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Abstract

The paper considers universals, a topic introduced
by Lebesgue and part of the classical development
of descriptive set theory, in the context of mod-
ern set-theoretic topology and, in particular, by
surveying recent work of the Oxford group.
Interest centres on which spaces have universals
‘parametrised’ by the Cantor set and how this
varies when the universal is at a different level of
the Borel hierarchy or the space under consider-
ation has a Gδ-diagonal or is compact. Cardinal
invariants and consistency considerations play an
important role.

1. Introduction

One problem in developing topological theory and in its
appreciation by the mathematical community is its third-order
character and the resulting importance of counter-examples and
set-theoretic considerations, so anathema to many working
mathematicians. Topologists recognized this long ago and many
attempts have been made to make the subject more tractable.
How may one describe the open sets of a space in a ‘nice way’?
How could one best describe, for example, the complement of
a Julia, or Mandelbrot, set in the plane? For separable metric
spaces, which is where the discussion commences here, one can
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give a ‘listing’ of open sets by means of sequences of elements
from a countable basis. But what would a ‘nice listing’ look
like?

Interpreting classical theory in our own times is often a fruit-
ful way of developing a subject - and such is the strand of the
current work of the Oxford general topology group surveyed
here. This strand concerns ‘universals’, sets used by the an-
cients of Descriptive Set Theory to attack the listing problem.
The work goes back to H. Lebesgue (1905) and, amongst the
more influential authors, one can name N. Lusin, O. Nikodym
and W. Sierpinski (see [8, 9, 10, 11, 12]). I select one aspect of
their work as background to the current discussion.

Suppose M is a family of subsets of Euclidean spaces (the
family may have sets in many, or all, Rn). Let P (M) de-
note the collection of all projections of these sets into Euclidean
spaces of one lower dimension and let C(M) be the collection
of all complements of these sets in the spaces in which they lie
(A ∈ M, A ⊆ Rm ⇐⇒ Rm\A ∈ C(M)).

Now let F denote the family of all closed sets in all Rn.
It turns out that P (F) consists of the Fσ’s, CP (F) the Gδ’s,
PCP (F), the analytic sets and PCP (F)∩CPCP (F) the Borel
subsets of Euclidean spaces. Indeed, the projective hierarchy
{Pn : 1 6 n < ω} is defined in this way by the induction
Cn = C(Pn) and Pn+1 = P (Cn), for n > 1, where P1 = P (F).
The projective hierarchy extends the Borel hierarchy
{Σα,Πα(1 6 α < ω1)} see section 3 below. Before reproduc-
ing one typical result, we give our basic definition in a general
context.

Definition 1.1. Suppose that X and Y are topological spaces.
A subset U of X × Y is an open (resp. closed, resp. Σα−, resp.
Πα−, resp. Pα−) universal for X parametrised by Y if U is open
(resp. closed, resp. belongs to Σα−, resp. Πα, resp. Pα) and if
for each open (resp. closed, resp. member of Σα, resp. Πα, resp.
Pα) V in X, there is y in Y such that V = {x : (x, y) ∈ U } ≡
U y . We may equivalently speak of ‘X having an open universal
parametrised by Y ’ etc.



UNIVERSALS IN OUR TIME 489

N.B. Thus, the topology on X consists precisely of all the sets
U y as Y varies, but it could well happen that U y = U z for
distinct elements y, z of the parametrising space Y .

An example of a classical theorem, and one which motivates
some of our current work, is the following.

Theorem 1.2. (see [12]) Given any positive integer n, there is
in R2 a Pn−universal for R parametrised by itself.

N.B. Indeed, Theorem 1.2 can be (seemingly) strengthened by
replacing R2 with Rm+1 (m a positive integer) and R (the space
X in the definition) by a hyperplane in Rm parallel to a co-
ordinate axis.

All spaces are assumed to be both regular and Hausdorff. For
concepts not defined here, the reader is referred to R. Engelking
[2].

2. Open Universals

We start by making some elementary observations, the first of
which is folklore, but generates much of what we say in this
section.

Proposition 2.1. (see [7]) Every separable metric space X has
an open universal set U parametrised by a Cantor set.

Proof. If B is a countable basis, f ∈ 2B and U f =
⋃
{B ∈ B :

f (B) = 0}, put U =
⋃
{U f × {f } : f ∈ 2 B}. 2

Lemma 2.2. [5] Suppose that U is an open universal for X
parametrised by Y . Then

(a) c(U), the complement of U , is a closed universal for X
parametrised by Y (and conversely)
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(b) if X ′ ⊆ X, Y ′ ⊇ Y, there exists an open universal for X ′

parametrised by Y ′.

Lemma 2.2 (b), the ‘subspace-superspace lemma’, has some
interesting consequences: if Y has property P entails X has Q,
then it implies that X has Q hereditarily. Further, in the case
when Y is Tychonoff, one adds nothing by insisting that Y be
compact - just embed Y in any Hausdorff compactification.

Natural question 2.3. Which spaces have an open universal
parametrised by 2ω?

N.B. The question remains the same if one replaces the
parametrising space by a second countable space (indeed, by
any cosmic space).

The range of spaces available for such Cantor parametrisa-
tions may be judged from the following result. The imposition
of a Gδ-diagonal and compactness to strengthen results obtained
for general spaces is typical.

Theorem 2.4. [5] Suppose that X has an open universal para-
metrised by Y . Then

(a) w(X) 6 nw(Y ), hd(X) 6 hL(Y ), hc(X) 6 hc(Y ), hL(X) 6
hd(Y )

(b) if X has a Gδ-diagonal

hd(Xω) 6 hL(Y ), hc(Xω) 6 hc(Y ), hL(Xω) 6 hd(Y )

(c) (consistent and independent) if X is compact and zero-
dimensional and Y has the countable chain condition hered-
itarily, then X has a countable basis (and is hence metris-
able).
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N.B. The duality between hereditary density and hereditary Lin-
delöf degree in (a) is noteworthy. In (b), Xω may be replaced
by Xn for each positive integer n, as is well-known. It is not
known if ‘zero-dimensional’ can be omitted in (c) (see [5]).

The flavour of proofs involving universals can be tasted in the
following partial justification of 2.4(a).

Proposition 2.5. Under the hypotheses of 2.4, if Y is heredi-
tarily separable then X is hereditarily Lindelöf.

Proof. Suppose that X has the open universal U but is not
hereditarily Lindelöf and that {Vα : α < ω1} is a strictly
increasing family of open subsets of X with no countable sub-
cover. Pick xα in each Vα\

⋃
{Vβ : β < α} and yα such that

Vα = U yα (notation of Definition 1.1). Then, as U is open,
there are Tα open in X and Wα open in Y such that

(xα, yα) ∈ Tα × Wα ⊆ U but (xβ, yβ) /∈ Tα × Wα (β < α)

The proof is completed by showing that {yα : α < ω1} is not
separable. If D were a countable dense subset, then there is
β < ω1, such that D ⊆ {yα : α 6 β}. But then Wβ ∩ D = ∅. 2

3. Borel Universals

We use the following (abbreviated) notation for the Borel Hier-
archy {Σα,Πα(1 6 α < ω1)} in a space X : Σ1 for the family of
open subsets of X and, inductively, Πα(α > 1) for the family of
complements of elements of Σα in X and Σα(α > 2) for the fam-
ily of countable unions of sub-families from Πα−1 for successor
α and the countable union of subfamilies from all Πβ, β < α, for
limit ordinal α. Thus, Σ2 consists of all the Fσ’s, Π2 the Gδ’s,
etc. As in 2.2(a), a space has a Σα-universal if and only if it has
a Πα-universal.
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Theorem 3.1. [6] Suppose that the topological space (X, τ )
has weight κ and 0 < α < ω1. Then X has a Σα-universal
parametrised by D(| τ |)ω and one parametrised by 2κ. (D(λ) is
the discrete space of cardinality λ.)

That universals may be used to show that the Borel hierarchy
in a Polish space stretches all the way up to ω1 is well known
(see [7]). (Sketch proof: if U is a Σα-universal for a Polish space
X parametrised by 2ω, then A (defined by y ∈ A if (y, y) /∈ U )
belongs to Πα = Σα, as the diagonal is homeomorphic to X. As
U is universal, there exists y◦ ∈ 2ω with A = U y◦ . But then a
simple diagonal argument gives a contradiction (see [7], 22.4)).

Natural question 3.2. Are there non-metric spaces with Σα-
(or Πα-) universals parametrised by 2ω?

For α = 1 and general X, and for α finite and X compact,
the answer is ‘no’; for, in such cases, w(X) 6 nw(Y ), extending
2.4(a) (see [6]). For general X and α > 2, the answer is ‘yes’.
Even for α = 2, there are a wide range of examples. Gartside
and Lo give, under CH, an L-space (hereditarily Lindelöf, but
not separable) and, under b = ℵ1, even a strong S-space (all
finite powers hereditarily separable, but not Lindelöf) with a
Gδ-universal parametrised by the Cantor set. They also provide
(in [6]) an example in ZFC of a non-metrisable, but hereditarily
separable and hereditarily Lindelöf space with Gδ-universal set
parametrised by 2ω, namely, a λ-set in R when considered as a
subset of the Sorgenfrey line. (A λ-set is an uncountable subset
of the reals in which every countable subset is a Gδ.) The crucial
fact here is that any subspace of the Sorgenfrey line is of ‘Kunen-
line-type’, that is, closed sets differ from Euclidean closed sets
by at most a countable set.

For ω 6 α < ω1 and X compact, the question provides a
natural link with modern set-theoretic topology (as do the L-
and S-space examples above). Only partial answers are known;
only consistent results can be expected and much of what has
been shown depends on adding the assumption 2ℵ◦ < 2ℵ1. For
fuller discussions of the issues involved, see [1, 6].
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