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Abstract

We obtain variations of the splitting and jointly
continuous topologies replacing in its definitions
the continuity of mappings (of the product spaces)
by the coordinately continuity. These variation
are used to study the pointwise topology and its
relations to some other well known topologies on
function spaces.

1. Introduction

We denote by Y and Z two fixed topological spaces and by
C(Y,Z) the set of all continuous maps of Y into Z. If τ is a
topology on the set C(Y,Z), then the corresponding topological
space is denoted by Cτ (Y,Z).

Let X be a topological space and F a map of X × Y into Z.
We denote by Fx the map of Y into Z for which Fx(y) = F (x, y)
for every y ∈ Y and, by F y the map of X into Z for which
F y(x) = F (x, y) for every x ∈ X. A mapping F : X × Y → Z
is said to be coordinately continuous if the maps Fx and F y are
continuous for every x ∈ X and y ∈ Y . It is clear that the
continuity of F implies the coordinate continuity of this map.
Suppose that F : X × Y → Z is a coordinately continuous
map. By F̂ we denote the map of X into the set C(Y,Z), for
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which F̂ (x) = Fx, for every x ∈ X. Let G be a map of X into
C(Y,Z). By G̃ we denote the map of X × Y into Z, for which
G̃(x, y) = G(x)(y), for every (x, y) ∈ X × Y .

ByA we denote an arbitrary fixed family of topological spaces.
We start given some well known notions concerning the topolo-

gies on the set C(Y,Z).
A topology τ on C(Y,Z) is called splitting if for every space

X, the continuity of a map F : X × Y → Z implies that of
the map F̂ : X → Cτ (Y,Z). A topology τ on C(Y,Z) is called
jointly continuous if for every space X, the continuity of a map
G : X → Cτ(Y,Z) implies that of the map G̃ : X ×Y → Z (see,
[1], [2], [3], [4] and [11]).

If in the above definitions it is assumed that the space X
belongs to A, then the topology τ is called A−splitting (respec-
tively, A−jointly continuous) (see [5] and [7]). Also, for some
other variations of splitting and jointly continuous topologies see
[8].

Let O(Y ) be the family of all open sets of the space Y . The
Scott topology on O(Y ) (see, for example, [6]) is defined as fol-
lows: a subset IH of O(Y ) is open if:

(α) the conditions U ∈ IH, V ∈ O(Y ), and U ⊆ V imply
V ∈ IH, and

(β) for every collection of open sets of Y , whose union belongs
to IH, there are finitely many elements of this collection whose
union also belongs to IH.

The strong Scott topology on O(Y ) (see, [10]) is defined as
follows: a subset IH of O(Y ) is open if:

(α) the conditions U ∈ IH, V ∈ O(Y ), and U ⊆ V imply
V ∈ IH, and

(β) for every open cover of Y , there are finitely many elements
of this cover whose union belongs to IH.

The pointwise topology (see, for example, [3] and [11]) τp on
C(Y,Z) is the topology for which the family of all sets of the
form
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({y}, U) = {f ∈ C(Y,Z) : f(y) ∈ U},

where y ∈ Y and U ∈ O(Z), is a subbasis.
The compact open (see, [4]) topology τc on C(Y,Z) is the

topology for which the family of all sets of the form

(K,U) = {f ∈ C(Y,Z) : f(K) ⊆ U},

where K is a compact subset of Y and U ∈ O(Z), is a subbasis.
The Isbell topology τis (respectively, strong Isbell topology τs−is)

on C(Y,Z) (see, [11] and [10]) is the topology for which the fam-
ily of all sets of the form

(IH,U) = {f ∈ C(Y,Z) : f−1(U) ∈ IH},

where IH is Scott (respectively, strong Scott) open in O(Y ) and
U ∈ O(Z), is a subbasis.

The bounded open topology τbo on C(Y,Z) (see, [9]) is the
topology for which the family of all sets of the form:

(K,U) = {f ∈ C(Y,Z) : f(K) ⊆ U},

where K is a bounded set of Y (a subset K of Y is said to be
bounded if every open cover of Y has a finite subcover for K)
and U ∈ O(Z), is a subbasis.

The open open topology (see, [13]) τoo on C(Y,Z) is the topol-
ogy for which the family of all sets of the form:

(V,U) = {f ∈ C(Y,Z) : f(K) ⊆ U},

where V ∈ O(Y ) and U ∈ O(Z), is a subbasis.
The map e : C(Y,Z)× Y → Z, which is defined by e(f, y) =

f(y) for every f ∈ C(Y,Z) and y ∈ Y is called the evaluation
map (see, [1]).

A space X is called corecompact (see, for example, [10]) if for
every x ∈ X and for every open neighbourhood U of x, there
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exists an open neighbourhood V of x such that the subset V is
bounded in U .

Below, we give some well known results:
(1) The pontwise topology, the compact open topology and

the Isbell topology on C(Y,Z) are always splitting (see, for ex-
ample, [1], [2], [3], [4] and [11]).

(2) The compact open topology on C(Y,Z) is jointly con-
tinuous if Y is localy compact (a space Y is localy compact if
for every y ∈ Y there exists a neighbourhood U of y such that
Cl(U) is a compact subspace of X). In this case the compact
open topology is also the greatest splitting topology (see, [4] and
[2]).

(3) The Isbell topology on C(Y,Z) is jointly continuous if Y
is a corecompact space. In this case the Isbell topology is also
the greatest splitting topology (see, for example, [10] and [11]).

(4) The Isbell topology on C(Y,S), where S is the Sierpinski
space (that is S = {0, 1} with the topology τ = {∅, {0}, {0, 1}})
is the greatest splitting topology (see, [12]).

(5) The strong Isbell topology on C(Y,Z) is jointly continuous
if Y is locally bounded (see, [10]).

(6) The open open topology on C(Y,Z) is always jointly con-
tinuous (see, [13]).

2. Coordinately A-splitting and A-jointly Continuous
Topologies

Definition 2.1. A topology τ on C(Y,Z) is called coordinately
splitting if for every space X the coordinate continuity of a map
F : X × Y → Z implies the continuity of the map F̂ : X →
Cτ(Y,Z).

A topology τ on C(Y,Z) is called coordinately jointly con-
tinuous if for every space X the continuity of a map G : X →
Cτ(Y,Z) implies the coordinate continuity of the map G̃ : X ×
Y → Z.
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If in the above definitions the space X is assumed to be an
element of A, then τ is called coordinately A−splitting (respec-
tively, coordinately A−jointly continuous).

By definitions it follows immediately that if A1 and A2 two
families of spaces such that A1 ⊆ A2, then any coordinately
A2−splitting (respectively, coordinately A2−jointly continuous)
topology is also coordinately A1−splitting (respectively, coordi-
nately A1−jointly continuous).

Theorem 2.1. The following propositions are true:
(1) Every coordinately A−spitting topology on C(Y,Z) is

A−splitting topology.

(2) Every A−jointly continuous topology on C(Y,Z) is coor-
dinately A−jointly continuous topology.

The proof of this theorem is clear.

Below, we give some results concerning coordinately split-
ting and coordinately jointly continuous topologies on C(Y,Z).
These results are similar to the results of Section I of [5] con-
cerning splitting and jointly continuous topologies on C(Y,Z).
The corresponding proofs are also similar and so are omitted.

Theorem 2.2. Let τ be a topology on C(Y,Z) such that
Cτ(Y,Z) ∈ A. Then the following propositions are true:

(1) The topology τ is coordinately A−jointly continuous if and
only if the evaluation map e : Cτ(Y,Z)× Y → Z is coordinately
continuous.

(2) If τ is larger than a coordinately A−jointly continuous
topology, then τ is also coordinately A−jointly continuous.

(3) If τ is coordinately A−jointly continuous, then τ is larger
than any coordinately A−splitting topology.

(4) If τ is coordinately A−jointly continuous, then τ is coor-
dinately jointly continuous topology.
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Corollary 2.1. The following propositions are true:

(1) A topology τ on C(Y,Z) is coordinately jointly continuous
if and only if the evaluation map e : Cτ(Y,Z) × Y → Z is
coordinately continuous.

(2) A topology on C(Y,Z) larger than a coordinately jointly
continuous topology is also coordinately jointly continuous.

(3) Any coordinately jointly continuous topology on C(Y,Z)
is larger than any coordinately splitting topology.

Theorem 2.3. The following propositions are true:

(1) A topology on C(Y,Z) smaller than a coordinately
A−splitting topology is also coordinately A−splitting.

(2) On the set C(Y,Z) there exists the greatest coordinately
A−splitting topology, which is denoted by τ (A).

(3) Let Ai, i ∈ I, be a family of spaces and A=
⋃{Ai : i∈I}.

Then, τ (A) =
⋂{τ (Ai) : i ∈ I}.

(4) Let Ai, i∈I, be a family of spaces and A=
⋂{Ai : i∈I} 6=

∅. Then ∨{τ (Ai) : i ∈ I} ⊆ τ (A).

(5) τ (A) =
⋂{τ ({X}) : X ∈ A}.

Corollary 2.2. The following propositions are true:
(1) A topology on C(Y,Z) smaller than a coordinately split-

ting topology is also coordinately splitting.
(2) If τ is a coordinately splitting and coordinately jointly

continuous topology, then τ is uniquely defined.

Definition 2.2. Let A1 and A2 be two classes of spaces. We
say that these families are coordinately equivalent and write
A1 ∼c−τ A2 if and only if: (α) a topology τ on C(Y,Z) is
an coordinately A1−splitting if and only if τ is coordinately
A2−splitting and (β) a topology τ on C(Y,Z) is coordinately
A1−jointly continuous topology if and only if τ is coordinately
A2−jointly continuous.
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Theorem 2.4. There exists a space X(A) such that

A ∼c−τ {X(A)}.

Corollary 2.3. There exists a space X such that: (α) a topol-
ogy on C(Y,Z) is coordinately splitting if and only if this topol-
ogy is coordinately {X}−splitting and (β) a topology on C(Y,Z)
is coordinately jointly continuous if and only if this topology is
coordinately {X}−jointly continuous.

Notations 2.1. For every space X we denote by S(X × Y,Z)
the set of all coordinately continuous maps of the space X × Y
into the space Z. We note that the set S(X ×Y,Z) contains the
set C(X × Y,Z).

Definition 2.3. Let τ be a coordinately splitting topology on
C(Y,Z). The coordinately exponential function

Eτ : S(X × Y,Z) → C(X,Cτ(Y,Z))

is defined setting Eτ (F ) = F̂ , for every F ∈ S(X × Y,Z).
We note that this function is well defined since τ is coor-

dinately splitting. Also, the restriction of Eτ on C(X × Y,Z)
coincides with the exponential function E (see, for example,
[11]).

It is easy to verify the following theorem:

Theorem 2.5. If for every space X the mapping Eτ is onto,
then τ is a coordinately jointly continuous topology.

3. On the Pointwise Topology

Theorem 3.1. The pointwise topology τp on C(Y,Z) is coordi-
nately A−jointly continuous.
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Proof. Let G : X → Cτp(Y,Z) be a continuous map, where X is

an element of A. We need to prove that the map G̃ : X×Y → Z
is coordinately continuous.

Let x be a fixed element of X. Then, the map G̃x : Y → Z
(for which G̃x(y) = G̃(x, y) = G(x)(y) for every y ∈ Y ) coincides
with G(x), and therefore, it is continuous.

Now, let y be a fixed element of Y . Consider the map
G̃y : X → Z (for which G̃y(x) = G̃(x, y) for every x ∈ X)
and prove that this map is continuous. Indeed, let x be an ele-
ment of X and W an open neighbourhood of G̃y(x) in Z, that
is, G̃(x, y) = G(x)(y) ∈ W . Then, y ∈ (G(x))−1(W ). By defini-
tion of the pointwise topology the subset ({y},W ) of Cτp(Y,Z)
is open and G(x) ∈ ({y},W ). Since G is continuous there exists
an open neighbourhood Vx of x in X such that:

G(Vx) ⊆ ({y},W ).

By the definition of G̃, G̃(Vx × {y}) ⊆ W and, therefore,
G̃y(Vx) ⊆ W . Hence, the map G̃y is continuous.

Thus, the map G̃ : X × Y → Z is coordinately continu-
ous which means that the topology τp is coordinately A−jointly
continuous. 2

Corollary 3.1. Let τ be one of the following topologies: the
compact open topology, the Isbell topology, the strong Isbell topol-
ogy, the open open topology and the bounded open topology. By
Theorem 2.2 if the space Cτ(Y,Z) is an element of A, then τ is
coordinately A−jointly continuous.

Remark 3.1. We recall that (see [3] and [11]) that the space
Cτco(Y,Z) belongs to the family A in the following cases:

(1i) A is the family of all Ti-spaces, i = 0, 1, 2, 3, 31
2

and
Z ∈ A.

(2) A is the family of all topological spaces whose weight is
not greater than a certain fixed infinite cardinal, Y is localy
compact and Y,Z ∈ A.
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(3) A is the family of all compact spaces, Y is a discrete
Tychonoff space, Z contains a subspace homeomorphic the space
of real numbers with the usual topology and Z ∈ A.

(4) A is the family of all Baire spaces (a space is a Baire space
provided that every countable intersection of open dense subsets
is dense), and Y is a locally compact, paracompact space.

(5) A is the family of all metrizable spaces, Z ∈ A and Y
is a hemicompact space (a Hausdorff space Y is hemicompact if
in the family of all compact subspaces of X ordered by ⊂ there
exists a countable cofinal subfamily).

Corollary 3.2. By Corollary 3.1 in cases mentioned in the above
Remark 3.1 the compact open topology on C(Y,Z) is coordinately
A−jointly continuous.

Remark 3.2. We recall that (see [10] and [11]) that the space
Cτis(Y,Z) belongs to the family A in the following cases:

(1i) A is the family of all Ti-spaces, i = 0, 1, 2 and Z ∈ A.
(2) A is the family of all second countable spaces, Y is core-

compact and Y,Z ∈ A.

Corollary 3.3. By Corollary 3.1 in cases mentioned in the above
Remark 3.2 the Isbell topology on C(Y,Z) is coordinately
A−jointly continuous.

Corollary 3.4. The compact open topology, the Isbell topology,
the strong Isbell, the open-open topology and the bounded open
topology on C(Y,Z) are coordinately jointly continuous topolo-
gies.

Theorem 3.2. The pointwise topology τp on C(Y,Z) is coordi-
nately A−splitting.

Proof. Let F : X × Y → Z be a coordinately continuous map,
where X is an element of A. We need to prove that the map
F̂ : X → Cτp(Y,Z) is continuous.
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Indeed, let x be an element of X and ({y},W ) is an open
neighbourhood of F̂ (x) in Cτp(Y,Z), where y ∈ Y and W is an

open set of Z,. Then F̂ (x)(y) = F (x, y) ∈ W . Since the map
F y : X → Z is continuous there exists an open neighbourhood
Vx of x in X such that F y(Vx) ⊆ W . This means that F̂ (Vx) ⊆
({y},W ), that is, F̂ is continuous. Thus, the topology τp is
coordinately A−splitting. 2

Corollary 3.5. The pointwise topology τp on C(Y,Z) is coordi-
nately splitting.

Theorem 3.3. Let Cτp(Y,Z) ∈ A. Then the pointwise topology
τp is the greatest coordinately A−splitting topology.

Proof. By Theorems 2.2 and 2.3 since the topology τp is coor-
dinately A−jointly continuous and Cτp(Y,Z) ∈ A we have that
τ (A) ⊆ τp.

On the other hand by Theorems 2.3 and 3.2, τp ⊆ τ (A). Thus
τp = τ 2

Corollary 3.6. The pointwise topology τp on C(Y,Z) is the
greatest coordinately splitting topology.

4. On the Greatest A−splitting Topology

Theorem 4.1. The pointwise topology τp is A−jointly continu-
ous if and only if for every space X ∈ A the coordinate
continuity of the map F : X × Y → Z implies the continuity
of F .

Proof. Suppose that the pointwise topology τp is A−jointly
continuous. Let X be an element of A such that the map
F : X × Y → Z is coordinately continuous. Since the topol-
ogy τp is coordinately A−splitting (see Theorem 3.2), the map
F̂ ≡ G : X → Cτp(Y,Z) is continuous. On the other hand since

τp is A−jointly continuous the map G̃ = F : X × Y → Z is
continuous.
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Conversely, suppose that for every space X ∈ A the coordi-
nate continuity of the map F : X×Y → Z implies the continuity
of this map. Let X be an element of A and
G : X → Cτp(Y,Z) be a continuous map. Since the topol-
ogy τp is coordinately A−jointly continuous (see Theorem 3.1)
the map G̃ ≡ F : X × Y → Z is coordinately continuous. By
assumption the map G̃ is continuous. Thus, the topology τp is
A−jointly continuous. 2

Corollary 4.1. The pointwise topology τp is jointly continuous
if and only if for every space X the coordinate continuity of the
map F : X × Y → Z implies the continuity of the map F .

Corollary 4.2. Let Cτp(Y,Z) ∈ A. If for every space X ∈ A
the coordinate continuity of the map F : X ×Y → Z implies the
continuity of F , then the topology τp concides with the greatest
A−splitting topology.

Corollary 4.3. If for every space the coordinate continuity of
the map F : X × Y → Z implies the continuity of F , then the
pointwise topology τp coincides with the greatest splitting topol-
ogy.

Theorem 4.2. Let Y be a corecompact space. If for every space
X the coordinate continuity of the map F : X × Y → Z implies
the continuity of F , then the pointwise topology coincides with
the Isbell topology.

Proof. Since the space Y is corecompact the Isbell topology is
the greatest splitting (see Introduction). On the other hand the
pointwise topology is always splitting (see Introduction) and by
Corollary 4.1 is also jointly continuous. Therefore, τp concides
with the greatest splitting. Thus, τp ≡ τis 2
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The proof of the following theorem is similar to the proof of
Theorem 4.2.

Theorem 4.3. Let Y be a localy compact space. If for every
space X the coordinate continuity of the map F : X × Y → Z
implies the continuity of this map, then the pointwise topology
coincides with the compact open topology.
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