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Abstract

In a semigroup, the combinatorial definitions of
syndetic, piecewise syndetic, and IP are equivalent
to their algebraic characterizations in terms of βS.
We introduce the analogous definitions and char-
acterizations of syndetic, piecewise syndetic, and
IP for an adequate partial semigroup and show
that equivalence between the combinatorial defi-
nition and algebraic characterization is lost once
we move from a semigroup to a partial semigroup.
Where they exist, we show some of the interrela-
tionships between the notions; and in the case of
IP, we give some conditions for when the algebraic
characterization and combinatorial definition are
in fact equivalent.

1. Introduction

Given a set S, and a natural binary operation, it is often con-
venient to define the operation for only a subset of S × S.
Consider for instance the semigroup (Pf(N),∪), where
Pf(N) = {F : F is a finite nonempty subset of N}. If we define
ϕ : (Pf(N),∪) → (N,+) by ϕ(F ) = |F |, then ϕ is not a homo-
morphism.
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However, if we let

A∪∗B =
{

A ∪ B if A ∩ B = ∅
undefined if A ∩ B 6= ∅

then ϕ is a homomorphism on (Pf (N),∪∗), in the sense that
ϕ(A∪∗B) = ϕ(A) + ϕ(B) whenever (A∪∗B) is defined.

Another case in which we may need to restrict the domain of
the operation occurs when the natural operation does not satisfy
the closure property. For example, given a sequence 〈xn〉∞n=1 in
the semigroup (S, ·), let

T = FP (〈xn〉∞n=1) = {∏
n∈F xn : F ∈ Pf(N)} ,

where the products are taken in increasing order of indices. Then
(x1·x3)·(x2·x4) is not likely to be in T unless x2 and x3 commute,
and (x1 ·x3) · (x3 ·x4) is not likely to be in T at all. On the other
hand, if we let (

∏
n∈F xn) ∗ (

∏
n∈G xn) be

{ ∏
n∈F∪G xn if maxF < minG

undefined if maxF ≥ minG

Then T is closed under ∗.
(Pf(N),∪∗) and (T, ∗) above, are examples of adequate partial

semigroups [1], which are defined next.

Definition 1.1. A partial semigroup is a pair (S, ∗) where ∗
maps a subset of S × S to S and for all a, b, c,∈ S, (a ∗ b) ∗ c =
a ∗ (b ∗ c) in the sense that if either side is defined, then so is the
other and they are equal.

There are several notions of size in an arbitrary semigroup,
all of which have simple characterizations in terms of βS, the
Stone-Čech compactification of S. Partial semigroups lead to a
natural and interesting subsemigroup of βS, which will be the
focus of much of this paper. Therefore, we remind the reader of
the algebraic structure of βS. For a discrete semigroup S, we
take βS to be the set of all ultrafilters on S; and we identify the
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principal ultrafilters with the points of S. Given a set A ⊆ S,
A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the
open sets , as well as a basis for the closed sets of βS. We denote
by · the natural extension of the operation on S which makes
βS a compact right topological semigroup with S contained in
its topological center. So that, for each p ∈ βS, the function
ρp : βS → βS defined by ρp(q) = q · p, is continuous; and for
each x ∈ S, the function λx : βS → βS defined by λx(q) = x · q,
is continuous. The reader is referred to [4] for an elementary
introduction to the algebra of βS.

Definition 1.2. Let (S, ∗) be a partial semigroup.

(a) For s ∈ S, ϕ(s) = {t ∈ S : s ∗ t is defined}.

(b) For H ∈ Pf(S), σ(H) =
⋂

s∈H ϕ(s).

(c) (S, ∗) is adequate iff σ(H) 6= ∅ for all H ∈ Pf(S).

(d) δS =
⋂

x∈S c`βS(ϕ(x)) =
⋂

H∈Pf(S) c`βS(σ(H)).

Notice that adequacy of S is exactly what is required to guar-
antee that δS 6= ∅. Also, if S is in fact a semigroup then
δS = βS. For an adequate partial semigroup S, δS is in a natu-
ral way a compact right topological semigroup (see [3, Theorem
2.10]). This fact provides a natural context for the notions of
size we wish to consider in an semigroup.

In an arbitrary semigroup the notions of syndetic, piecewise
syndetic, and IP, all have simple algebraic characterizations in
terms of βS. In turn these characterizations lead to simple def-
initions for partial semigroups in terms of δS. However, as the
main results of this paper show that these equivalences are lost,
for the most part, for partial semigroups.

In general, notions preceded by “č-”, will refer to the partial
semigroup analog of the combinatorial definition of that notion.
After a short section describing the algebra in δS, the paper is
organized by the notions of size we consider. In each section we
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begin by giving the definition and characterizations as they are
known for a semigroup. We then give the analogous definitions
for an adequate partial semigroup. We will write all partial
semigroups multiplicatively as (S, ∗), and we assume that S is
discrete.

2. Algebra in δS

In this section we introduce some of the basic properties of the
operation ∗ in δS. We will make repeated use of these properties
throughout this paper. This section overlaps with much of [3,
Section 2], and the results we use are stated here, without proof,
for the reader’s convenience.

Definition 2.1. Let (S, ∗) be a partial semigroup.
For s ∈ S and A ⊆ S, s−1A = {t ∈ ϕ(s) : s ∗ t ∈ A}.
Note that, as in a semigroup, and even more strongly here, the

notation s−1A does not imply that the element s has an inverse
in S. However, we do see that in some sense the behavior does
in fact resemble the case in which s has an inverse.

Lemma 2.2. Let (S, ∗) be a partial semigroup, let A ⊆ S and
let a, b, c ∈ S. Then

c ∈ b−1(a−1A) ⇔ b ∈ ϕ(a) and c ∈ (a ∗ b)−1A.

In particular, if b ∈ ϕ(a), then b−1(a−1A) = (a ∗ b)−1A.

Proof. [3, Lemma 2.3].

As a subsemigroup of βS, the members of δS are ultrafil-
ters. The following definition and results show how ∗ behaves
on members of δS and how ∗ is extended to βS.

First recall from [4, Theorem 4.12] that if (S, ·) is a semigroup,
A ⊆ S, a ∈ S, and p, q ∈ βS, then

A ∈ a · q ⇔ a−1A ∈ q
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and
A ∈ p · q ⇔ {a ∈ S : a−1A ∈ q} ∈ p.

We have the following analog in the case of an adequate par-
tial semigroup.

Definition 2.3. Let (S, ∗) be an adequate partial semigroup.

(a) For a ∈ S and q ∈ ϕ(a), a ∗ q = {A ⊆ S : a−1A ∈ q}.

(b) For p ∈ βS and q ∈ δS, p ∗ q = {A ⊆ S : {a−1A ∈ q} ∈ p}.

Lemma 2.4. Let (S, ∗) be an adequate partial semigroup.

(a) If a ∈ S and q ∈ ϕ(a), then a ∗ q ∈ βS.

(b) If p ∈ βS and q ∈ δS, then p ∗ q ∈ βS.

(c) Let p ∈ βS, q ∈ δS, and a ∈ S. Then ϕ(a) ∈ p ∗ q if and
only if ϕ(a) ∈ p.

(d) If p, q ∈ δS, then p ∗ q ∈ δS.

Proof. [3, Lemma 2.7].

Lemma 2.5. Let (S, ∗) be an adequate partial semigroup and let
q ∈ δS. Then the function ρq : βS → βS defined by ρq(p) = p∗q
is continuous.

Proof. [3, Lemma 2.8].

Lemma 2.6. Let p ∈ βS and let q, r ∈ δS. Then p ∗ (q ∗ r) =
(p ∗ q) ∗ r.

Proof. [3, Lemma 2.9].

As a consequence of the above results, we have that if (S, ∗)
is an adequate partial semigroup, then (δS, ∗) is a compact right
topological semigroup.
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3. Syndetic Sets

In this section we present some results about syndetic sets in an
arbitrary partial semigroup. The terminology is, as mentioned
in the introduction, borrowed from topological dynamics. The
notion of a syndetic set originated in the context of (N,+) where
a set A is syndetic if and only if it has bounded gaps.

Definition 3.1. Let (S, ·) be a semigroup and let A ⊆ S. The
set A is syndetic if and only if there exists H ∈ Pf (S) such that
S ⊆ ⋃

t∈H t−1A.

Theorem 3.2. Let (S, ·) be a semigroup and let A ⊆ S. The
set A is syndetic if and only if for every left ideal L of βS,
A ∩ L 6= ∅.

Proof. [2, Theorem 2.9(d)].

The combinatorial definition and the algebraic characteriza-
tion of syndetic in a semigroup can both be extended to partial
semigroups in a natural way. Since ∗ is defined for only a sub-
set of S, we are unlikely to find a finite subset H of S such
that S ⊆ ⋃

t∈H ϕ(t). Thus we cannot transfer, verbatim, the
definition for syndetic to partial semigroups. However, a minor
adjustment is sufficient.

Definition 3.3. Let (S, ∗) be an adequate partial semigroup
and let A ⊆ S.

(a) The set A is č-syndetic if and only if there exists H ∈ Pf(S)
such that σ(H) ⊆ ⋃

t∈H t−1A.

(b) The set A is syndetic if and only if for every left ideal L of
δS, A ∩ L 6= ∅.

Note that the combinatorial definition of syndetic in a par-
tial semigroup, (č-syndetic), guarantees that S itself is syndetic.
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Notice also that if S is a semigroup, Definition 3.3 agrees with
our semigroup definition and characterization of “syndetic”.

The notions “syndetic” and and “č-syndetic” are not equiva-
lent, though we shall see that every syndetic subset of an ade-
quate partial semigroup is also č-syndetic. As an example of a
set which is č-syndetic but not syndetic, we have the following.

Theorem 3.4. There exists an adequate partial semigroup (T, ∗)
and a č-syndetic subset A of T which is not syndetic.

Proof. Let 〈xn〉∞n=1 be a sequence in a semigroup (S, ·) which sat-
isfies uniqueness of finite products (meaning

∏
n∈F xn =

∏
n∈G xn

only when F = G), and (T, ∗) is the partial semigroup intro-
duced earlier, where

T = FP (〈xn〉∞n=1) = {∏
n∈F xn : F ∈ Pf(N)} ,

and products are taken in increasing order of indices, with
(
∏

n∈F xn) ∗ (
∏

n∈G xn) defined as
{ ∏

n∈F∪G xn if maxF < minG
undefined if maxF ≥ minG

Then the set A = {∏
n∈F xn : F ∈ Pf (N) and 1 ∈ F} is č-

syndetic but not syndetic.

To see that A is č-syndetic, let H = {x1}, so that
σ(H) = ϕ(x1) = {∏

n∈F xn : F ∈ Pf (N) and minF > 1}.
Then σ(H) ⊆ x1

−1A.

To see that A is not syndetic, we show in fact that for any
p ∈ δS, A ∩ (δS ∗ p) = ∅. Suppose instead that we have q ∈ δS
such that A ∈ q ∗ p. Then {x ∈ S : x−1A ∈ p} ∈ q and
ϕ(x1) ∈ q so pick y ∈ ϕ(x1) such that y−1A ∈ p. But y−1A = ∅,
a contradiction. Thus A is not syndetic.

As mentioned earlier, every syndetic set is a č-syndetic set.
The proof of this fact leads to an algebraic characterization of
č-syndetic sets in terms of βS. For emphasis, we state these as
two separate results.
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Lemma 3.5. Let (S, ∗) be an adequate partial semigroup and
let A ⊆ S. Then A is č-syndetic if and only if for all p ∈ δS,
A ∩ (βS ∗ p) 6= ∅.

Proof. Assume A is č-syndetic. Let p ∈ δS =
⋂

H∈Pf(S) σ(H).

Pick H ∈ Pf(S) such that σ(H) ⊆ ⋃
t∈H t−1A. Since σ(H) ∈ p,⋃

t∈H t−1A ∈ p. So there exists t ∈ H such that t−1A ∈ p. Then
t ∗ p ∈ A. Therefore A ∩ (βS ∗ p) 6= ∅.

Assume that for all p ∈ δS, A ∩ (βS ∗ p) 6= ∅.
Suppose that for all H ∈ Pf(S), σ(H) 6⊆ ⋃

t∈H t−1A.
Then for all H ∈ Pf(S), σ(H)\⋃

t∈H t−1A 6= ∅. Therefore
{σ(H)\⋃

t∈H t−1A:H∈Pf(S)} has the finite intersection property.
So pick p ∈ βS such that {σ(H)\⋃

t∈H t−1A :H ∈ Pf (S)} ⊆ p.
Since {σ(H) : H ∈ Pf (S)} ⊆ p we have that p ∈ δS. So pick
q ∈ βS such that A ∈ q ∗ p. Then {x ∈ S : x−1A ∈ p} ∈
q 6= ∅. So pick x such that x−1A ∈ p. Since {x} ∈ Pf (S),
σ({x})\x−1A ∈ p. But x−1A ∈ p. This is a contradiction.
Therefore A must be č-syndetic.

Theorem 3.6. Let (S, ∗) be an adequate partial semigroup and
let A ⊆ S. If A is syndetic then A is č-syndetic.

Proof. Assume that A ⊆ S is syndetic. Let p ∈ δS, then
A ∩ (δS ∗ p) 6= ∅. And δS ⊆ βS, so A ∩ (βS ∗ p) 6= ∅. So by
Lemma 3.5, A is č-syndetic.

Even though the notions of “syndetic” and “č-syndetic” are
not equivalent, we see that they play an identical role in the
characterization of members of the smallest ideal.

Theorem 3.7. Let (S, ∗) be an adequate partial semigroup and
let p ∈ δS. The following statements are equivalent:

(a) p ∈ K(δS).

(b) For all A ∈ p, {x ∈ S : x−1A ∈ p} is syndetic.

(c) For all A ∈ p, {x ∈ S : x−1A ∈ p} is č-syndetic.

(d) For all q ∈ δS, p ∈ δS ∗ q ∗ p.
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Proof. (b) ⇒ (c). Trivial.
(c) ⇒ (d). [3, Theorem 2.15].
(d) ⇒ (a). Trivial.
(a) ⇒ (b). Let A ∈ p and let B = {x ∈ S : x−1A ∈ p}. Let

L be a minimal left ideal of δS with p ∈ L. We show that for
every left ideal L′ of δS, B ∩L′ 6= ∅. Let L′ be a left ideal of δS.
Then L′ ∗p is a left ideal of δS and L′ ∗p ⊆ L because L is a left
ideal. So L′ ∗ p = L (by the minimality of L). Pick q ∈ L′ such
that p = q ∗ p. Since A ∈ p = q ∗ p, B = {x ∈ S : x−1A ∈ p} ∈ q
and so q ∈ B.

4. Piecewise Syndetic Sets

In the semigroup (N,+), a set A is piecewise syndetic if and
only if there exist a fixed bound b and arbitrary long intervals in
which the gaps of A are bounded by b. The term piecewise syn-
detic originated in this context. With respect to βS, piecewise
syndetic sets are of particular importance because they charac-
terize the smallest ideal K(βS).

We begin, again, by reminding the reader of the definition
and equivalent characterization of piecewise syndetic for a semi-
group.

Definition 4.1. Let (S, ·) be a semigroup and let A ⊆ S. The
set A is piecewise syndetic if and only if there exists H ∈ Pf(S)
such that for all T ∈ Pf (S) there exists x ∈ S such that T · x ⊆⋃

t∈H t−1A.

Theorem 4.2. Let (S, ·) be a semigroup and let A ⊆ S. The
set A is piecewise syndetic if and only if A ∩ K(βS) 6= ∅.

Proof. [4, Theorem 4.40].

As was the case for the notion of syndetic, the definition and
characterization of piecewise syndeticity in a semigroup extend
naturally to partial semigroups.
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Definition 4.3. Let (S, ∗) be an adequate partial semigroup
and let A ⊆ S.

(a) The set A is č-piecewise syndetic if and only if there exists
H ∈ Pf(S) such that for all T ∈ Pf(S) there exists x ∈
σ(T ) such that (T ∩ σ(H)) ∗ x ⊆ ⋃

t∈H t−1A.

(b) The set A is piecewise syndetic if and only if A∩K(δS) 6= ∅.

Notice that the references to σ(T ) and σ(H) in the defini-
tion of “č-piecewise syndetic” are needed to guarantee that the
operations occurring therein are defined.

As was the case with “syndetic”, there is an algebraic charac-
terization of “č-piecewise syndetic” which allows us to establish
that it is implied by “piecewise syndetic”.

Theorem 4.4. Let (S, ∗) be an adequate partial semigroup and
let A ⊆ S. A is č-piecewise syndetic if and only if there exists
p ∈ K(δS) such that A ∩ (βS ∗ p) 6= ∅.

Proof. Assume that A is č-piecewise syndetic and pick
H ∈ Pf(S) as guaranteed. For T ∈ Pf(S) let B(T ) =
{x ∈ σ(T ) : (T ∩ σ(H)) ∗ x ⊆ ⋃

t∈H t−1A}. Note that
B(T1∪ T2) ⊆ B(T1)∩B(T2) and by assumption each B(T ) 6= ∅.
So {B(T ) : T ∈ Pf (S)} has the finite intersection property. So
pick p ∈ βS such that {B(T ) : T ∈ Pf(S)} ⊆ p. Since for all
T ∈ Pf (S), B(T ) ⊆ σ(T ), we have p ∈ δS. Then δS ∗ p is a left
ideal of δS and so we can pick q ∈ K(δS) such that q ∈ δS ∗ p.
We claim that A ∩ (βS ∗ q ∗ p) 6= ∅. It suffices to show that
there exists t ∈ S such that A ∈ t ∗ q ∗ p. Suppose not. Then⋃

t∈H t−1A 6∈ q ∗ p. So {s ∈ S : s−1(
⋃

t∈H t−1A) 6∈ p} ∈ q. Also,
σ(H) ∈ q so pick s ∈ σ(H) such that s−1(

⋃
t∈H t−1A) 6∈ p. Let

T = {s}. Then B(T ) ∈ p. Pick x ∈ B(T )\(s−1(
⋃

t∈H t−1A)).
Then x ∈ B(T ) so s∗x ∈ ⋃

t∈H t−1A. This is a contradiction. So⋃
t∈H t−1A ∈ q∗p. Thus A∩(βS∗q∗p) 6= ∅. Since q∗p ∈ K(δS),

the result follows.
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Now pick p ∈ K(δS) such that A ∩ (βS ∗ p) 6= ∅. So pick
t ∈ S such that A ∈ t ∗ p. Let B = {a ∈ S : a−1(t−1A) ∈ p}.
By Theorem 3.6, B is č -syndetic, so pick H ∈ Pf(S) such that
σ(H) ⊆ ⋃

s∈H s−1B. Let G = (t ∗ H) ∪ H. Then G ∈ Pf (S).
For T ∈ Pf(S), we show that there exists x ∈ σ(T ) such that
(T ∩ σ(G)) ∗ x ⊆ ⋃

t∈G t−1A. Given y ∈ (T ∩ σ(G)), choose
sy ∈ H such that sy ∗ y ∈ B. So (sy ∗ y)−1(t−1A) ∈ p. Pick
x ∈ ⋂

y∈(T∩σ(G))(sy ∗y)−1(t−1A). Then sy ∗y ∗x ∈ t−1A and thus
t∗sy ∗y ∗x ∈ A and so y ∗x ∈ (t∗sy)

−1A. Thus (T ∩σ(G))∗x ⊆⋃
t∈G t−1A and so A is č-piecewise syndetic.

Theorem 4.5. Let (S, ∗) be an adequate partial semigroup and
let A ⊆ S be piecewise syndetic. Then A is č-piecewise syndetic.

Proof. Pick p ∈ K(δS) such that A ∈ p. Let L be a minimal left
ideal of δS containing p. Then L∗p is a left ideal and L∗p ⊆ L.
So L ∗ p = L. Since p ∈ L ∗ p we have A ∩ (βS ∗ p) 6= ∅. Thus,
by Theorem 4.4 A is č-piecewise syndetic.

The notions of “č-piecewise syndetic” and “piecewise synde-
tic” are not equivalent for an adequate partial semigroup. The
following example shows this using the adequate partial semi-
group (T, ∗) introduced earlier.

Theorem 4.6. There exists a partial semigroup (S, ∗) and a
subset A of S such that A is č-piecewise syndetic but not piece-
wise syndetic.

Proof. Let T and A be as in the proof of Theorem 3.4. Then
δS ⊆ ϕ(x1) = FP (〈xn〉∞n=2) and A ∩ FP (〈xn〉∞n=2) = ∅. In
particular A ∩ K(δS) = ∅, so A is not piecewise syndetic.

To see that A is č-piecewise syndetic, let H = {x1}. Let
G ∈ Pf (S) be given. For each w ∈ G, pick Fw ∈ Pf(N) such
that w =

∏
n∈Fw

xn. Let m = max
⋃

w∈G Fw. Then xm+1 ∈
σ(G). And, since σ(H) = ϕ(x1) = FP (〈xn〉∞n=2), we have that
(G ∩ σ(H)) ∗ xm+1 ⊆

⋃
t∈H t−1A.
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The following theorem shows some of the interrelationships
between syndetic sets and piecewise syndetic sets for an ade-
quate partial semigroup.

Theorem 4.7. Let S be an adequate partial semigroup and sup-
pose A ⊆ S. The following statements are equivalent:

(a) A is piecewise syndetic.

(b) There exists p ∈ K(δS) such that {x ∈ S : x−1A ∈ p} is
syndetic.

(c) There exists p ∈ δS such that {x ∈ S : x−1A ∈ p} is
syndetic.

(d) There exists p ∈ δS such that {x ∈ S : x−1A ∈ p} is
piecewise syndetic.

Proof. (a) ⇒ (b). Pick p ∈ K(δS) ∩ A. Then by by Theorem
3.6, {x ∈ S : x−1A ∈ p} is syndetic.

(b) ⇒ (c). Trivial.

(c) ⇒ (d). Pick p ∈ δS such that B = {x ∈ S : x−1A ∈ p}
is syndetic. Then B intersects every left ideal of δS, so in par-
ticular B ∩ K(δS) 6= ∅. Thus B is piecewise syndetic.

(d) ⇒ (a). Pick p as guaranteed. Let B={x∈S : x−1A ∈ p}.
Since B is piecewise syndetic, pick q ∈ K(δS) such that B ∈ q.
So {x ∈ S : x−1A ∈ p} ∈ q so A ∈ q ∗ p. Therefore A∩K(δS) 6=
∅.

5. IP Sets

The terminology of this section is due to Furstenberg and is com-
monly used in Topological Dynamics. IP sets are of particular
interest because of their intimate relationship with idempotents.

Definition 5.1. Let (S, ·) be a semigroup. A subset A of S is
an IP set if and only if there is a sequence 〈xn〉∞n=1 in S, such
that FP (〈xn〉∞n=1) ⊆ A.
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Theorem 5.2. Let (S, ·) be a semigroup and let A be a subset of
S. Then A is an IP set if and only if there is some idempotent
p ∈ βS such that A ∈ p.

Proof. [4, Theorem 16.4].

For an adequate partial semigroup we have the following nat-
ural extensions of the definition and algebraic characterization
of an IP set.

Definition 5.3. Let (S, ∗) be an adequate partial semigroup
and suppose A ⊆ S.

(a) A is IP if and only if there exists an idempotent p ∈ δS
such that A ∈ p.

(b) A is č-IP if and only if there exists a sequence 〈xn〉∞n=1 in
S such that for all F ∈ Pf (N),

∏
n∈F xn is defined and∏

n∈F xn ∈ A.

The following is an example of a subset of an adequate partial
semigroup which is č-IP but not IP .

Theorem 5.4. There exists a partial semigroup (S, ∗) and a
subset A of S such that A is č-IP but not IP .

Proof. Let S = {A ⊆ N : |A\2N| < ω}. So S is the collection
of subsets of N with finitely many odd numbers. Define ∪∗ on S
such that

A∪∗B =
{

A ∪ B if A ∩ B = ∅
undefined if A ∩ B 6= ∅

Then (S,∪∗) is an adequate partial semigroup. To see this, let
H = {A1, A2, . . . , An} ⊆ S. Then |⋃n

i=1 Ai\2N| < ω. So pick
x ∈ N\⋃n

i=1 Ai. Then {x} ∈ ϕ(Ai) for i ∈ {1, 2, . . . , n}. So
{x} ∈ ⋂n

i=1 ϕ(Ai) = σ(H). Therefore σ(H) 6= ∅ so (S,∪∗) is
adequate.

Let A = Pf(2N). We claim that A is č-IP but not IP .
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A is č-IP since A = FP (〈{2n}〉∞n=1). To see A is not IP ,
suppose there exists p ∈ δS such that A = Pf(2N) ∈ p. No-
tice that 2N ∈ S, and ϕ(2N) = Pf (2N − 1) ∪ {∅} ∈ p. How-
ever, Pf(2N) ∩ ϕ(2N) = ∅. This is a contradiction. Thus A
is not IP .

Though the notions of “IP” and “č-IP” are not equivalent,
we have the following implication. The proof follows exactly the
proof for an ordinary semigroup [4, Theorem 5.8].

Theorem 5.5. Let (S, ∗) be an adequate partial semigroup and
suppose A ⊆ S. If A is IP , then A is č-IP .

Proof. Pick p ∈ δS with p ∗ p = p, such that A ∈ p. Let A1 = A
and let B1 = {x ∈ S : x−1A1 ∈ p}. A1 ∈ p ∗ p (since p = p ∗ p),
so {x ∈ S : x−1A1} ∈ p. So B1 ∈ p. Pick x1 ∈ B1 ∩ A1 and let
A2 = A1 ∩ (x−1A1). So A2 ∈ p. Inductively, given An ∈ p, let
Bn = {x ∈ S : x−1An ∈ p}. Then Bn ∈ p, so pick xn ∈ Bn ∩An,
and let An+1 = An ∩ (x−1

n An). We have produced a sequence
〈xn〉∞n=1 in S.

We show that if F ∈Pf(N) and m=minF then
∏

n∈F xn∈Am.
To see this, if |F | = 1, then

∏
n∈F xn = xm ∈ Am. If |F | > 1,

let G = F\{m}, and let k = minG. Since k > m, Ak ⊆ Am+1.
Then by the induction hypothesis,

∏
n∈G xn ∈ Ak ⊆ Am+1 ⊆

x−1
m Am. So

∏
n∈F xn = xm ∗ ∏

n∈G xn ∈ Am. Therefore A is
č-IP .

The following results provide some conditions that guarantee
equivalence of the notions of č-IP and IP .

Lemma 5.6. Let 〈xn〉∞n=1 be a sequence such that
∏

n∈F xn is
defined for all F ∈ Pf (N). The following are equivalent:

(a) {FP (〈xn〉∞n=m) ∩ σ(H) : m ∈ N,H ∈ Pf (S)} has the finite
intersection property.

(b)
⋂∞

m=1 FP (〈xn〉∞n=m) ∩ δS is a semigroup.
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Proof. (a)⇒(b). Let T =
⋂∞

m=1 FP (〈xm〉∞n=m) ∩ δS

=
⋂∞

m=1 FP (〈xm〉∞n=m)∩⋂
H∈Pf (S)

σ(H).

T 6= ∅ by assumption. Let p, q ∈ T . To see that p ∗ q ∈ T , let
m ∈ N, H ∈ Pf(S), and let A = FP (〈xn〉∞n=m)∩σ(H). We show
that A ⊆ {s ∈ S : s−1A ∈ q} so that A ∈ p ∗ q. To see this, let
s ∈ A, and pick F ∈ Pf (N) such that s =

∏
n∈F xn. Let k =

maxF +1, and let L = H ∗ s. (Notice that since s ∈ σ(H), y ∗ s
is defined for all y ∈ H.) We claim that FP (〈xn〉∞n=k) ∩ σ(L) ⊆
s−1A, so that s−1A ∈ q. To see this, let t ∈ FP (〈xn〉∞n=k)∩σ(L).
One has immediately that s ∗ t ∈ FP (〈xn〉∞n=m). To see that
s ∗ t ∈ σ(H), let h ∈ H. Then h ∗ s ∈ L, so (h ∗ s) ∗ t is defined.
So h ∗ (s ∗ t) is also defined. Therefore (s ∗ t) ∈ σ(H). Thus,
t ∈ s−1A.

(b) ⇒ (a). Since T =
⋂∞

m=1 FP (〈xm〉∞n=m)∩δS is a semigroup,
T 6= ∅. Given p ∈ T , {FP (〈xn〉∞n=m) ∩ σ(H) : m ∈ N,H ∈
Pf(S)} ⊆ p.

The following theorem answers the question: “When is a č-IP
set IP ?”.

Theorem 5.7. Let (S, ∗) be an adequate partial semigroup. The
following are equivalent:

(a) For all A ⊆ S, A is č-IP if and only if A is IP .

(b) Whenever 〈xn〉∞n=1 is a sequence in S such that
∏

n∈F xnis
defined for all F ∈ Pf(N) and H ∈ Pf(S), FP (〈xn〉∞n=1) ∩
σ(H) 6= ∅.

(c) Whenever 〈xn〉∞n=1 is a sequence in S such that
∏

n∈F xn is
defined for all F ∈ Pf (N), {FP (〈xn〉∞n=m) ∩ ϕ(y) : m ∈
N and y ∈ S} has the finite intersection property.

Proof. (a) ⇒ (b). Let 〈xn〉∞n=1 be a sequence in S such that
for all F ∈ Pf (N),

∏
n∈F xn is defined and let A = FP (〈xn〉∞n=1).
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Let H ∈ Pf(S). Pick p ∈ δS such that p = p∗p and A ∈ p. Then
σ(H) ∈ p since p ∈ δS. Therefore FP (〈xn〉∞n=1) ∩ σ(H) 6= ∅.

(b) ⇒ (c). Let F ∈ Pf (N) and let H ∈ Pf(S). Let k =
maxF . Then (b) applied to the sequence 〈xn〉∞n=k says that
∅ 6= FP (〈xn〉∞n=k) ∩ σ(H) ⊆ ⋂

m∈F FP (〈xn〉∞n=m) ∩ ⋂
y∈H ϕ(y).

(c) ⇒ (a). Let A be č-IP and let 〈xn〉∞n=1 be a sequence in S
such that

∏
n∈F xn is defined for all F ∈ Pf(N) and FP (〈xn〉∞n=1)

⊆ A. Then by Lemma 5.6, T =
⋂∞

m=1 FP (〈xn〉∞n=m) ∩ δS is a
semigroup. So pick p, an idempotent in T . Then FP (〈xn〉∞n=1) ∈
p and FP (〈xn〉∞n=1) ⊆ A. So A ∈ p. Therefore A is IP . By
Theorem 5.5 we know that IP implies č-IP .
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