0 = G(X) and Un+1 =

⋃{V(U) : U ∈ Un}. Similarly as in the
proof of Theorem 6.7 of [11], we shall show that Claim 3 holds
true for the family U =

⋃
n∈ω Un:

Suppose that U is not point-finite at some point x ∈ X.
By König’s Lemma there is a sequence 〈Un〉n∈ω such that x ∈
∩n∈ωUn and for each n ∈ ω, Un+1 ∈ V(Un). Thus Un+1 ⊆
Un\s(Un) for every n ∈ ω — a contradiction to Claim 1, because
Un ∈ F for every n. We conclude that U is point-finite.

Suppose that some point x ∈ X is not covered by H. Then x
is not in any set U∩s(U ) where U ∈ U . We construct inductively
a sequence 〈Vn〉n∈ω such that we have x ∈ Vn ∈ Un for every n ∈
ω and Vn ∈ V(Vn−1) whenever n > 0. Since

⋃U0 =
⋃G(X) = X,

there exists V0 ∈ U0 such that x ∈ V0. Suppose that n >
0 and that Vn−1 ∈ (Un−1)x has already been chosen. By our
assumption, we have that x /∈ s(Vn−1) and it follows that there
exists Vn ∈ V(Vn−1) such that x ∈ Vn. This concludes the
induction. As above, we deduce that Vn+1 ⊆ Vn\s(Vn) whenever
n ∈ ω —a contradiction to Claim 1.

To complete the proof of Proposition 4, let V = {U ∩O(pŪ ) :
U ∈ U}. Note that V is a point–finite family of open subsets of
X. We show that DV ⊆ O3. Let x ∈ X. There exists U ∈ U
such that x ∈ U ∩ s(U). Note that, since U ∈ F , we have
that U ⊆ O(pŪ ) and hence that x ∈ s(U) ⊆ O(pŪ ) ∩ O−1(pŪ).
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Furthermore, we deduce that x ∈ U ∩ O(pŪ ) ∈ V and hence
that DV(x) =

⋂{V ∈ V : x ∈ V } ⊆ O(pŪ ). Since we have that
x ∈ O−1(pŪ ), there exists a point y ∈ O(x) ∩ O−1(pŪ ). We now
conclude that y ∈ O(x) and pŪ ∈ O(y) and it follows that pŪ ∈
O2(x) and, further, that O(pŪ ) ⊆ O3(x). As a consequence, we
see that DV(x) ⊆ O(pŪ ) ⊆ O3(x). 2

Remark 6. According to Corollary 4.13 of [9], the correspond-
ing result holds also for all metacompact semi–stratifiable spaces.

Combining Propositions 1 and 4, we get the following result:

Proposition 5. Every perfect compact regular space is uphol-
stered.

Since a compact regular space is perfect if, and only if, the
space is hereditarily Lindelöf, the above result gives many “ex-
otic” consistent examples, such as a Souslin line, of upholstered
spaces. A well-known absolute example, the “two arrows space”
(see [4, p. 212]), can be used to show that the property of being
upholstered is neither productive nor hereditary:

Remark 7. Since the two arrows space X does not have a Gδ-
diagonal, the product X × X cannot be upholstered.

Because the two arrows space contains quasi-metrizable sub-
spaces that are not metrizable, it is not hereditarily upholstered.

We close the paper by showing that Fσ–subspaces and closed
images of upholstered spaces are upholstered.

Proposition 6. An Fσ–subspace of an upholstered space is up-
holstered.

Proof. Let X be an upholstered space, let 〈Fn〉n∈ω be a se-
quence of closed subsets of X and let A =

⋃
n∈ω Fn. We shall

use Proposition 1 to show that A is upholstered. Since X is
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perfect, paracompact and regular, so is the subspace A. As an
Fσ–subspace of the transitive space X, the space A is transitive
(see [5]), i.e., the fine transitive quasi–uniformity FT of A is
the fine quasi–uniformity. Hence to show that the conditions of
Proposition 1 are satisfied, it suffices to show that PF = FT
in the space A. Let U be a transitive neighbornet of A. For
every n ∈ ω, define a transitive neighbornet Un of X by setting
Un(x) = X \ Fn for x /∈ Fn and Un(x) = U(x) ∪ (X \ Fn) for
x ∈ Fn. Since PF = FINE in X, we can find, for each n ∈ ω,
a point–finite open family Vn in X such that DVn ⊆ Un; we
may assume that Vn is closed under finite intersections. For ev-
ery n ∈ ω and for each V ∈ Vn, denote by V̂ the open subset⋂{U(x) : x ∈ A and V ∩ Fn ⊆ U(x)} of A; further, denote by
Wn the point–finite open family {(V ∩ V̂ )\⋃

k<n Fk : V ∈ Vn} of
A. Let W =

⋃
n∈ω Wn and note that W is a point–finite family

of open subsets of A. To see that DW ⊆ U , let x ∈ A. De-
note by l the least n ∈ ω satisfying x ∈ Fn. Let V = DVl(x)
and note that V ∈ Vl. We have that x ∈ V ⊆ Ul(x) and it
follows, since x ∈ Fl, that V ⊆ U(x) ∪ (X \ Fl), in other words,
that V ∩ Fl ⊆ U(x); as a consequence, we have that V̂ ⊆ U(x).
Therefore x ∈ (V̂ ∩ V ) \ ⋃

k<l Fk ∈ Wl ⊆ W. By the foregoing,
we conclude that DW(x) ⊆ V̂ ⊆ U(x). 2

The following lemma is quite useful to show that some spaces
are upholstered. Recall that a quasi-pseudometric q is called
strong provided that τq ⊆ τq−1.

Lemma 7. Let (X, τ ) be a perfect, collectionwise normal space
and q a strong quasi-pseudometric on X such that τq ⊆ τ. Then
there is a pseudometric p on X such that τq ⊆ τp ⊆ τ.

Proof. The topology τq is developable and thus has, by sub-
paracompactness [6, p. 428], a τq-closed network N =

⋃
n∈ω Nn

such that each collection Nn is τq-discrete. Fix n ∈ ω. Since X is
collectionwise normal, for each m ∈ ω in (X, τ ) there exists a dis-
crete open collection Gnm such that Gnm = {G(m,F ) : F ∈ Nn}
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where F ⊆ G(m,F ) ⊆ Bq
m(F ). Since (X, τ ) is perfectly nor-

mal, each Gnm consists of co-zero sets. For each G ∈ Gnm

choose a continuous function fG : (X, τ ) → [0, 1] such that
X \ G = f−1

G {0} . Set ρn,m(x, y) =
∑

G∈Gn,m
|fG(x) − fG(y)|

whenever x, y ∈ X . We now define by ρ =
∑

n,m∈ω 2−n−mρn,m a
pseudometric ρ on X such that τq ⊆ τρ ⊆ τ . 2

Proposition 7. Let X be upholstered and let f : X → Y be a
closed continuous surjection. Then Y is upholstered.

Proof. Denote by τ and π the topologies of X and Y , respec-
tively.

Let q0 be a quasi-pseudometric on Y such that τq0 ⊆ π. With-
out loss of generality assume that q0 ≤ 1. By induction we shall
define a sequence 〈qn〉n∈ω of quasi-pseudometrics on Y such that
for each n ∈ ω, τqn ⊆ τqn+1 ⊆ π. Suppose that for some n ∈ ω, qk

is defined whenever k ≤ n. Let q′n be the quasi-pseudometric on
X defined by q′n(x, y) = qn(f(x), f(y)) whenever x, y ∈ X. Since
f is continuous, we see that τq′n ⊆ τ. Because X is upholstered,
there is a pseudometric p′n on X such that τq′n ⊆ τp′n ⊆ τ.

Let Nn =
⋃

m∈ω Nnm be a τp′n -closed network such that each
collection Nnm is τp′n-locally finite. Since f is closed, f(Nnm) is
closure-preserving and closed in π. For each m ∈ ω set Tnm =
(
⋃

x∈Y ({x} × Tnm(x)) where Tnm(x) = Y \ ⋃{f(F ) ∈ Nnk : k ≤
m and x /∈ f(F )} and x ∈ Y. Let qn+1 be a quasi-pseudometric
bounded by 1 and inducing the quasi-uniformity fil{Sm : m ∈
ω} on Y where Sm = {(x, y) ∈ Y × Y : qn(x, y) < 2−m and
y ∈ Tnm(x)} whenever m ∈ ω. Clearly τqn ⊆ τqn+1 ⊆ π. Let us
note that τqn ⊆ τq−1

n+1
:

Indeed, consider y ∈ Y, s ∈ ω and let y′ ∈ X be such that
f(y′) = y. Then there are m ∈ ω and F ∈ Nnm such that
y′ ∈ F ⊆ {x′ ∈ X : q′n(y

′, x′) < 2−s}. Hence y ∈ f(F ) ⊆ {z ∈
Y : qn(y, z) < 2−s}. Furthermore T−1

nm(y) ⊆ f(F ). We conclude
that τqn ⊆ τq−1

n+1
.
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Set q =
∑

n∈ω 2−nqn. Clearly τq0 ⊆ τq ⊆ π. Moreover q is
strong by construction, i.e. τq ⊆ τq−1. We conclude by Lemma 7
that there is a pseudometric p on Y such that τq0 ⊆ τp ⊆ π, since
collectionwise normality and perfectness are preserved by closed
continuous surjections [4, p. 510]. Hence Y is upholstered. 2

Problem 1. Characterize the hereditarily upholstered spaces.
Are they semi-stratifiable? Is every compact hereditarily uphol-
stered Hausdorff space metrizable (see e.g. [3])?

Problem 2. Characterize the upholstered suborderable spaces
by a condition weaker than “cp-mosaical” (compare e.g. [7]).

Problem 3. Is the product of a compact metric space and an
upholstered space upholstered?
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