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FAMILIES OF RANK ONE IN SCATTERED
SPACES

Mitrofan M. Choban

Abstract

In this paper we study the properties of spaces
with open-and-closed families of countable rank
with T0-separates points. In particular, we prove
that every separable scattered compact space with
such family is metrizable.

1. Introduction

All considered spaces are assumed to be regular. We shall use
the terminology from [8], |Y | denotes the cardinality of a set
Y , clXA or clA denotes the closure of a set A in a space X,
N = {1, 2, ...} and we consider the discrete topology on N ,
ψ(x,X) denotes the pseudocharacter of a point x in a space X,
ψ(X) = sup{ψ(x,X) : x ∈ X} denotes the pseudocharacter of a
space X, c(X) = sup{|γ| : γ is a family of pairwise disjoint
non-empty open subsets of X} - the Souslin number of X,
d(X) = min{|Y | : Y is dense in X} - the density of X, l(X) =
min{τ : every open cover of X contains a subcover of cardinality
≤ τ} - the Lindelöf number of X, hl(X) = sup{l(Y ) : Y ⊆ X}
- the hereditary Lindelöf number of X.

A space is called scattered if it contains no non-empty dense
in itself subspace (see [9, 14]).

Let X be a scattered space. Denote X(0) = X, Xα =
{x ∈ X(α) : x is an isolated point in X(α)}, X(α+1) = X(α) \Xα

for every α ≥ 0 and X(α) =
⋂{X(β) : β < α} for each limit
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ordinal α. If x ∈ Xα, then we put is(x,X) = α. The ordinal
number is(X) = min{α : Xα = ∅} is called the index of scat-
teredness of X. For every α < is(X) the set

⋃{Xβ : β < α} is
open in X and Xα is a non-empty discrete subspace of X.

A space X is called τ -metalindelöf if every open cover γ of
X has an open refinement ω for which ord(x, ω) = |{U ∈ ω :
x ∈ U}| ≤ τ for each x ∈ X. An ℵ0-metalindelöf space is called
metalindelöf. Denote ml(X) = min{τ : X is τ -metalindelöf} -
the metalindelöf degree of X.

Let B be a family of subsets of a space X. The family B T0-
separates points of X if for every pair of distinct points x, y ∈ X
there exists an element U ∈ B such that U

⋂{x, y} is a singleton
set. A subfamily B′ ⊆ B has the rank one if for every two sets
U, V ∈ B′ we have U

⋂
V = ∅, or U ⊆ V , or V ⊆ U . We say

that the rank r(B) ≤ τ , where τ is a finite or infinite cardinal,
if B =

⋃{Bµ : µ ∈ M}, where |M | ≤ τ and Bµ is a family of
rank one for each µ ∈M .

The weak rank of a space X is the cardinal wr(X) =
min{r(B) : B is a family of open-and-closed subsets which T0-
separates points of X}.

The rank of a space X is the cardinal r(X) = min{r(B) : B
is an open base of X}.

A family γ of subsets of a space X is independent if
⋂
γ 6= ∅

and V \W 6= ∅, W \V 6= ∅ for every distinct elements V,W ∈ γ.
Let B be a family of subsets of X. The cardinal sr(B) =

sup{|γ| : γ ⊆ B and γ is independent} is called the small rank
of B. If every independent subfamily γ ⊆ B is finite, then the
small rank sr(B) of B is subinfinite.

The weak small rank of a space X is the cardinal wsr(X) =
min{sr(B) : B is a family of open-and-closed subsets which T0-
separates points of X} and the small rank of X is the cardinal
sr(X) = min{sr(B) : B is an open base of X}.

The spaces with bases of finite rank were studied in [2, 5, 6,
7, 8, 11]. G. Gruenhage and P. Nyikos [11] showed that if a
compactum has a countable base of finite small rank, then it is
metrizable.
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S. Troyanski raised the following question.
Question 1.1. Let X be a scattered compact space. Is it true
that wr(X) = 1 ?

The following questions were formulated during the discussion
of the Question 1.1 with the Professors P. Kenderov, S. Nedev
and S. Troyanski in the autumn of 1989.
Question 1.2. Is it true that the weak rank of every scattered
compact space is finite or countable ?
Question 1.3. Is it true that every scattered compact space is a
continuous image of a compact scattered space of weak rank one
or of countable weak rank ?

In the present article we give the negative answers to all above
questions.

2. Preliminary Results

Some statements of this section are obvious or wellknows and
we omit its proofs.

A transfinite sequence of sets is a family of sets {Hµ : µ ∈M},
where M is a well-ordered set.

A transfinite sequence {Hµ : µ ∈M} is called:
– increasing if Hα ⊆ Hβ and Hβ \ Hα 6= ∅ for α < β and

α, β ∈M ;
– decreasing if Hβ ⊆ Hα and Hα \ Hβ 6= ∅ for α < β and

α, β ∈M ;
– monotone if it is increasing or decreasing.
If < is a linear order on a set Z and x ∈ Z, then we put

Z(x) = {y ∈ Z : y < x} and Z+(x) = {y ∈ Z : y ≤ x}.

Proposition 2.1. Let γ = {Hµ : µ ∈ M} be a monotone
transfinite sequence of open-and-closed sets of a space X. Then
|M | ≤ c(X).

A union of τ closed subsets of X is called an Fτ -set. A union
of a countable family of closed subsets is called an Fσ-set.

For a cardinal τ by τ+ denote the smallest cardinal greater
than τ .
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Proposition 2.2. Let γ = {Hµ : µ ∈ M} be a transfinite
increasing family of open sets of X and |Hµ| < τ for each µ ∈
M . Then |⋃{Hµ : µ ∈M}| ≤ τ and |M | ≤ τ .

Let X be a space and x ∈ X. The set Q(x,X) =
⋂{U : x ∈ U

and U is open-and-closed in X} is called the quasi-component
of a point x in X.

If X is an infinite connected space, then the weak rank wr(X)
is not determined. In this case we consider that wr(X) = ∞
and τ <∞ for every cardinal τ .

Proposition 2.3. The weak rank wr(X) of a space X is deter-
mined if and only if Q(x,X) = {x} for each point x ∈ X.

The class of spaces with open T0-separating families of rank
one is quite broad.

A linear order < on a space X is called a (strongly) α-left or-
der if for each point x ∈ X the set X+(x) is closed (respectively
is open-and-closed) in X. A space with a (strongly) α-left order
is called a (strongly) α-left space (see [4]).

Proposition 2.4. Let X be a space. Then:
1. If X is an α-left space, then X has an open T0-separating

family of rank one.
2. If X is a strongly α-left space, then wr(X) = 1.

Proposition 2.5. (see [4]) A space X is scattered if and only
if on X there exists a well-order such that the set X(x) is open
for every x ∈ X. In particular, every scattered space is an α-left
space.

Probably the appearance of the Question 1.1 is motived by
the next fact which follows from Propositions 2.4 and 2.5.

Corollary 2.6. Every scattered space has an open T0-separating
family of rank one.

Proposition 2.7. Let X be a collectionwise normal scattered
space, τ be an infinite cardinal and τ ≥ d(X). Then:

1. If is(X) ≤ 2, then wr(X) = 1.
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2. If is(X) ≤ 3 and |X| ≤ τ+, then X has a T0-separating
family of rank one of open Fτ-sets.

Proof. Let X2 6= ∅ and X3 = ∅. The set X2 is discrete and closed
in X and the set X0 is dense and open in X. The subspace
X0 is discrete and |X0| = d(X) = τ . There exists a discrete
family {Ux : x ∈ X2} of open-and-closed subsets of X such that
X =

⋃{Ux : x ∈ X2} and Ux
⋂
X2 = {x} for each x ∈ X2.

Put Vx = Ux
⋂
X0 and Yx = Ux

⋂
X1. On Yx there exists some

well-order < such that |{y ∈ Yx : y < z}| ≤ τ for every z ∈ Yx.
Now we put Bx = {Ux}

⋃{{z} : z ∈ Vx}
⋃{Vx

⋃{y ∈ Yx : y < z} :
z ∈ Yx} and B =

⋃{Bx : x ∈ X2}. The family B is open,
T0-separates points of the space X and |V | ≤ τ for each V ∈ B.

Let X2 = ∅ and X1 6= ∅. There exists an open-and-closed
family {Hx : x ∈ X} of X such that Hx

⋂
X = {x} for every

X ∈ X1. Then B = {{x} : x ∈ X0}
⋃{Hx : x ∈ X1} is an open-

and-closed family of rank one which T0-separates the points of
X. In this case wr(X) = 1.

Let X1 = ∅. In this case X is a discrete space. The proof is
complete. 2

Proposition 2.8. l(X) ≤ d(X) +ml(X).

Proposition 2.9. c(X) = d(X) for every scattered space X.

Theorem 2.10. Let X be a scattered space. Then |X| =
hl(X) = ψ(X) + l(X).

Proof. For every space Z we have ψ(Z) ≤ hl(Z) ≤ |Z| and
l(Z) ≤ hl(Z). Fix a scattered space X. It is sufficient to prove
that |X| ≤ ψ(X) + l(X).

We put τ = ψ(X) + l(X). For every α < is(X) and each
point x ∈ Xα we fix an open subset Ux of X such that x ∈ Ux ⊆
clXUx ⊆ ⋃{Xβ : β ≤ α} and clXUx

⋂
Xα = {x}. We prove that

|Ux| ≤ τ for each x ∈ X. If α = 0 and x ∈ Xα, then Ux = {x}
and |Ux| ≤ τ . Suppose that α > 0, x ∈ Xα and |Uy| ≤ τ for
every y ∈ ⋃{Xβ : β < α}. The subspace Yx = clXUx \ {x} is
an Fτ -subset of X. Hence l(Yx) ≤ τ and there exists a subset
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Zx of Yx such that |Zx| ≤ τ and Yx ⊆ ⋃{Uy : y ∈ Zx}. Therefore
|Ux| ≤ |⋃{Uy : y ∈ Zx}| ≤ τ .

The open cover {Ux : x ∈ X} of X contains a subcover
{Ux : x ∈ Y }, where Y ⊆ X and |Y | = l(X) ≤ τ . By
construction |X| ≤ |⋃{Ux : y ∈ Y }| ≤ τ . The proof is
complete. 2

3. The Rank and the Pseudocharacter of Spaces

Theorem 3.1. ψ(X) ≤ c(X) + wr(X) for every space X.

Proof. The assertion is trivial if wr(X) = ∞. Assume now
that c(X) + wr(X) = τ < ∞. If a cardinal τ is finite, then
X is discrete and ψ(X) = 1 ≤ |X| = c(X). Suppose that the
cardinal τ is infinite.

There exists the family B = {Bµ : µ ∈ M} of rank one of
open-and-closed subsets of X for which |M | ≤ τ and B T0-
separates the points of X.

Fix a point b ∈ X. Suppose that ψ(b,X) > τ . We put
P =

⋂{U ∈ B : b ∈ U}. Two cases are possible.

Case 1. ψ(b, P ) ≤ τ .
Since ψ(b,X) > τ and ψ(b, P ) ≤ τ , for every ordinal α < τ+

there exist a point yα ∈ X \ P and a set Uα ∈ B such that
y0 6∈ U0, yα ∈ ⋂{Uβ : β < α}\Uα for each α < τ+ and b ∈ ⋂{Uα :
α < τ+}. Denote Hµ = {α < τ+ : Uα ∈ Bµ}. By construction,
{Uα : α ∈ Hµ} is a decreasing transfinite sequence of open-and-
closed sets. By virtue of Proposition 2.1, |Hµ| ≤ c(X) ≤ τ for
every µ ∈ M . Since |M | ≤ τ and

⋃{Hµ : µ ∈ M} = {α < τ+},
we have |Hµ| = τ+ for some µ ∈ M . This is a contradiction.
Hence the case 1 is impossible.

Case 2. ψ(b, P ) > τ .
For every ordinal α < τ+ there exist a point yα ∈ P and a set
Uα ∈ B such that b 6∈ Uα, y0 ∈ U0 and yα ∈ Uα \ ⋃{Uβ : β < α}
for α ≥ 1.
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Let y0 ∈ P \ {b}. Then for some U0 ∈ B we have U0
⋂{y0, b} =

{y0}. Suppose that τ+ > α > 0 and the elements {yβ, Uβ :
β < α} are constructed. Since ψ(b, P ) > τ , there exists a point
yα ∈ P \ ⋃{Uβ : β < α} such that yα 6= b. For some Uα ∈ B we
have Uα

⋂{yα, b} = {yα}.
Fix µ ∈ M . We put Hµ = {α < τ+ : Uα ∈ Bµ}. If α, β ∈ Hµ

and α < µ, then Uα ⊆ Uβ or Uα
⋂
Uβ = ∅, i. e. Uβ \ Uα is

an open non-empty subset. For α ∈ Hµ by g(α) denote the
smallest element of Hµ greater than α. Assume that |Hµ| = τ+.
Then {Vα = Ug(α) \Uα : α ∈ Hµ} is a family of pairwise disjoint
non-empty open subsets. Therefore |Hµ| ≤ c(X) ≤ τ . This is a
contradiction. Hence the case 2 is impossible, too. The proof is
complete. 2

From Theorem 3.1, Proposition 2.9 and Theorem 2.10 it fol-
lows

Corollary 3.2. |X| ≤ d(X)+ l(X)+wr(X) = d(X)+wr(X)+
ml(X) for every scattered space X.

Corollary 3.3. Let X be an metalindelöf scattered space of
countable weak rank. Then |X| = d(X) = c(X).

Corollary 3.4. Let X be a Lindelöf scattered space of countable
weak rank. Then:

1. If X is separable, then X is countable.
2. If X is separable and locally compact, then X is metrizable.

Corrolary 3.5. Every compact separable scattered space of
countable weak rank is metrizable.

Theorem 3.6. If X is a hereditarilly paracompact scattered
space, then wr(X) = 1.

Proof. By Telgarski’s theorem [9, 14], dimY = 0 for every
subspace Y of X. For every α < is(X) and every point x ∈
Xα we fix an open-and-closed subset Ux of X such that x ∈
Ux ⊆ ⋃{Xβ : β ≤ α} and Ux

⋂
Xα = {x}. We affirm that

wr(Ux) = 1 for every x ∈ X. This assertion is trivial if α = 0
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and x ∈ X0. Assume that α ≥ 1 and wr(Uy) = 1 for each
y ∈ {Xβ : β < α}. Fix b ∈ Xα. Since Vb = Ub \ {b} is a
zero-dimensional paracompact space, then there exists a disjoint
family {Wµ : µ ∈M} of open-and-closed subsets of X such that
Vb =

⋃{Wµ : µ ∈ M} and for every µ ∈ M there is a point
x(µ) ∈ Vb such that Wµ ⊆ Ux(µ). Hence wr(Wµ) = 1 for every
µ ∈M . For every µ ∈M we fix a family Bµ of open-and-closed
subsets of Wµ which T0-separates points of Wµ and wr(Bµ) = 1.
Denote B =

⋃{{Wµ}
⋃
Bµ : µ ∈ M}. Then r(B) = 1 and B

T0-separates points of Ub. Hence wr(Ub) = 1. The following
assertion completes the proof. 2

Theorem 3.7. Let X be a paracompact space, dimX = 0 and
for every point x ∈ X there is an open set Ux of X such that
x ∈ Ux and wr(Ux) = 1. Then wr(X) = 1.

Proof. There exist a subset Y of X and a discrete cover {Vy :
y ∈ Y } of X such that Vy ⊆ Ux for each y ∈ Y . Since wr(Vy) =
wr(Ux) = 1, there exists an open-and-closed system By of X
such that

⋃{W : W ∈ By} ⊆ Vy and By T0-separates points of
Vy. Denote B = {By

⋃{Vy} : y ∈ Y }. Then r(B) = 1 and B
T0-separates points of X. The proof is complete. 2

4. The Generalized Rank

Let m be a finite or infinite cardinal and X be a space. The
cardinal rm(X) = min{r(B) : B is a family of open Fm-sets
which T0-separates points of X} is called the m-rank of X. If
m is finite, then rm(X) = r1(X) = wr(X).

Theorem 4.1. Let X be a scattered locally compact space and
is(X) ≤ 3. Then ψ(X) ≤ d(X)+rm(X)+m+ for every cardinal
m.

Proof. For finite m the assertion follows from Theorem 3.1.
Assume that m is infinite. Then rm(X) < ∞. We put τ =
d(X) + rm(X) +m+.
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Since X is scattered, then dimF = 0 for every compact sub-
space F of X (see [7, 11]). Hence for every i ≤ 2 and every point
x ∈ Xi there exists an open compact subset Ux of X such that
x ∈ Ux ⊆ ⋃{Xj : j ≤ i} and Ux

⋂
Xi = {x}. If x ∈ X0

⋃
X1,

then |Ux| ≤ d(X) ≤ τ and ψ(x,X) ≤ τ .
Fix b ∈ X2. Suppose that ψ(b,X) > τ . Denote Vb = Ub \X0.

Since |X0| ≤ τ , ψ(b, Vb) = ψ(b,X) > τ . By construction, Vx is
the one-point Alexandroff compactification of the discrete space
Vb \ {b} (see [1, 8]).

Let {Bµ : µ ∈ M} be families of rank one of open Fm-
sets, |M | ≤ rm(X) ≤ τ and the family B =

⋃{Bµ : µ ∈ M}
T0-separates points of X.

Denote P =
⋂{Vb

⋂
U : b ∈ U,U ∈ B}. We have two possible

cases.
Case 1. ψ(b, P ) ≤ τ .
In this case for every ordinal α < τ+ there exist a point yα ∈
Vb \ P and a set Uα ∈ B such that b ∈ Uα, y0 6∈ U0 and yα ∈⋂{Uβ : β < α} \ Uα if α ≤ 1.

We put Hµ = {α < τ+ : Uα ∈ Bµ}. By construction, {Wα =
Vb

⋂
Uα : α ∈ Hµ} is a decreasing transfinite sequence of open

Fm-sets of Vb. If α ∈ Hµ and the set {β ∈ Hµ : β < α} is
infinite, then the set Wα \ {yβ ∈ Vb : β < α} is not open in Vb.
Hence the set {β ∈ Hµ : β < α} is finite for each α ∈ Hµ and
the set Hµ is countable. This is a contradiction by virtue of the
conditions |M | ≤ τ and |⋃{Hµ : µ ∈M}| = τ+.
Case 2. ψ(b, P ) > τ .
For every ordinal α < τ+ there exist a point yα ∈ P and a set
Uα ∈ B such that b 6∈ Uα, y0 ∈ U0 and yα ∈ Uα \ ⋃{Uβ : β < α}
for α ≥ 1.

We put Hµ = {α < τ+ : Uα ∈ Bµ}. For some µ ∈M we have
|Hµ| = τ+.

Since X0 is dense in X and |X0| ≤ τ , then there is a point
x ∈ X such that |{α ∈ Hµ : x ∈ Uµ}| = τ+. Denote
Wµ = {α ∈ Hµ : x ∈ Uµ}. By construction, {Uµ : µ ∈ Wµ}
is an increasing transfinite sequence of Fm-sets. Since
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|Uα
⋂
Vb| ≤ m for every α < τ+, then by Proposition 2.2 we

have |⋃{Uα
⋂
Vb : α ∈ Wµ}| ≤ m+ ≤ τ . By construction,

τ+ = |{yα : α ∈ Wµ}| ≤ |⋃{Uα
⋂
Vb : α ∈ Wµ}|, a con-

tradiction. Hence the case 2 is impossible, too. The proof is
complete. 2

By Theorem 4.1, Proposition 2.9 and Theorem 2.10 it follows

Corollary 4.2. Let X be a locally compact scattered space and
is(X) ≤ 3. Then:

1. |X| ≤ d(X) + l(X) + rm(X) +m+ for every cardinal m.
2. If d(X) + l(X) ≤ ℵ1 and rℵ0(X) = ℵ0, then |X| ≤ ℵ1.

5. Mappings and Cardinality of Scattered Spaces

Theorem 5.1. Let f : X −→ Y be a closed continuous mapping
of a scattered space X onto a space Y . Then:

1. There exists a closed subspace Z of X such that f(Z) = Y
and d(Z) = d(Y ).

2. |Y | ≤ d(Y ) + wr(X) +ml(X).

Proof. Let S be a dense subset of the space Y and |S| = d(Y ).
For every point y ∈ S we fix some point x(y) ∈ f−1(y). Put
P = {x(y) : y ∈ S} and Z = clXP . Then f(P ) = S and
d(Z) = d(Y ) = |S|. Since f is a closed mapping, f(Z) = Y .
The assertion 1 is proved. ¿From Corollary 3.2 it follows that
|Z| ≤ d(Z) +wr(Z) +ml(Z) ≤ d(Y ) + wr(X) +ml(X). Hence
|Y | ≤ |Z| ≤ d(Y ) + wr(X) +ml(X). The proof is complete. 2

Corollary 5.2. Let f : X −→ Y be a continuous closed map-
ping of a paracompact scattered space X of countable rank onto
a locally compact separable space Y . Then Y is a countable
metrizable space.

A space X is called a space of pointwise countable type if
every point x ∈ X is contained in some compact subset of the
countable character. Spaces of pointwise countable type were
introduced by A. V. Arhangel‘skii (see [3, 10]).
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Corollary 5.3. Let f : X −→ Y be a closed continuous map-
ping of a metalindelöf scattered space of countable rank onto
a separable space Y of pointwise countable type. Then Y is a
countable metrizable space.

Corollary 5.4. Let f : X −→ Y be a closed continuous map-
ping of a metalindelöf scattered space X onto a space Y . If
d(Y ) < ψ(Y ), then wr(X) ≥ ψ(Y ).

Theorem 5.5. Let Y be a scattered space. Then there exist
a perfectly normal paracompact scattered space X of weak rank
one and an open continuous mapping f : X −→ Y onto Y .

Proof. For every α < is(Y ) and every point y ∈ Yα we fix an
open set Uy of Y such that y ∈ Uy = (

⋃{Yβ : β < α}) ⋃{y}. We
affirm that for every y ∈ Y there exist a perfectly normal para-
compact scattered space Xy and an open continuous mapping
fy of Xy onto Uy.

Let y ∈ Y0. Then Uy = {y}. In this case we put Xy = {y}
and fy is the identity mapping.

Suppose that α ≥ 1 and Xy , fy are constructed for every
y ∈ ⋃{Yβ : β < α}. Fix b ∈ Yα. Denote by Z the discrete sum
+{Xy : y ∈ Ub \ {b}} of the spaces {Xy : y ∈ Ub \ {b}}.

Put Xb = {b}⋃
(Z × N), fb(b) = b and fb(z, i) = fy(z) for

every y ∈ Ub\{b}, every i ∈ N and every x ∈ Xy. On a setXb we
consider the topology relatively to which the topological product
Z×N is an open subspace and the neighbourhoods of the point b
in Xb are the form f−1

b (V )
⋂

(Z×{i ∈ N : i ≥ n}), where n ∈ N
and V is an open neighbourhood of the point b in Y . The space
Xb is paracompact, perfectly normal, scattered and the mapping
fb is open and continuous. Now we put X = +{Xy : y ∈ Y }
and f(x) = fy(x) for every y ∈ Y and every x ∈ Xy. The proof
is complete. 2

A family B of subsets of a space X is called a pseudobase
for a space X if B is a family of open subsets of X and {x} =⋂{U ∈ B : x ∈ U} for each x ∈ X.
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Lemma 5.6. Let B be a pseudobase of a space X, ∅ ∈ B and
r(B) = 1. Then:

1. Every set U ∈ B is open-and-closed in X.

2. If U, V ∈ B, then U
⋂
V ∈ B.

3. wr(X) = 1.

Proof. Fix U ∈ B. Suppose that U is non-empty and
b ∈ U . For every x ∈ X \ U there exists a set Vx ∈ B such
that x ∈ Vx and b 6∈ Vx. Since r(B) = 1, U

⋂
Vx = ∅. Hence

X \ U =
⋃{Ux : x ∈ X \ U} is open-and-closed in X. The

assertions 2 and 3 are obvious. The proof is complete. 2

Proposition 5.7. If X is a space with a pseudobase of rank
one, then there exists a continuous bijection f : X −→ Y onto
a hereditarilly paracompact space Y with a base of rank one.

Proof. Let B be a pseudobase of X of rank one. Denote by Y
the set X with the topology generated by the base B. Every
space with a base of rank one is hereditarilly paracompact (see
[5], Corollary 1). The proof is complete. 2

Proposition 5.8. Let X be a paracompact space with a Gδ-
diagonal. If dimX = 0, then X has a pseudobase of rank one.
Proof. It is obvious. 2

Corollary 5.9. For every T0-space X there exist a paracompact
perfectly normal σ-discrete space Z with a pseudobase of rank
one and a continuous open mapping f : Z −→ X onto X.

Proof. From J. R. Isbell‘s theorem [12, 13] there exist a σ-
discrete perfectly normal paracompact space Z and a continuous
open mapping f of Z onto X. Proposition 5.8 completes the
proof. 2

6. Rank of Spaces and Cartesian Product

Proposition 6.1. wr(X × Y ) ≤ wr(X) + wr(Y ).

Proof. Let B1 be a family of open-and-closed subsets of X which
T0-separates points of X and B2 be a family of open-and-closed
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subsets of Y which T0-separates points of Y . We put B = {U ×
Y,X × V : U ∈ B1, V ∈ B2}. Then r(B) = r(B1) + r(B2) and
B T0-separates points of X × Y . The proof is complete. 2

Corollary 6.2. Let {Xµ : µ ∈ M} be a family of spaces. Then
wr(

∏{Xµ : µ ∈M}) ≤ ∑{r(Xµ) : µ ∈M}.

Lemma 6.3. wr(X) ≥ wsr(X) for every space X. If sr(X) =
1, then r(X) = 1.

Proof. Obvious. 2

Let X be a space. We put ic(X) = ∞ if X is discrete and
ic(X) = min{|L| : L is not closed subset of X} if X is not
discrete.

Theorem 6.4. Let X and Y be spaces and ic(Y ) < ψ(X).
Then wsr(X × Y ) ≥ 2.

Proof. Let ic(Y ) = τ . Fix in Y a subset L of cardinality τ with
an accumulation point c ∈ Y \ L. Assume that Y = L

⋃{c}.
There is a point b ∈ X such that ψ(b,X) > τ .

Let B be a system of open-and-closed subsets of the space
X × Y which T0-separates points of X × Y .

We put H =
⋂{U ∈ B : (b, c) ∈ U} and Z = {y ∈ L : (b, y) ∈

H}.
Case 1. c ∈ clY Z.
If y, z ∈ Z, then we consider y < z if y 6= z and U

⋂{(b, y), (b, z)}
= {(b, y)} for some U ∈ B.

If y, z ∈ Z and y < z, then we fix U(y, z) ∈ B such that
U(y, z)

⋂{(b, y), (b, z)} = {(b, y)}. By construction, if y < z,
then (b, c) 6∈ U(y, z). For every pair y, z ∈ Z, where y < z,
there exists an open-and-closed subset V (y, z) of X such that
(b, y) ∈ V (y, z)×{y} ⊆ U(y, z) and U(y, z)

⋂
(V (y, z)×{c}) = ∅.

We put A =
⋂{V (y, z) : y, z ∈ Z, y < z}. Since |Z| = τ and

ψ(b,X) > τ , we have |A| > τ . Fix x ∈ A \ {b} and U ∈ B
such that |{(x, c), (b, c)}⋂

U | = 1. There exists an open subset
W of Y such that c ∈ W and for every y ∈ W

⋂
Z we have

|{(x, y), (b, y)}⋂
U | = 1. Fix y, z ∈ W

⋂
Z for which y < z and
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y 6= z. Then, by construction, U
⋂
U(y, z) 6= ∅, U \ U(y, z) 6= ∅

and U(y, z) \ U 6= ∅. Therefore, sr(B) ≥ 2.
Case 2. c ∈ clY (L \ Z).
In this case we assume that Z = ∅. For every y ∈ L we fix
Uy ∈ B such that (b, c) ∈ Uy and (b, y) 6∈ Uy. For every y ∈ L
there exists an open-and-closed subset Vy of X such that (Vy ×
{y}) ⋂

Uy = ∅ and Vy × {c} ⊆ Uy. We put A =
⋂{Vy : y ∈ L}.

Since |L| = τ and ψ(b,X) > τ , we have |A| > τ . Fix x ∈ A\{b}
and U ∈ B such that |{x, c), (b, c)}⋂

U | = 1. There exists an
open subset W of Y such that c ∈ W and for every y ∈ W

⋂
L we

have |{(x, y), (b, y)}⋂
U}| = 1. If y ∈ W

⋂
L, then Uy

⋂
U 6= ∅,

Uy \ U 6= ∅ and U \ Uy 6= ∅. Hence wsr(B) ≥ 2. The proof is
complete. 2

Theorem 6.5. Let X and Y be spaces, ic(Y ) = τ be an infinite
cardinal, b ∈ X, n ∈ N and if b ∈ Z and Z be a closed Gτ -subset
of X, then wsr(Z) ≥ n. Then wsr(X × Y ) ≥ n+ 1.

Proof. If n = 1, then ψ(b,X) > τ . By Theorem 6.4, we have
wsr(X × Y ) ≥ 2 = n+ 1.

Let n ≥ 2. Fix in Y a subset L of cardinality τ with an
accumulation point c ∈ Y \ L. Assume that Y = L

⋃{c}. Let
B be a system of open-and-closed subsets of X × Y which T0-
separates points of X × Y . We put H =

⋂{U ∈ B : (b, c) ∈ H}
and Z = {y ∈ L : (b, c) ∈ H}.
Case 1. c ∈ clY Z.
If y, z ∈ Z we consider that y < z if y 6= z and U

⋂{(b, y), (b, z)}
= {(b, y)} for some U ∈ B.

If y, z ∈ Z and y < z, then we fix U(y, z) ∈ B for which
U(y, z)

⋂{(b, y), (b, z)} = {(b, y)}. By construction, (b, c) 6∈
U(y, z). For every pair y, z ∈ Z, where y < z, there ex-
ists an open-and-closed subset V (y, z) of X such that (b, y) ∈
V (y, z) × {y} ⊆ U(y, z) and U(y, z)

⋂
(V (y, z) × {c}) = ∅. We

put A =
⋂{V (y, z) : y, z ∈ Z, y < z}. Since b ∈ A and

|Z| = τ , A is a closed Gτ -subset of X and sr(A) ≤ n. Hence
there exist n elements W1,W2, ...,Wn ∈ B such that the family
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{Pi = Wi
⋂

(A × {c}) : i ≤ n} is independent. For every pair
1 ≤ i < j ≤ n we fix the points xij1, xij2, xij3 ∈ A such that
(xij1, c) ∈ Wi \Wj, (xij2, c) ∈ Wj \Wi, and (xij3, c) ∈ Wi

⋂
Wj.

There exists an open subset W of Y such that c ∈ W and
{xij1} ×W ⊆ Wi \Wj, {xij2} ×W ⊆ Wj \Wi, {xij3} ×W ⊆
Wi

⋂
Wj for every 1 ≤ i < j ≤ n. Fix y, z ∈ W

⋂
Z for which

y < z. If 1 ≤ i < j ≤ n, then (xij3, y) ∈ U(y, z)
⋂
Wi

⋂
Wj,

(xij1, y) ∈ U(y, z) \ Wj , (xij2, y) ∈ U(y, z) \ Wi, (xij3, z) ∈
(Wi

⋂
Wj) \ U(y, z). Hence the family {U(y, z),W1, ...,Wn} is

independent and sr(B) ≥ n + 1.
Case 2. c ∈ clY (L \ Z).
In this case we assume that Z = ∅. For every y ∈ L we fix
Uy ∈ B and an open subset Vy of X such that (b, c) ∈ Uy,
(b, y) 6∈ Uy, (b, c) ∈ Vy × {c} ⊆ Uy and Uy

⋂
(Vy × {y}) = ∅.

We put A =
⋂{Vy : y ∈ L}. Since b ∈ A and |L| = τ , we have

sr(A) ≥ n. There exist n elementsW1,W2, ...,Wn ∈ B such that
the family {Pi = Wi

⋂
(A × {c}) : i ≤ n} is independent. For

every 1 ≤ i < j ≤ n we fix the points xij1, xij2, xij3 ∈ A such that
(xij1, c) ∈ Wi \Wj , (xij2, c) ∈ Wj \Wi and xij3, c) ∈ Wi

⋂
Wj.

There exists an open subset W of Y such that c ∈ W and
{xij1}×W ⊆Wi \Wj, {xij2}×W ⊆ Wj \Wi and {xij3}×W ⊆
Wi

⋂
Wj . Fix y ∈ W . Then for every 1 ≤ i < j ≤ n we

have (xij3, c) ∈ Uy
⋂
Wi

⋂
Wj , (xij1, y) ∈ Wi \ Uy, (xij2, y) ∈

Wj \Uy, (xij1, c) ∈ Uy \Wj, (xij2, c) ∈ Uy \Wi. Hence the family
{Uy,W1,W2, ...,Wn} is independent and sr(B) ≥ n + 1. The
proof is complete. 2

7. Examples

Example 7.1. Fix the cardinal τ and the infinite cardinal m.
If α is an ordinal, then |α| = |{β : β ≤ α and β is an ordinal}|.
Denote W (m) = {α : α is an ordinal and |α| < m}. Fix a family
{Xα : α ∈ W (m)} of discrete spaces of cardinality τ . Denote
B(τ,m) =

∏{Xα : α ∈ W (m)}. If β ∈ W (m) and aα ∈ Xα

for all α ≤ β, then H(aα : α ≤ β) = {x = (xξ : ξ ∈ W (m)) ∈
B(τ,m) : xα = aα for all α ≤ β}. On B(τ,m) we consider the
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topology generated by the base B = {H(aα : α ≤ β) : aα ∈ Xα,
α ≤ β, β ∈ W (m)}. Since r(B) = 1, then the space B(τ,m) is
zero-dimensional and hereditarily paracompact.

If m = ℵ0, then B(τ,m) is complete metrizable. We have
|B(τ,m)| = τm and d(B(τ,m)) =

∑{τn : n < m}.

Example 7.2. Let τ , m be infinite cardinals and τ =
∑{τn :

n < m} ≤ λ ≤ τm. Fix in B(τ,m) some dense subset H of
cardinality τ . Let {Hs : s ∈ S}, where H

⋂
S = ∅, be an infinite

family of subsets of H of cardinality m such that |Hs
⋂
Hµ| < m

for every pair s, µ of distinct elements of S and that {Hs : s ∈ S}
is maximal with respect to the last property. For every point
a = (aµ : µ ∈ W (m)) ∈ B(τ,m) there exists s ∈ S such that
|Hs

⋂
H(aα : α ≤ β)| = m and |Hα \H(aα : α ≤ β)| < m for

every β ∈ W (M). Then |S| = τm (for τ = m = ℵ0 see [8],
Exercise 3.6.I(a)). Generate a topology on the set Y = H

⋃
S

by the neighbourhood system {B(y) : y ∈ Y }, where B(y) =
{H(y, ∅) = {y}} if y ∈ H and B(y) = {H(y, L) = {y}⋃

(Hy \L) :
L ⊆ H, |L| < m} if y ∈ S.

Every open cover of H(y, L) contains a subcover of H(y, L) of
cardinality < τ . In particular, l(H(y, ∅)) ≤ m and for m = ℵ0

the sets H(y, L) are compact. Fix in S some subset S1 of cardi-
nality λ and consider Z = H

⋃
S1 as a subspace of Y . We put

X(τ,m, λ) = Z
⋃{b}, where b ∈ Z. Consider that Z is an open

subspace ofX(τ,m, λ) and the neighbourhoods of the point b are
the form H(y1, ..., yn) = Z \ ⋃{H(yi, Li) : i ≤ n}, where n ∈ N ,
L1, ..., Ln ⊆ H, |Li| < m for every i ≤ n and y1, ..., yn ∈ Z.
We have dimX(τ,m, λ) = 0 and l(X(τ,m, λ)) ≤ m. Moreover,
X(τ,m, λ) is a scattered space with is(X(τ,m, λ)) = 3 and ev-
ery open cover of X(τ,m, λ) contains a subcover of cardinality
< m. For m = ℵ0 the space X(τ,m, λ) is compact. By construc-
tion, c(X(τ,m, λ)) = d(X(τ,m, λ)) = τ and ψ(X(τ,m, λ)) =
ψ(b,X(τ,m, λ)) = |X(τ,m, λ)| = λ.



FAMILIES OF RANK ONE IN SCATTERED SPACES 483

Proposition 7.3. Let τ , m be infinite cardinals and τ =
∑{τn :

n < m} < λ ≤ τm. Then:

1. wr(X(τ,m, λ)) = λ.

2. rτ (X(τ,m, λ)) = 1 if and only if λ = τ+.

3. If τ+ < λ ≤ τm, then rτ (X(τ,m, λ)) = λ.

Proof. It is obvious that rτ(X(τ,m, λ)) ≤ wr(X(τ,m, λ)) ≤
λ. By Theorem 3.1, λ = ψ(X(τ,m, λ)) ≤ c(X(τ,m, λ)) +
wr(X(τ,m, λ)) = τ + wr(X(τ,m, λ)). Hence wr(X(τ,m, λ)) =
λ.

If λ = τ+, then from Proposition 2.7 it follows that
rτ (X(τ,m, λ)) = 1. Suppose that λ > τ+. By Theorem 4.1, we
have λ = ψ(X(τ,m, λ)) ≤ d(X(τ,m, λ))+rτ (X(τ,m, λ))+τ+ =
τ + τ+ + rτ (X(τ,m, λ)). Hence rτ(X(τ,m, λ)) = λ. The proof
is complete. 2

Corollary 7.4. Let m = τ = ℵ0 < λ ≤ c = 2ℵ0. Then:
1. X(τ,m, λ) is a separable scattered compact space.
2. wr(X(τ,m, λ)) = λ.
3. rτ (X(τ,m, λ)) = 1 if and only if λ = ℵ1.
4. rτ (X(τ,m, λ)) = λ if and only if ℵ2 ≤ λ ≤ c.

Corollary 7.5. Let m = ℵ0, τ ≥ m, τ < λ ≤ τm. Then:
1. X(τ,m, λ) is a compact scattered space.
2. wr(X(τ,m, λ)) = λ.
3. rτ (X(τ,m, λ)) = 1 if and only if λ = τ+.
4. rτ (X(τ,m, λ)) = λ if and only if τ+ < λ ≤ τm.

By Dτ we denote the discrete space of cardinality τ and by
Aτ we denote the Alexandroff one-point compactification of the
space Dτ . It is obvious that wr(Aτ ) = wsr(Aτ) = 1 for every
cardinal τ .

Theorem 7.6. Let n ∈ N , τn+1 ≥ ℵ0 and τ1, τ2, ..., τn be un-
countable cardinals. Then wr(

∏{Aτi : i ≤ n+1}) = wsr(
∏{Aτi :

i ≤ n+ 1}) = n+ 1.
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Proof. We have ic(Aτ) = ℵ0 for every τ ≥ ℵ0. Fix 1 ≤ m ≤ n.
Consider that Aτi \Dτi = {ai}. We put Xm =

∏{Aτi : i ≤ m}
and bm = (a1, ..., am) ∈ Xm. If H is a Gδ-subset of Xm and
bm ∈ H, then H contains the copy of Xm and sr(H) = sr(Xm).
By Theorem 7.4, wsr(X2) = wsr(Aτ1 ×Aτ2) ≥ 2. By induction
and Theorem 7.5 it follows that wsr(Xm) ≥ m and wsr(Xn ×
Aτn+1) ≥ n + 1. This complete the proof. 2

Theorem 7.7. Let X be a locally compact scattered metalindelöf
space. If wr(X ×X) = 1, then X is metrizable.

Proof. Let X be a non-discrete space. Since X is locally com-
pact, ic(X) = ℵ0. By Theorem 6.4 it follows that ψ(X) = ℵ0.
By virtue of Telgarski‘s theorem [14], every scattered compact
first countable space is metrizable. HenceX is locally metrizable
andX has a point-countable base. In virtue of Alexandroff‘s and
Urysohn‘s theorem ([1], Theorem 5.11; [10], Exercise 4.4.F and
Theorem 5.3.10) the space X is metrizable. 2
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