Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Pages 467–485

FAMILIES OF RANK ONE IN SCATTERED SPACES

Mitrofan M. Choban

Abstract

In this paper we study the properties of spaces with open-and-closed families of countable rank with T_0 -separates points. In particular, we prove that every separable scattered compact space with such family is metrizable.

1. Introduction

All considered spaces are assumed to be regular. We shall use the terminology from [8], |Y| denotes the cardinality of a set $Y, cl_X A$ or cl A denotes the closure of a set A in a space X, $N = \{1, 2, ...\}$ and we consider the discrete topology on N, $\psi(x, X)$ denotes the pseudocharacter of a point x in a space X, $\psi(X) = \sup\{\psi(x, X) : x \in X\}$ denotes the pseudocharacter of a space $X, c(X) = \sup\{|\gamma| : \gamma \text{ is a family of pairwise disjoint}$ non-empty open subsets of $X\}$ - the Souslin number of X, $d(X) = \min\{|Y| : Y \text{ is dense in } X\}$ - the density of X, l(X) = $\min\{\tau : \text{ every open cover of } X \text{ contains a subcover of cardinality} \leq \tau\}$ - the Lindelöf number of $X, hl(X) = \sup\{l(Y) : Y \subseteq X\}$ - the hereditary Lindelöf number of X.

A space is called scattered if it contains no non-empty dense in itself subspace (see [9, 14]).

Let X be a scattered space. Denote $X^{(0)} = X$, $X_{\alpha} = \{x \in X^{(\alpha)} : x \text{ is an isolated point in } X^{(\alpha)}\}$, $X^{(\alpha+1)} = X^{(\alpha)} \setminus X_{\alpha}$ for every $\alpha \ge 0$ and $X^{(\alpha)} = \bigcap \{X^{(\beta)} : \beta < \alpha\}$ for each limit

Mathematics Subject Classification: 54A10, 54C65, 54C10.

Key words: Scattered space, rank of system, perfect mapping, open mapping.

ordinal α . If $x \in X_{\alpha}$, then we put $is(x, X) = \alpha$. The ordinal number $is(X) = \min\{\alpha : X_{\alpha} = \emptyset\}$ is called the index of scatteredness of X. For every $\alpha < is(X)$ the set $\bigcup\{X_{\beta} : \beta < \alpha\}$ is open in X and X_{α} is a non-empty discrete subspace of X.

A space X is called τ -metalindelöf if every open cover γ of X has an open refinement ω for which $ord(x, \omega) = |\{U \in \omega : x \in U\}| \leq \tau$ for each $x \in X$. An \aleph_0 -metalindelöf space is called metalindelöf. Denote $ml(X) = \min\{\tau : X \text{ is } \tau\text{-metalindelöf}\}\)$ -the metalindelöf degree of X.

Let B be a family of subsets of a space X. The family $B T_0$ separates points of X if for every pair of distinct points $x, y \in X$ there exists an element $U \in B$ such that $U \cap \{x, y\}$ is a singleton set. A subfamily $B' \subseteq B$ has the rank one if for every two sets $U, V \in B'$ we have $U \cap V = \emptyset$, or $U \subseteq V$, or $V \subseteq U$. We say that the rank $r(B) \leq \tau$, where τ is a finite or infinite cardinal, if $B = \bigcup \{B_\mu : \mu \in M\}$, where $|M| \leq \tau$ and B_μ is a family of rank one for each $\mu \in M$.

The weak rank of a space X is the cardinal $wr(X) = \min\{r(B) : B \text{ is a family of open-and-closed subsets which } T_0$ -separates points of $X\}$.

The rank of a space X is the cardinal $r(X) = \min\{r(B) : B \text{ is an open base of } X\}.$

A family γ of subsets of a space X is independent if $\bigcap \gamma \neq \emptyset$ and $V \setminus W \neq \emptyset$, $W \setminus V \neq \emptyset$ for every distinct elements $V, W \in \gamma$.

Let B be a family of subsets of X. The cardinal $sr(B) = \sup\{|\gamma| : \gamma \subseteq B \text{ and } \gamma \text{ is independent}\}$ is called the small rank of B. If every independent subfamily $\gamma \subseteq B$ is finite, then the small rank sr(B) of B is subinfinite.

The weak small rank of a space X is the cardinal $wsr(X) = \min\{sr(B) : B \text{ is a family of open-and-closed subsets which } T_0$ separates points of X} and the small rank of X is the cardinal $sr(X) = \min\{sr(B) : B \text{ is an open base of } X\}.$

The spaces with bases of finite rank were studied in [2, 5, 6, 7, 8, 11]. G. Gruenhage and P. Nyikos [11] showed that if a compactum has a countable base of finite small rank, then it is metrizable.

S. Troyanski raised the following question.

Question 1.1. Let X be a scattered compact space. Is it true that wr(X) = 1 ?

The following questions were formulated during the discussion of the Question 1.1 with the Professors P. Kenderov, S. Nedev and S. Troyanski in the autumn of 1989.

Question 1.2. Is it true that the weak rank of every scattered compact space is finite or countable ?

Question 1.3. Is it true that every scattered compact space is a continuous image of a compact scattered space of weak rank one or of countable weak rank ?

In the present article we give the negative answers to all above questions.

2. Preliminary Results

Some statements of this section are obvious or wellknows and we omit its proofs.

A transfinite sequence of sets is a family of sets $\{H_{\mu} : \mu \in M\}$, where M is a well-ordered set.

A transfinite sequence $\{H_{\mu} : \mu \in M\}$ is called:

- increasing if $H_{\alpha} \subseteq H_{\beta}$ and $H_{\beta} \setminus H_{\alpha} \neq \emptyset$ for $\alpha < \beta$ and $\alpha, \beta \in M$;

- decreasing if $H_{\beta} \subseteq H_{\alpha}$ and $H_{\alpha} \setminus H_{\beta} \neq \emptyset$ for $\alpha < \beta$ and $\alpha, \beta \in M$;

– monotone if it is increasing or decreasing.

If < is a linear order on a set Z and $x \in Z$, then we put $Z(x) = \{y \in Z : y < x\}$ and $Z^+(x) = \{y \in Z : y \le x\}$.

Proposition 2.1. Let $\gamma = \{H_{\mu} : \mu \in M\}$ be a monotone transfinite sequence of open-and-closed sets of a space X. Then $|M| \leq c(X)$.

A union of τ closed subsets of X is called an F_{τ} -set. A union of a countable family of closed subsets is called an F_{σ} -set.

For a cardinal τ by τ^+ denote the smallest cardinal greater than τ .

Proposition 2.2. Let $\gamma = \{H_{\mu} : \mu \in M\}$ be a transfinite increasing family of open sets of X and $|H_{\mu}| < \tau$ for each $\mu \in$ M. Then $|\bigcup \{H_{\mu} : \mu \in M\}| \leq \tau$ and $|M| \leq \tau$.

Let X be a space and $x \in X$. The set $Q(x, X) = \bigcap \{U : x \in U \text{ and } U \text{ is open-and-closed in } X\}$ is called the quasi-component of a point x in X.

If X is an infinite connected space, then the weak rank wr(X) is not determined. In this case we consider that $wr(X) = \infty$ and $\tau < \infty$ for every cardinal τ .

Proposition 2.3. The weak rank wr(X) of a space X is determined if and only if $Q(x, X) = \{x\}$ for each point $x \in X$.

The class of spaces with open T_0 -separating families of rank one is quite broad.

A linear order < on a space X is called a (strongly) α -left order if for each point $x \in X$ the set $X^+(x)$ is closed (respectively is open-and-closed) in X. A space with a (strongly) α -left order is called a (strongly) α -left space (see [4]).

Proposition 2.4. Let X be a space. Then:

1. If X is an α -left space, then X has an open T_0 -separating family of rank one.

2. If X is a strongly α -left space, then wr(X) = 1.

Proposition 2.5. (see [4]) A space X is scattered if and only if on X there exists a well-order such that the set X(x) is open for every $x \in X$. In particular, every scattered space is an α -left space.

Probably the appearance of the Question 1.1 is motived by the next fact which follows from Propositions 2.4 and 2.5.

Corollary 2.6. Every scattered space has an open T_0 -separating family of rank one.

Proposition 2.7. Let X be a collectionwise normal scattered space, τ be an infinite cardinal and $\tau \ge d(X)$. Then:

1. If $is(X) \le 2$, then wr(X) = 1.

2. If $is(X) \leq 3$ and $|X| \leq \tau^+$, then X has a T_0 -separating family of rank one of open F_{τ} -sets.

Proof. Let $X_2 \neq \emptyset$ and $X_3 = \emptyset$. The set X_2 is discrete and closed in X and the set X_0 is dense and open in X. The subspace X_0 is discrete and $|X_0| = d(X) = \tau$. There exists a discrete family $\{U_x : x \in X_2\}$ of open-and-closed subsets of X such that $X = \bigcup \{U_x : x \in X_2\}$ and $U_x \cap X_2 = \{x\}$ for each $x \in X_2$. Put $V_x = U_x \cap X_0$ and $Y_x = U_x \cap X_1$. On Y_x there exists some well-order < such that $|\{y \in Y_x : y < z\}| \leq \tau$ for every $z \in Y_x$. Now we put $B_x = \{U_x\} \cup \{\{z\} : z \in V_x\} \cup \{V_x \cup \{y \in Y_x : y < z\} :$ $z \in Y_x\}$ and $B = \bigcup \{B_x : x \in X_2\}$. The family B is open, T_0 -separates points of the space X and $|V| \leq \tau$ for each $V \in B$.

Let $X_2 = \emptyset$ and $X_1 \neq \emptyset$. There exists an open-and-closed family $\{H_x : x \in X\}$ of X such that $H_x \cap X = \{x\}$ for every $X \in X_1$. Then $B = \{\{x\} : x \in X_0\} \cup \{H_x : x \in X_1\}$ is an openand-closed family of rank one which T_0 -separates the points of X. In this case wr(X) = 1.

Let $X_1 = \emptyset$. In this case X is a discrete space. The proof is complete. \Box

Proposition 2.8. $l(X) \leq d(X) + ml(X)$.

Proposition 2.9. c(X) = d(X) for every scattered space X.

Theorem 2.10. Let X be a scattered space. Then $|X| = hl(X) = \psi(X) + l(X)$.

Proof. For every space Z we have $\psi(Z) \leq hl(Z) \leq |Z|$ and $l(Z) \leq hl(Z)$. Fix a scattered space X. It is sufficient to prove that $|X| \leq \psi(X) + l(X)$.

We put $\tau = \psi(X) + l(X)$. For every $\alpha < is(X)$ and each point $x \in X_{\alpha}$ we fix an open subset U_x of X such that $x \in U_x \subseteq cl_X U_x \subseteq \bigcup \{X_{\beta} : \beta \leq \alpha\}$ and $cl_X U_x \cap X_{\alpha} = \{x\}$. We prove that $|U_x| \leq \tau$ for each $x \in X$. If $\alpha = 0$ and $x \in X_{\alpha}$, then $U_x = \{x\}$ and $|U_x| \leq \tau$. Suppose that $\alpha > 0$, $x \in X_{\alpha}$ and $|U_y| \leq \tau$ for every $y \in \bigcup \{X_{\beta} : \beta < \alpha\}$. The subspace $Y_x = cl_X U_x \setminus \{x\}$ is an F_{τ} -subset of X. Hence $l(Y_x) \leq \tau$ and there exists a subset

 Z_x of Y_x such that $|Z_x| \le \tau$ and $Y_x \subseteq \bigcup \{U_y : y \in Z_x\}$. Therefore $|U_x| \le |\bigcup \{U_y : y \in Z_x\}| \le \tau$.

The open cover $\{U_x : x \in X\}$ of X contains a subcover $\{U_x : x \in Y\}$, where $Y \subseteq X$ and $|Y| = l(X) \leq \tau$. By construction $|X| \leq |\bigcup \{U_x : y \in Y\}| \leq \tau$. The proof is complete. \Box

3. The Rank and the Pseudocharacter of Spaces

Theorem 3.1. $\psi(X) \leq c(X) + wr(X)$ for every space X.

Proof. The assertion is trivial if $wr(X) = \infty$. Assume now that $c(X) + wr(X) = \tau < \infty$. If a cardinal τ is finite, then X is discrete and $\psi(X) = 1 \le |X| = c(X)$. Suppose that the cardinal τ is infinite.

There exists the family $B = \{B_{\mu} : \mu \in M\}$ of rank one of open-and-closed subsets of X for which $|M| \leq \tau$ and B T_0 -separates the points of X.

Fix a point $b \in X$. Suppose that $\psi(b, X) > \tau$. We put $P = \bigcap \{ U \in B : b \in U \}$. Two cases are possible.

Case 1. $\psi(b, P) \leq \tau$.

Since $\psi(b, X) > \tau$ and $\psi(b, P) \leq \tau$, for every ordinal $\alpha < \tau^+$ there exist a point $y_{\alpha} \in X \setminus P$ and a set $U_{\alpha} \in B$ such that $y_0 \notin U_0, y_{\alpha} \in \bigcap \{U_{\beta} : \beta < \alpha\} \setminus U_{\alpha}$ for each $\alpha < \tau^+$ and $b \in \bigcap \{U_{\alpha} : \alpha < \tau^+\}$. Denote $H_{\mu} = \{\alpha < \tau^+ : U_{\alpha} \in B_{\mu}\}$. By construction, $\{U_{\alpha} : \alpha \in H_{\mu}\}$ is a decreasing transfinite sequence of open-andclosed sets. By virtue of Proposition 2.1, $|H_{\mu}| \leq c(X) \leq \tau$ for every $\mu \in M$. Since $|M| \leq \tau$ and $\bigcup \{H_{\mu} : \mu \in M\} = \{\alpha < \tau^+\}$, we have $|H_{\mu}| = \tau^+$ for some $\mu \in M$. This is a contradiction. Hence the case 1 is impossible.

Case 2. $\psi(b, P) > \tau$.

For every ordinal $\alpha < \tau^+$ there exist a point $y_\alpha \in P$ and a set $U_\alpha \in B$ such that $b \notin U_\alpha$, $y_0 \in U_0$ and $y_\alpha \in U_\alpha \setminus \bigcup \{U_\beta : \beta < \alpha\}$ for $\alpha \ge 1$.

Let $y_0 \in P \setminus \{b\}$. Then for some $U_0 \in B$ we have $U_0 \cap \{y_0, b\} = \{y_0\}$. Suppose that $\tau^+ > \alpha > 0$ and the elements $\{y_\beta, U_\beta : \beta < \alpha\}$ are constructed. Since $\psi(b, P) > \tau$, there exists a point $y_\alpha \in P \setminus \bigcup \{U_\beta : \beta < \alpha\}$ such that $y_\alpha \neq b$. For some $U_\alpha \in B$ we have $U_\alpha \cap \{y_\alpha, b\} = \{y_\alpha\}$.

Fix $\mu \in M$. We put $H_{\mu} = \{\alpha < \tau^{+} : U_{\alpha} \in B_{\mu}\}$. If $\alpha, \beta \in H_{\mu}$ and $\alpha < \mu$, then $U_{\alpha} \subseteq U_{\beta}$ or $U_{\alpha} \cap U_{\beta} = \emptyset$, i. e. $U_{\beta} \setminus U_{\alpha}$ is an open non-empty subset. For $\alpha \in H_{\mu}$ by $g(\alpha)$ denote the smallest element of H_{μ} greater than α . Assume that $|H_{\mu}| = \tau^{+}$. Then $\{V_{\alpha} = U_{g(\alpha)} \setminus U_{\alpha} : \alpha \in H_{\mu}\}$ is a family of pairwise disjoint non-empty open subsets. Therefore $|H_{\mu}| \leq c(X) \leq \tau$. This is a contradiction. Hence the case 2 is impossible, too. The proof is complete. \Box

From Theorem 3.1, Proposition 2.9 and Theorem 2.10 it follows

Corollary 3.2. $|X| \le d(X) + l(X) + wr(X) = d(X) + wr(X) + ml(X)$ for every scattered space X.

Corollary 3.3. Let X be an metalindelöf scattered space of countable weak rank. Then |X| = d(X) = c(X).

Corollary 3.4. Let X be a Lindelöf scattered space of countable weak rank. Then:

- 1. If X is separable, then X is countable.
- 2. If X is separable and locally compact, then X is metrizable.

Corrolary 3.5. Every compact separable scattered space of countable weak rank is metrizable.

Theorem 3.6. If X is a hereditarilly paracompact scattered space, then wr(X) = 1.

Proof. By Telgarski's theorem [9, 14], dim Y = 0 for every subspace Y of X. For every $\alpha < is(X)$ and every point $x \in X_{\alpha}$ we fix an open-and-closed subset U_x of X such that $x \in U_x \subseteq \bigcup \{X_{\beta} : \beta \leq \alpha\}$ and $U_x \cap X_{\alpha} = \{x\}$. We affirm that $wr(U_x) = 1$ for every $x \in X$. This assertion is trivial if $\alpha = 0$ and $x \in X_0$. Assume that $\alpha \geq 1$ and $wr(U_y) = 1$ for each $y \in \{X_\beta : \beta < \alpha\}$. Fix $b \in X_\alpha$. Since $V_b = U_b \setminus \{b\}$ is a zero-dimensional paracompact space, then there exists a disjoint family $\{W_\mu : \mu \in M\}$ of open-and-closed subsets of X such that $V_b = \bigcup\{W_\mu : \mu \in M\}$ and for every $\mu \in M$ there is a point $x(\mu) \in V_b$ such that $W_\mu \subseteq U_{x(\mu)}$. Hence $wr(W_\mu) = 1$ for every $\mu \in M$. For every $\mu \in M$ we fix a family B_μ of open-and-closed subsets of W_μ which T_0 -separates points of W_μ and $wr(B_\mu) = 1$. Denote $B = \bigcup\{\{W_\mu\} \bigcup B_\mu : \mu \in M\}$. Then r(B) = 1 and B T_0 -separates points of U_b . Hence $wr(U_b) = 1$. The following assertion completes the proof.

Theorem 3.7. Let X be a paracompact space, dim X = 0 and for every point $x \in X$ there is an open set U_x of X such that $x \in U_x$ and $wr(U_x) = 1$. Then wr(X) = 1.

Proof. There exist a subset Y of X and a discrete cover $\{V_y : y \in Y\}$ of X such that $V_y \subseteq U_x$ for each $y \in Y$. Since $wr(V_y) = wr(U_x) = 1$, there exists an open-and-closed system B_y of X such that $\bigcup \{W : W \in B_y\} \subseteq V_y$ and $B_y T_0$ -separates points of V_y . Denote $B = \{B_y \bigcup \{V_y\} : y \in Y\}$. Then r(B) = 1 and $B = T_0$ -separates points of X. The proof is complete. \Box

4. The Generalized Rank

Let *m* be a finite or infinite cardinal and *X* be a space. The cardinal $r_m(X) = \min\{r(B) : B \text{ is a family of open } F_m\text{-sets}$ which $T_0\text{-separates points of } X\}$ is called the *m*-rank of *X*. If *m* is finite, then $r_m(X) = r_1(X) = wr(X)$.

Theorem 4.1. Let X be a scattered locally compact space and $is(X) \leq 3$. Then $\psi(X) \leq d(X) + r_m(X) + m^+$ for every cardinal m.

Proof. For finite m the assertion follows from Theorem 3.1. Assume that m is infinite. Then $r_m(X) < \infty$. We put $\tau = d(X) + r_m(X) + m^+$. Since X is scattered, then dim F = 0 for every compact subspace F of X (see [7, 11]). Hence for every $i \leq 2$ and every point $x \in X_i$ there exists an open compact subset U_x of X such that $x \in U_x \subseteq \bigcup \{X_j : j \leq i\}$ and $U_x \cap X_i = \{x\}$. If $x \in X_0 \cup X_1$, then $|U_x| \leq d(X) \leq \tau$ and $\psi(x, X) \leq \tau$.

Fix $b \in X_2$. Suppose that $\psi(b, X) > \tau$. Denote $V_b = U_b \setminus X_0$. Since $|X_0| \leq \tau$, $\psi(b, V_b) = \psi(b, X) > \tau$. By construction, V_x is the one-point Alexandroff compactification of the discrete space $V_b \setminus \{b\}$ (see [1, 8]).

Let $\{B_{\mu} : \mu \in M\}$ be families of rank one of open F_m sets, $|M| \leq r_m(X) \leq \tau$ and the family $B = \bigcup \{B_{\mu} : \mu \in M\}$ T_0 -separates points of X.

Denote $P = \bigcap \{ V_b \cap U : b \in U, U \in B \}$. We have two possible cases.

Case 1. $\psi(b, P) \leq \tau$.

In this case for every ordinal $\alpha < \tau^+$ there exist a point $y_\alpha \in V_b \setminus P$ and a set $U_\alpha \in B$ such that $b \in U_\alpha$, $y_0 \notin U_0$ and $y_\alpha \in \bigcap \{U_\beta : \beta < \alpha\} \setminus U_\alpha$ if $\alpha \leq 1$.

We put $H_{\mu} = \{\alpha < \tau^{+} : U_{\alpha} \in B_{\mu}\}$. By construction, $\{W_{\alpha} = V_{b} \cap U_{\alpha} : \alpha \in H_{\mu}\}$ is a decreasing transfinite sequence of open F_{m} -sets of V_{b} . If $\alpha \in H_{\mu}$ and the set $\{\beta \in H_{\mu} : \beta < \alpha\}$ is infinite, then the set $W_{\alpha} \setminus \{y_{\beta} \in V_{b} : \beta < \alpha\}$ is not open in V_{b} . Hence the set $\{\beta \in H_{\mu} : \beta < \alpha\}$ is finite for each $\alpha \in H_{\mu}$ and the set H_{μ} is countable. This is a contradiction by virtue of the conditions $|M| \leq \tau$ and $|\bigcup\{H_{\mu} : \mu \in M\}| = \tau^{+}$.

Case 2. $\psi(b, P) > \tau$.

For every ordinal $\alpha < \tau^+$ there exist a point $y_\alpha \in P$ and a set $U_\alpha \in B$ such that $b \notin U_\alpha$, $y_0 \in U_0$ and $y_\alpha \in U_\alpha \setminus \bigcup \{U_\beta : \beta < \alpha\}$ for $\alpha \ge 1$.

We put $H_{\mu} = \{ \alpha < \tau^+ : U_{\alpha} \in B_{\mu} \}$. For some $\mu \in M$ we have $|H_{\mu}| = \tau^+$.

Since X_0 is dense in X and $|X_0| \leq \tau$, then there is a point $x \in X$ such that $|\{\alpha \in H_\mu : x \in U_\mu\}| = \tau^+$. Denote $W_\mu = \{\alpha \in H_\mu : x \in U_\mu\}$. By construction, $\{U_\mu : \mu \in W_\mu\}$ is an increasing transfinite sequence of F_m -sets. Since

 $|U_{\alpha} \cap V_b| \leq m$ for every $\alpha < \tau^+$, then by Proposition 2.2 we have $|\bigcup \{U_{\alpha} \cap V_b : \alpha \in W_{\mu}\}| \leq m^+ \leq \tau$. By construction, $\tau^+ = |\{y_{\alpha} : \alpha \in W_{\mu}\}| \leq |\bigcup \{U_{\alpha} \cap V_b : \alpha \in W_{\mu}\}|$, a contradiction. Hence the case 2 is impossible, too. The proof is complete.

By Theorem 4.1, Proposition 2.9 and Theorem 2.10 it follows

Corollary 4.2. Let X be a locally compact scattered space and $is(X) \leq 3$. Then:

1. $|X| \leq d(X) + l(X) + r_m(X) + m^+$ for every cardinal m. 2. If $d(X) + l(X) \leq \aleph_1$ and $r_{\aleph_0}(X) = \aleph_0$, then $|X| \leq \aleph_1$.

5. Mappings and Cardinality of Scattered Spaces

Theorem 5.1. Let $f : X \longrightarrow Y$ be a closed continuous mapping of a scattered space X onto a space Y. Then:

1. There exists a closed subspace Z of X such that f(Z) = Yand d(Z) = d(Y).

2. $|Y| \le d(Y) + wr(X) + ml(X)$.

Proof. Let S be a dense subset of the space Y and |S| = d(Y). For every point $y \in S$ we fix some point $x(y) \in f^{-1}(y)$. Put $P = \{x(y) : y \in S\}$ and $Z = cl_X P$. Then f(P) = S and d(Z) = d(Y) = |S|. Since f is a closed mapping, f(Z) = Y. The assertion 1 is proved. ¿From Corollary 3.2 it follows that $|Z| \leq d(Z) + wr(Z) + ml(Z) \leq d(Y) + wr(X) + ml(X)$. Hence $|Y| \leq |Z| \leq d(Y) + wr(X) + ml(X)$. The proof is complete. \Box

Corollary 5.2. Let $f : X \longrightarrow Y$ be a continuous closed mapping of a paracompact scattered space X of countable rank onto a locally compact separable space Y. Then Y is a countable metrizable space.

A space X is called a space of pointwise countable type if every point $x \in X$ is contained in some compact subset of the countable character. Spaces of pointwise countable type were introduced by A. V. Arhangel'skii (see [3, 10]).

Corollary 5.3. Let $f : X \longrightarrow Y$ be a closed continuous mapping of a metalindelöf scattered space of countable rank onto a separable space Y of pointwise countable type. Then Y is a countable metrizable space.

Corollary 5.4. Let $f : X \longrightarrow Y$ be a closed continuous mapping of a metalindelöf scattered space X onto a space Y. If $d(Y) < \psi(Y)$, then $wr(X) \ge \psi(Y)$.

Theorem 5.5. Let Y be a scattered space. Then there exist a perfectly normal paracompact scattered space X of weak rank one and an open continuous mapping $f : X \longrightarrow Y$ onto Y.

Proof. For every $\alpha < is(Y)$ and every point $y \in Y_{\alpha}$ we fix an open set U_y of Y such that $y \in U_y = (\bigcup \{Y_{\beta} : \beta < \alpha\}) \bigcup \{y\}$. We affirm that for every $y \in Y$ there exist a perfectly normal paracompact scattered space X_y and an open continuous mapping f_y of X_y onto U_y .

Let $y \in Y_0$. Then $U_y = \{y\}$. In this case we put $X_y = \{y\}$ and f_y is the identity mapping.

Suppose that $\alpha \geq 1$ and X_y, f_y are constructed for every $y \in \bigcup \{Y_\beta : \beta < \alpha\}$. Fix $b \in Y_\alpha$. Denote by Z the discrete sum $+\{X_y : y \in U_b \setminus \{b\}\}$ of the spaces $\{X_y : y \in U_b \setminus \{b\}\}$.

Put $X_b = \{b\} \bigcup (Z \times N), f_b(b) = b$ and $f_b(z, i) = f_y(z)$ for every $y \in U_b \setminus \{b\}$, every $i \in N$ and every $x \in X_y$. On a set X_b we consider the topology relatively to which the topological product $Z \times N$ is an open subspace and the neighbourhoods of the point bin X_b are the form $f_b^{-1}(V) \cap (Z \times \{i \in N : i \geq n\})$, where $n \in N$ and V is an open neighbourhood of the point b in Y. The space X_b is paracompact, perfectly normal, scattered and the mapping f_b is open and continuous. Now we put $X = +\{X_y : y \in Y\}$ and $f(x) = f_y(x)$ for every $y \in Y$ and every $x \in X_y$. The proof is complete. \Box

A family B of subsets of a space X is called a pseudobase for a space X if B is a family of open subsets of X and $\{x\} = \bigcap \{U \in B : x \in U\}$ for each $x \in X$. **Lemma 5.6.** Let B be a pseudobase of a space $X, \emptyset \in B$ and r(B) = 1. Then:

- 1. Every set $U \in B$ is open-and-closed in X.
- 2. If $U, V \in B$, then $U \cap V \in B$.
- 3. wr(X) = 1.

Proof. Fix $U \in B$. Suppose that U is non-empty and $b \in U$. For every $x \in X \setminus U$ there exists a set $V_x \in B$ such that $x \in V_x$ and $b \notin V_x$. Since r(B) = 1, $U \cap V_x = \emptyset$. Hence $X \setminus U = \bigcup \{U_x : x \in X \setminus U\}$ is open-and-closed in X. The assertions 2 and 3 are obvious. The proof is complete. \Box

Proposition 5.7. If X is a space with a pseudobase of rank one, then there exists a continuous bijection $f : X \longrightarrow Y$ onto a hereditarilly paracompact space Y with a base of rank one.

Proof. Let B be a pseudobase of X of rank one. Denote by Y the set X with the topology generated by the base B. Every space with a base of rank one is hereditarilly paracompact (see [5], Corollary 1). The proof is complete.

Proposition 5.8. Let X be a paracompact space with a G_{δ} -diagonal. If dim X = 0, then X has a pseudobase of rank one. *Proof.* It is obvious.

Corollary 5.9. For every T_0 -space X there exist a paracompact perfectly normal σ -discrete space Z with a pseudobase of rank one and a continuous open mapping $f: Z \longrightarrow X$ onto X.

Proof. From J. R. Isbell's theorem [12, 13] there exist a σ -discrete perfectly normal paracompact space Z and a continuous open mapping f of Z onto X. Proposition 5.8 completes the proof.

6. Rank of Spaces and Cartesian Product

Proposition 6.1. $wr(X \times Y) \leq wr(X) + wr(Y)$.

Proof. Let B_1 be a family of open-and-closed subsets of X which T_0 -separates points of X and B_2 be a family of open-and-closed

subsets of Y which T_0 -separates points of Y. We put $B = \{U \times Y, X \times V : U \in B_1, V \in B_2\}$. Then $r(B) = r(B_1) + r(B_2)$ and $B T_0$ -separates points of $X \times Y$. The proof is complete. \Box

Corollary 6.2. Let $\{X_{\mu} : \mu \in M\}$ be a family of spaces. Then $wr(\prod\{X_{\mu} : \mu \in M\}) \leq \sum\{r(X_{\mu}) : \mu \in M\}.$

Lemma 6.3. $wr(X) \ge wsr(X)$ for every space X. If sr(X) = 1, then r(X) = 1.

Proof. Obvious.

Let X be a space. We put $ic(X) = \infty$ if X is discrete and $ic(X) = \min\{|L| : L \text{ is not closed subset of } X\}$ if X is not discrete.

Theorem 6.4. Let X and Y be spaces and $ic(Y) < \psi(X)$. Then $wsr(X \times Y) \ge 2$.

Proof. Let $ic(Y) = \tau$. Fix in Y a subset L of cardinality τ with an accumulation point $c \in Y \setminus L$. Assume that $Y = L \cup \{c\}$. There is a point $b \in X$ such that $\psi(b, X) > \tau$.

Let B be a system of open-and-closed subsets of the space $X \times Y$ which T_0 -separates points of $X \times Y$.

We put $H = \bigcap \{ U \in B : (b, c) \in U \}$ and $Z = \{ y \in L : (b, y) \in H \}$.

Case 1. $c \in cl_Y Z$.

If $y, z \in Z$, then we consider y < z if $y \neq z$ and $U \cap \{(b, y), (b, z)\}$ = $\{(b, y)\}$ for some $U \in B$.

If $y, z \in Z$ and y < z, then we fix $U(y, z) \in B$ such that $U(y, z) \cap \{(b, y), (b, z)\} = \{(b, y)\}$. By construction, if y < z, then $(b, c) \notin U(y, z)$. For every pair $y, z \in Z$, where y < z, there exists an open-and-closed subset V(y, z) of X such that $(b, y) \in V(y, z) \times \{y\} \subseteq U(y, z)$ and $U(y, z) \cap (V(y, z) \times \{c\}) = \emptyset$. We put $A = \bigcap \{V(y, z) : y, z \in Z, y < z\}$. Since $|Z| = \tau$ and $\psi(b, X) > \tau$, we have $|A| > \tau$. Fix $x \in A \setminus \{b\}$ and $U \in B$ such that $|\{(x, c), (b, c)\} \cap U| = 1$. There exists an open subset W of Y such that $c \in W$ and for every $y \in W \cap Z$ we have $|\{(x, y), (b, y)\} \cap U| = 1$. Fix $y, z \in W \cap Z$ for which y < z and

 $y \neq z$. Then, by construction, $U \cap U(y, z) \neq \emptyset$, $U \setminus U(y, z) \neq \emptyset$ and $U(y, z) \setminus U \neq \emptyset$. Therefore, $sr(B) \ge 2$. **Case 2.** $c \in cl_Y(L \setminus Z)$.

In this case we assume that $Z = \emptyset$. For every $y \in L$ we fix $U_y \in B$ such that $(b,c) \in U_y$ and $(b,y) \notin U_y$. For every $y \in L$ there exists an open-and-closed subset V_y of X such that $(V_y \times \{y\}) \cap U_y = \emptyset$ and $V_y \times \{c\} \subseteq U_y$. We put $A = \bigcap\{V_y : y \in L\}$. Since $|L| = \tau$ and $\psi(b, X) > \tau$, we have $|A| > \tau$. Fix $x \in A \setminus \{b\}$ and $U \in B$ such that $|\{x, c), (b, c)\} \cap U| = 1$. There exists an open subset W of Y such that $c \in W$ and for every $y \in W \cap L$ we have $|\{(x, y), (b, y)\} \cap U\}| = 1$. If $y \in W \cap L$, then $U_y \cap U \neq \emptyset$, $U_y \setminus U \neq \emptyset$ and $U \setminus U_y \neq \emptyset$. Hence $wsr(B) \ge 2$. The proof is complete. \Box

Theorem 6.5. Let X and Y be spaces, $ic(Y) = \tau$ be an infinite cardinal, $b \in X$, $n \in N$ and if $b \in Z$ and Z be a closed G_{τ} -subset of X, then $wsr(Z) \ge n$. Then $wsr(X \times Y) \ge n + 1$.

Proof. If n = 1, then $\psi(b, X) > \tau$. By Theorem 6.4, we have $wsr(X \times Y) \ge 2 = n + 1$.

Let $n \geq 2$. Fix in Y a subset L of cardinality τ with an accumulation point $c \in Y \setminus L$. Assume that $Y = L \bigcup \{c\}$. Let B be a system of open-and-closed subsets of $X \times Y$ which T_0 -separates points of $X \times Y$. We put $H = \bigcap \{U \in B : (b, c) \in H\}$ and $Z = \{y \in L : (b, c) \in H\}$.

Case 1. $c \in cl_Y Z$.

If $y, z \in Z$ we consider that y < z if $y \neq z$ and $U \cap \{(b, y), (b, z)\}$ = $\{(b, y)\}$ for some $U \in B$.

If $y, z \in Z$ and y < z, then we fix $U(y, z) \in B$ for which $U(y, z) \cap \{(b, y), (b, z)\} = \{(b, y)\}$. By construction, $(b, c) \notin$ U(y, z). For every pair $y, z \in Z$, where y < z, there exists an open-and-closed subset V(y, z) of X such that $(b, y) \in$ $V(y, z) \times \{y\} \subseteq U(y, z)$ and $U(y, z) \cap (V(y, z) \times \{c\}) = \emptyset$. We put $A = \bigcap \{V(y, z) : y, z \in Z, y < z\}$. Since $b \in A$ and $|Z| = \tau$, A is a closed G_{τ} -subset of X and $sr(A) \leq n$. Hence there exist n elements $W_1, W_2, ..., W_n \in B$ such that the family $\{P_i = W_i \cap (A \times \{c\}) : i \leq n\} \text{ is independent. For every pair } 1 \leq i < j \leq n \text{ we fix the points } x_{ij1}, x_{ij2}, x_{ij3} \in A \text{ such that } (x_{ij1}, c) \in W_i \setminus W_j, (x_{ij2}, c) \in W_j \setminus W_i, \text{ and } (x_{ij3}, c) \in W_i \cap W_j.$ There exists an open subset W of Y such that $c \in W$ and $\{x_{ij1}\} \times W \subseteq W_i \setminus W_j, \{x_{ij2}\} \times W \subseteq W_j \setminus W_i, \{x_{ij3}\} \times W \subseteq W_i \cap W_j \text{ for every } 1 \leq i < j \leq n. \text{ Fix } y, z \in W \cap Z \text{ for which } y < z. \text{ If } 1 \leq i < j \leq n, \text{ then } (x_{ij3}, y) \in U(y, z) \cap W_i \cap W_j, (x_{ij1}, y) \in U(y, z) \setminus W_j, (x_{ij2}, y) \in U(y, z) \setminus W_i, (x_{ij3}, z) \in (W_i \cap W_j) \setminus U(y, z). \text{ Hence the family } \{U(y, z), W_1, ..., W_n\} \text{ is independent and } sr(B) \geq n + 1.$

Case 2. $c \in cl_Y(L \setminus Z)$.

In this case we assume that $Z = \emptyset$. For every $y \in L$ we fix $U_y \in B$ and an open subset V_y of X such that $(b,c) \in U_y$, $(b,y) \notin U_y, (b,c) \in V_y \times \{c\} \subseteq U_y \text{ and } U_y \cap (V_y \times \{y\}) = \emptyset.$ We put $A = \bigcap \{V_y : y \in L\}$. Since $b \in A$ and $|L| = \tau$, we have $sr(A) \geq n$. There exist n elements $W_1, W_2, ..., W_n \in B$ such that the family $\{P_i = W_i \cap (A \times \{c\}) : i \leq n\}$ is independent. For every $1 \leq i < j \leq n$ we fix the points $x_{ij1}, x_{ij2}, x_{ij3} \in A$ such that $(x_{ij1}, c) \in W_i \setminus W_j, (x_{ij2}, c) \in W_j \setminus W_i \text{ and } x_{ij3}, c) \in W_i \cap W_j.$ There exists an open subset W of Y such that $c \in W$ and $\{x_{ij1}\} \times W \subseteq W_i \setminus W_j, \{x_{ij2}\} \times W \subseteq W_j \setminus W_i \text{ and } \{x_{ij3}\} \times W \subseteq W_i \setminus W_i$ $W_i \cap W_j$. Fix $y \in W$. Then for every $1 \leq i < j \leq n$ we have $(x_{ij3},c) \in U_y \cap W_i \cap W_j, (x_{ij1},y) \in W_i \setminus U_y, (x_{ij2},y) \in$ $W_j \setminus U_y, (x_{ij1}, c) \in U_y \setminus W_j, (x_{ij2}, c) \in U_y \setminus W_i$. Hence the family $\{U_y, W_1, W_2, ..., W_n\}$ is independent and $sr(B) \ge n+1$. The proof is complete.

7. Examples

Example 7.1. Fix the cardinal τ and the infinite cardinal m. If α is an ordinal, then $|\alpha| = |\{\beta : \beta \leq \alpha \text{ and } \beta \text{ is an ordinal}\}|$. Denote $W(m) = \{\alpha : \alpha \text{ is an ordinal and } |\alpha| < m\}$. Fix a family $\{X_{\alpha} : \alpha \in W(m)\}$ of discrete spaces of cardinality τ . Denote $B(\tau, m) = \prod\{X_{\alpha} : \alpha \in W(m)\}$. If $\beta \in W(m)$ and $a_{\alpha} \in X_{\alpha}$ for all $\alpha \leq \beta$, then $H(a_{\alpha} : \alpha \leq \beta) = \{x = (x_{\xi} : \xi \in W(m)) \in B(\tau, m) : x_{\alpha} = a_{\alpha} \text{ for all } \alpha \leq \beta\}$. On $B(\tau, m)$ we consider the

topology generated by the base $B = \{H(a_{\alpha} : \alpha \leq \beta) : a_{\alpha} \in X_{\alpha}, \alpha \leq \beta, \beta \in W(m)\}$. Since r(B) = 1, then the space $B(\tau, m)$ is zero-dimensional and hereditarily paracompact.

If $m = \aleph_0$, then $B(\tau, m)$ is complete metrizable. We have $|B(\tau, m)| = \tau^m$ and $d(B(\tau, m)) = \sum \{\tau^n : n < m\}.$

Example 7.2. Let τ , m be infinite cardinals and $\tau = \sum \{\tau^n : n < m\} \leq \lambda \leq \tau^m$. Fix in $B(\tau, m)$ some dense subset H of cardinality τ . Let $\{H_s : s \in S\}$, where $H \cap S = \emptyset$, be an infinite family of subsets of H of cardinality m such that $|H_s \cap H_\mu| < m$ for every pair s, μ of distinct elements of S and that $\{H_s : s \in S\}$ is maximal with respect to the last property. For every point $a = (a_\mu : \mu \in W(m)) \in B(\tau, m)$ there exists $s \in S$ such that $|H_s \cap H(a_\alpha : \alpha \leq \beta)| = m$ and $|H_\alpha \setminus H(a_\alpha : \alpha \leq \beta)| < m$ for every $\beta \in W(M)$. Then $|S| = \tau^m$ (for $\tau = m = \aleph_0$ see [8], Exercise 3.6.1(a)). Generate a topology on the set $Y = H \cup S$ by the neighbourhood system $\{B_{(y)} : y \in Y\}$, where $B_{(y)} = \{H(y, \emptyset) = \{y\}\}$ if $y \in H$ and $B_{(y)} = \{H(y, L) = \{y\} \cup (H_y \setminus L) : L \subseteq H, |L| < m\}$ if $y \in S$.

Every open cover of H(y, L) contains a subcover of H(y, L) of cardinality $< \tau$. In particular, $l(H(y, \emptyset)) \leq m$ and for $m = \aleph_0$ the sets H(y, L) are compact. Fix in S some subset S_1 of cardinality λ and consider $Z = H \bigcup S_1$ as a subspace of Y. We put $X(\tau, m, \lambda) = Z \bigcup \{b\}$, where $b \in Z$. Consider that Z is an open subspace of $X(\tau, m, \lambda)$ and the neighbourhoods of the point b are the form $H(y_1, ..., y_n) = Z \setminus \bigcup \{H(y_i, L_i) : i \leq n\}$, where $n \in N$, $L_1, ..., L_n \subseteq H$, $|L_i| < m$ for every $i \leq n$ and $y_1, ..., y_n \in Z$. We have dim $X(\tau, m, \lambda) = 0$ and $l(X(\tau, m, \lambda)) \leq m$. Moreover, $X(\tau, m, \lambda)$ is a scattered space with $is(X(\tau, m, \lambda)) = 3$ and every open cover of $X(\tau, m, \lambda)$ contains a subcover of cardinality < m. For $m = \aleph_0$ the space $X(\tau, m, \lambda)$ is compact. By construction, $c(X(\tau, m, \lambda)) = d(X(\tau, m, \lambda)) = \tau$ and $\psi(X(\tau, m, \lambda)) =$ $\psi(b, X(\tau, m, \lambda)) = |X(\tau, m, \lambda)| = \lambda$.

Proposition 7.3. Let τ , m be infinite cardinals and $\tau = \sum \{\tau^n : n < m\} < \lambda \le \tau^m$. Then:

- 1. $wr(X(\tau, m, \lambda)) = \lambda$.
- 2. $r_{\tau}(X(\tau, m, \lambda)) = 1$ if and only if $\lambda = \tau^+$.
- 3. If $\tau^+ < \lambda \leq \tau^m$, then $r_\tau(X(\tau, m, \lambda)) = \lambda$.

Proof. It is obvious that $r_{\tau}(X(\tau, m, \lambda)) \leq wr(X(\tau, m, \lambda)) \leq \lambda$. By Theorem 3.1, $\lambda = \psi(X(\tau, m, \lambda)) \leq c(X(\tau, m, \lambda)) + wr(X(\tau, m, \lambda)) = \tau + wr(X(\tau, m, \lambda))$. Hence $wr(X(\tau, m, \lambda)) = \lambda$.

If $\lambda = \tau^+$, then from Proposition 2.7 it follows that $r_{\tau}(X(\tau, m, \lambda)) = 1$. Suppose that $\lambda > \tau^+$. By Theorem 4.1, we have $\lambda = \psi(X(\tau, m, \lambda)) \leq d(X(\tau, m, \lambda)) + r_{\tau}(X(\tau, m, \lambda)) + \tau^+ = \tau + \tau^+ + r_{\tau}(X(\tau, m, \lambda))$. Hence $r_{\tau}(X(\tau, m, \lambda)) = \lambda$. The proof is complete.

Corollary 7.4. Let $m = \tau = \aleph_0 < \lambda \leq c = 2^{\aleph_0}$. Then:

- 1. $X(\tau, m, \lambda)$ is a separable scattered compact space.
- 2. $wr(X(\tau, m, \lambda)) = \lambda$.
- 3. $r_{\tau}(X(\tau, m, \lambda)) = 1$ if and only if $\lambda = \aleph_1$.
- 4. $r_{\tau}(X(\tau, m, \lambda)) = \lambda$ if and only if $\aleph_2 \leq \lambda \leq c$.

Corollary 7.5. Let $m = \aleph_0, \tau \ge m, \tau < \lambda \le \tau^m$. Then: 1. $X(\tau, m, \lambda)$ is a compact scattered space. 2. $wr(X(\tau, m, \lambda)) = \lambda$. 3. $r_{\tau}(X(\tau, m, \lambda)) = 1$ if and only if $\lambda = \tau^+$. 4. $r_{\tau}(X(\tau, m, \lambda)) = \lambda$ if and only if $\tau^+ < \lambda \le \tau^m$.

By D_{τ} we denote the discrete space of cardinality τ and by A_{τ} we denote the Alexandroff one-point compactification of the space D_{τ} . It is obvious that $wr(A_{\tau}) = wsr(A_{\tau}) = 1$ for every cardinal τ .

Theorem 7.6. Let $n \in N$, $\tau_{n+1} \geq \aleph_0$ and $\tau_1, \tau_2, ..., \tau_n$ be uncountable cardinals. Then $wr(\prod\{A_{\tau_i} : i \leq n+1\}) = wsr(\prod\{A_{\tau_i} : i \leq n+1\}) = n+1$.

Proof. We have $ic(A_{\tau}) = \aleph_0$ for every $\tau \ge \aleph_0$. Fix $1 \le m \le n$. Consider that $A_{\tau_i} \setminus D_{\tau_i} = \{a_i\}$. We put $X_m = \prod\{A_{\tau_i} : i \le m\}$ and $b_m = (a_1, ..., a_m) \in X_m$. If H is a G_{δ} -subset of X_m and $b_m \in H$, then H contains the copy of X_m and $sr(H) = sr(X_m)$. By Theorem 7.4, $wsr(X_2) = wsr(A_{\tau_1} \times A_{\tau_2}) \ge 2$. By induction and Theorem 7.5 it follows that $wsr(X_m) \ge m$ and $wsr(X_n \times A_{\tau_{n+1}}) \ge n+1$. This complete the proof. \Box

Theorem 7.7. Let X be a locally compact scattered metalindelöf space. If $wr(X \times X) = 1$, then X is metrizable.

Proof. Let X be a non-discrete space. Since X is locally compact, $ic(X) = \aleph_0$. By Theorem 6.4 it follows that $\psi(X) = \aleph_0$. By virtue of Telgarski's theorem [14], every scattered compact first countable space is metrizable. Hence X is locally metrizable and X has a point-countable base. In virtue of Alexandroff's and Urysohn's theorem ([1], Theorem 5.11; [10], Exercise 4.4.F and Theorem 5.3.10) the space X is metrizable.

Acknowledgement

The author would like to thank the referee for his useful comments and constructive criticism.

References

 P. Alexandroff et P. Urysohn. Memoire sur les espaces topologiques compacts. - Verlag. Acad. Wetensch. Amsterdam, 14, 1929.

[2] A. V. Arhangel'skii. On ranks of systems of sets and on dimensions of spaces. - Fund. Math. **52** (1963), 257 - 275.

[3] A. V. Arhangel'skii. *Bicompact sets and the topology of spaces.* - Trans. Mosc. Math. Soc. **13** (1965), 1 - 62.

[4] A. V. Arhangel'skii. The structure and the classification of topological spaces and cardinal invariants. - Russian Math. Surveys **33** (1978), 33 - 96.

[5] A. V. Arhangel'skii and V. V. Filipov. *Spaces with bases of finite rank.* - Math. USSR Sb. **16** (1973), 147 - 158.

[6] P. A. Biryukov. Cardinalites and ranks of π -bases in topological spaces. - Comment. Math. Univ. Carol. **21:4** (1980), 769 - 776.

[7] P. A. Biryukov. The rank of families of sets and the properties of topological spaces. - Doklady Academii Nauk SSSR, 257:4 (1981), 777 - 779.

[8] M. M. Choban. Spaces with bases of rank one. - Izvestia Acad. Nauk. Moldav. SSR, Matematica 3 (1973), 12 - 19.

[9] M. M. Choban and N. K. Dodon. *Theory of P-scattered spaces*, Stiinta, Kishinev, 1976.

[10] R. Engelking. General Topology, PWN, Warszawa, 1977.

[11] G. Gruenhage and P. Nyikos. *Spaces with bases of countable rank.* - General Topology and Applications 8:3 (1978), 233 - 257.

[12] J. R. Isbell. A note on complete closure algebras. - Math. Systems Theory **3** (1969), 310 - 312.

[13] H. J. K. Junnila. Stratifiable pre-images of topological spaces.
Topology, vol. 2, Proceedings Fourth Colloquium, Budapest, 1978, Colloquia Math. Societ. - J. Bolyai 23 (North Holland, Amsterdam) 1980, 689 - 703.

[14] R. Telgarsky. Total paracompactness and paracompact dispersed spaces. - Bull. Acad. Polon. Sci., Ser. Math. 16 (1968), 567 - 572.

Tiraspol State University, str. Gh.Iablocikin 5, Kishinew, MD 2069, Moldova

E-mail address: ust@ch.moldpac.md, mmchoban@mail.md