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Abstract

We present a method to obtain countably compact
group topologies that make a group without non-
trivial convergent sequences from the weakest form
of Martin’s Axiom, improving constructions due
to van Douwen and Tkachenko. We force the ex-
istence of such topology on the free Abelian group
of size 2c, providing a partial answer to a question
of Dikranjan and Shakmatov.

1. Introduction

The classification of the groups which may carry a compact
group topology was set by Hewitt in 1944 and solved by the
efforts of Kaplansky, Harison and Hulanicki in the next decade.
The counterpart of Halmos’ problem for pseudocompact groups
was faced by many authors among them Comfort, van Mill, Re-
mus, Dikranjan and Shakmatov.

Recently, Dikranjan and Tkachenko obtained the classifica-
tion of countable compactness for groups of size at most con-
tinuum using Martin’s Axiom. To carry out this classification,
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the technique Tkačenko used in [12] was essential. The problem
one encounters to classify groups of larger cardinality is that
Tkachenko’s countably compact group topology was only possi-
ble on the free Abelian group of size continuum.

This arouses greater interest on the following question due to
Dikranjan and Shakmatov [7]:

For what cardinals κ, is there a countably compact group
topology on the free Abelian group of size κ?

It is well known that compact groups must contain non-trivial
convergent sequences. In particular, every topological group
which is ω-bounded (countable subsets are compact) contains
non-trivial convergent sequences. Sirota [11] gave examples of
pseudocompact groups (in ZFC) which do not have non-trivial
convergent sequences. More results concerning such topological
groups can be found in [10].

A countably compact group without non-trivial convergent
sequences was first obtained by Hájnal and Juhász [8] under
CH. Few years later, van Douwen [5] obtained one from Martin’s
Axiom (MA). Those groups were used by van Douwen to con-
struct under MA two countably compact groups whose product
is not countably compact, answering in the negative a question
from [4]. In that paper, van Douwen asked for ZFC examples of
(1) two countably compact groups whose square is not countably
compact and (2) a countably compact group without non-trivial
convergent sequences.

Hart and van Mill [9] manage to obtain an example for (1)
from MAcountable. However, their example did not touch ques-
tion (2), that is, MA remained the weakest assumption to ob-
tain a countably compact group without non-trivial convergent
sequences.

Tkachenko [2] asked for a ZFC group topology on the free
Abelian group of size c that makes it countably compact, after
obtaining such group topology under CH [12]. The second au-
thor showed that such group topology can be obtained from
MA(σ-centered) [15].
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In this note, we construct two examples of group topologies on
free Abelian groups. We first construct from MAcountable a group
topology on the free Abelian group of size c that makes it count-
ably compact and without non-trivial convergent sequences. We
then force a group topology on the free Abelian group of size 2c

that makes it countably compact and such that all its infinite
subsets have 2c accumulation points.

The authors would like to thank I. Castro Pereira for spotting
some misprints in an earlier version of the manuscript.

2. An Example from MAcountable

The example is constructed, as in [8], [12], [5], [9] or [15], by
induction on c and at each stage a function is defined to obtain
the new coordinates for the elements that will be in the group.

In van Douwen’s example [5], the domain of the function
constructed by MA increased throughout the induction to c.
To work with just MAcountable, Hart and van Mill [9] use an
ω-bounded group that takes care of many of the accumulation
points, making it possible to worry only about the accumula-
tion points of a fixed countable group. The use of an ω-bounded
group makes the group have many non-trivial convergent se-
quences. The idea to overcome this came from elementary sub-
models. We shall deal with countable many elements using
MAcountable but those points change at each stage.

Example 1. (MAcountable) There exists a group topology on the
free Abelian group of size c that makes it countably compact and
without non-trivial convergent sequences.

Denote by T the unitary circle group with additive notation.
We will construct a family X = {xα : α < c} ⊆ cT which
will be free and the subgroup of cT generated by X with the
subspace topology will be countably compact and without non-
trivial convergent sequences.
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We define below two enumerations that will be needed for
bookkeeping.

Definition 2. Let {hξ : ω ≤ ξ < c} be an enumeration of all
functions h such that domh = ω and h is one to one; for each
n ∈ ω h(n) is a function whose domain is a finite non-empty
subset of c and its image is a subset of Z \ {0}. Furthermore,
for each ξ ∈ [ω, c),

⋃
n∈ω domhξ(n) is a subset of ξ.

The sequence associated to hξ will be the sequence

{
∑

µ∈dom hξ(n)

hξ(n)(µ)xµ : n ∈ ω}.

Thus, the hξ’s will bookkeep all injective sequences in the group
generated by X which do not contain 0.

Definition 3. Let {jξ : ω ≤ ξ < c} be an enumeration of all
functions j such that the domain of j is a non-empty finite subset
of c and its image is a subset of Z \ {0}. Furthermore, for each
ξ ∈ [ω, c), domjξ ⊆ ξ.

Note that X will be free if
∑

µ∈dom jξ
jξ(µ)xµ 6= 0 ∈ cT for

each ξ ∈ [ω, c). For this, it suffices that
∑

µ∈dom jξ
jξ(µ)xµ(ξ) 6=

0 ∈ T.

We are ready to detail the construction.
An infinite subset of any countably compact space without

non-trivial convergent sequences has size at least c. Thus, with-
out loss of generality we can assign different accumulation points
to different sequences. We will then promise that xξ will be an
accumulation point of the sequence associated to hξ. If we show
that X is free, we show, in particular, that {xξ : ξ < c} is
faithfully indexed, thus, we are promising c many accumula-
tion points for each non-trivial convergent sequence. Thus, at
each inductive stage we have to witness that the combination
associated to jξ is non-zero and keep the promises made by the
accumulation points.
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The idea is to separate the accumulation points in two types:
countably many that domjξ depend on to be defined and the
others.

Definition 4. By induction, define S(n) = ω and let
S(ξ) = {ξ} ∪

⋃
{S(µ) : µ ∈

⋃
n∈ω domhξ(n)}. Given F ⊆ c,

let S(F ) =
⋃

µ∈F S(µ)

The sequences and accumulation points that affect domjξ are
contained in S(domjξ).

Lemma 5. S(ξ) is countable for any ξ < c and if µ ∈ S(ξ) then⋃
n∈ω domhξ(n) ⊆ S(ξ).

The induction.
At stage ω, we define xn � ω ∈ ωT arbitrarily. Suppose that

at stage α < β, the following inductive conditions are satisfied:
i) xξ � α is defined for each ξ < α < β;
ii)

∑
µ∈dom jξ

jξ(µ)xµ(ξ) 6= 0 for each ξ ∈ [ω, α);

iii) xξ � α is an accumulation point of

{
∑

µ∈dom hξ(n)

hξ(n)(µ)xµ � α : n ∈ ω} for each ξ ∈ [ω, α).

Let us show that the induction holds for β.
If β is a limit ordinal, define xξ � β =

⋃
ξ<α<β xξ � α. Clearly

in this case, the inductive conditions hold.
If β = α + 1, first define xα � α as any accumulation point of

the sequence {
∑

µ∈dom hα(n) hα(n)(µ)xµ � α : n ∈ ω}.
We will now construct, using MAcountable, a function

φ : S(domjα) −→ T which is going to be used to define xµ(α)
for each µ ∈ S(domjα).

Definition 6. Let B a countable base of T consisting of non-
empty open subarcs and for convenience, containing T. An el-
ement of Q will be a function f where domf ∈ [S(domjα)]<ω

and ran f ⊆ B, domjα ⊆ domf and 0 /∈
∑

µ∈dom jα
jα(µ)f(µ).
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Given f, g ∈ Q, f ≤ g if domf ⊇ domg and for each
µ ∈ domg either f(µ) = g(µ) or f(µ) ⊆ g(µ).

Clearly Q is a countable partial order. We need to define some
sets before we define the dense subsets of the partial order.

Definition 7. For each F ⊆ α finite, n ∈ ω and ν ∈ S(domjα),
let E(ν, F, n) =

{m ∈ ω : ∀θ ∈ F ||
∑

µ∈dom hν (m)

hν(m)(µ)xµ(θ)−xν(θ)|| <
1

n + 1
},

where || · || is the usual norm in R2 restricted to T.

Lemma 8. For each F ∈ [α]<ω, n, k ∈ ω and ν ∈ S(domjα)
the set {f ∈ Q : ∃m ∈ E(ν, F, n) \ k ∧ domhν (m) ⊆ domf∧∑

µ∈dom hν(m) hν(m)(µ)f(µ) ⊆ f(ν)∧diam(f(ν)) < 1
n+1

} is dense
in Q.

Proof. Follows from the lemma below.

Lemma 9. Let I be a set of indexes and h be a one to one
function of domain ω such that domh(n) ∈ [I]<ω \ {∅} and
ranh(n) ⊆ Z \ {0}. Let U be an open subset of T, A ∈ [ω]ω and
f : I −→ B where {i ∈ I : f(i) 6= T} is finite. Then there exists
m ∈ A, g : I −→ B with g(i) ⊆ h(i) and {i ∈ I : g(i) 6= T}
finite such that

∑
i∈dom h(m) h(m)(i)g(i) ⊆ U .

Proof. See [12] or [15].

Applying the lemma above, let G be a generic subset of Q.
Define φ(ν) ∈

⋂
f∈G∧ν∈domf f(ν). Define xν(α) = φ(ν) for each

ν ∈ S(domjα). Clearly condition ii) is satisfied and conditions
i) and iii) are satisfied for ν ∈ S(domjα). Now, we define
φ � β \S(domjα) by induction. Suppose that ξ ∈ β \S(domjα),
φ � ξ is already defined, S(domjα) ∪ ξ satisfy the inductive
hypothesis and φ(ξ) is not defined yet. By hypothesis, xξ � α is
an accumulation point of {

∑
µ∈dom hξ(n) hξ(n)(µ)xµ � α : n ∈ ω}
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and φ(µ) is already defined for each µ ∈
⋃

n∈ω hξ(n). Since
T is compact, there exists a ∈ T such that (xξ � α, a) is an
accumulation point of the sequence {(

∑
µ∈dom hξ(n) hξ(n)(µ)xµ �

α,
∑

µ∈dom hξ(n) hξ(n)(µ)φ(µ)) : n ∈ ω}. Then xξ(α) = φ(ξ) = a
satisfies the inductive hypothesis for ξ at stage β.

Now, let xµ =
⋃

µ<η<c xµ � η for each µ < c. Clearly the
group generated by X = {xξ : ξ < c} is as required in Example
1.

Example 10. (MAcountable) There exists a countably compact
group topology on the free Abelian group of size c that makes
its square not countably compact.

Proof. To make the square of the group not countably compact,
it suffices to work with a sequence of pairs. So the method
presented here can be used to modify the example from [14]
that used Martin’s Axiom.

3. Forcing

Throughout this section, we will assume that κ is an uncountable
regular cardinal with κω = κ.

The following enumeration will be used to enumerate all one
to one sequences in the group we are constructing.

Definition 11. Let {hξ : ω ≤ ξ < κ} be an enumeration of all
functions h such that domh = ω, h is one to one; for each n ∈ ω
h(n) is a function whose domain is a finite non-empty subset of
κ and its image is a subset of Z \ {0}. Furthermore, for each
ξ ∈ [ω, κ),

⋃
n∈ω domhξ(n) is a subset of ξ.

Define S(ξ) by induction as in Definition 4.

The partial order. An element of P will be of the form
p = (αp,Dp, fp) where αp ∈ ω1; Dp ∈ [κ]ω and fp : Dp −→ αpT
satisfy

(1) Dp ⊇
⋃

ξ∈Dp
S(ξ);
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(2) fp(ξ) is an accumulation point of the sequence

{
∑

µ∈dom hξ(n)

hξ(n)(µ)fp(µ) : n ∈ ω}

for every ξ ∈ Dp \ ω;
(3) {fp(ξ) : ξ ∈ Dp} is free; that is,

∑
ξ∈domj j(ξ)fp(ξ) 6= 0 ∈

αpT, for each function j whose domain is a finite subset of Dp

and its range is Z \ {0}.
Given p, q ∈ P, we say that p ≤ q if and only if αp ≥ αq,

Dp ⊇ Dq and fp(ξ) � αq = fq(ξ) for each ξ ∈ Dq.

We will use the following facts to construct our example:

Lemma 12. Let P be as above. Then the following are satisfied:
Fact 0. P is a p. o.

Fact 1. P is countably closed.

Fact 2. (CH) P is ω2-cc.

Fact 3. Dξ := {p ∈ P : ξ ∈ Dp} is dense open in P, ∀ξ < κ.

Fact 4. Hα = {p ∈ P : αp ≥ α} is dense open in P, ∀α < ω1

Theorem 13. Let V be a model of GCH + κ > ω1, κ regular.
Let P be the partial ordering above defined and let G be a generic
filter over P. Then in V [G], there exists a group topology on the
free Abelian group of size κ = (2c)V [G] which makes it countably
compact and without non-trivial convergent sequences.

Proof of Theorem 13.
From Facts 1 and 2, (ω1 < κ = 2ω1)V [G] and the countable

subsets of V are the same in V and V [G].
For each α < 2c, let xα =

⋃
{fp(α) : p ∈ G ∧ α ∈ domfp}.

From Facts 3 and 4, xα is a function in 2c for each α < 2c.
We claim that X = {xα : α < 2c} is free. Indeed, given a

function j : F −→ Z\{0}, where F is a finite subset of 2c, there
exists p ∈ G such that F ⊆ domp. From condition (3) in the
ordering, there exists β < αp such that

∑
ξ∈dom j j(ξ)xξ(β) =∑

ξ∈domj j(ξ)fp(ξ)(β) 6= 0 ∈ T.
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It suffices now to show that the group G generated by X
is countably compact. Let {yn : n ∈ ω} be a sequence in
G. Without loss of generality, we may assume that yn 6= 0
for any n ∈ ω and that yn 6= ym whenever n 6= m. Then,
there exists a one to one function h : ω −→ [Z\{0}]<ω such that
yn =

∑
µ∈dom h(n)(µ)xµ for each n ∈ ω. As no new

countable subsets of V are added, h is an element of V , thus,
there exists β ∈ [ω, 2c) such that hβ = h. Now, given α < c,
there exists p ∈ G such that β ∈ Dp and αp > α. Therefore,
xβ � α = fp(β) � α is an accumulation point of
{yn � α : n ∈ ω} = {

∑
µ∈dom hβ(n) hβ(n)(µ)fp(µ) � α : n ∈ ω}.

Since c is a limit ordinal, it follows that xβ is an accumulation
point of {yn : n ∈ ω}.

The following lemma will be needed to prove Lemma 12.

Lemma 14. Let D ∈ [κ]ω, β < ω1 and f : D −→ βT be such
that f(ξ) is the limit of a sequence {

∑
µ∈dom hξ(n) hξ(n)(µ)f(µ) :

n ∈ Aξ} with Aξ ∈ [ω]ω for every ξ ∈ D \ ω. If F is a non-
empty finite subset of Dand j : F −→ Z \ {0}, then there exists
a function φ : D −→ T such that φ(ξ) is a limit of a subsequence
of {

∑
µ∈dom hξ(n) hξ(n)(µ)φ(µ) : n ∈ Aξ} for each ξ ∈ D \ω and∑

µ∈F j(µ)φ(µ) 6= 0 ∈ T.

Proof. The space βT has countable weight, so it suffices to
apply Lemma 8 which in this case holds in ZFC.

Proof of Lemma 12
Fact 0 is trivial. In order to prove prove fact 1, let

{pn = (αn,Dn, fn) : n ∈ ω} be a decreasing chain in P. Let
α = supn∈ωαn, D =

⋃
n∈ω Dn and f(β) =

⋃
n∈ω∧β∈Dn

fn(β).
Then p = (α,D, f) ∈ P and p ≤ pn for each n ∈ ω.

For fact 2, let {pξ : ξ < ω2} be a subset of P. Applying
CH and the ∆-system lemma on {Dξ : ξ < ω2}, there exists
E ∈ [κ]≤ω and I ⊆ ω2 of size ω2 such that Dξ ∩ Dµ = E when-
ever ξ, µ ∈ I are distinct. Since αξ < c < ω2, we may also
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assume that there exists α < c such that αξ = α for each ξ ∈ I.
Furthermore, | E(αT)| ≤ c = ω1 < ω2, we can also assume that
there exists f such that fξ � E = f for each ξ ∈ I. We claim
that if η, ν ∈ I then pη and pν are compatible.

Indeed, let f = fη ∪ fν, D = Dη ∪Dν and α = αη = αν . Note
that conditions (1) and (2) in the definition of the partial order
P are satisfied for D and f . Let {jn : n ∈ ω} be an enumeration
of all functions whose domain is a finite subset of D and the
range is Z \ {0}. Since α is countable, there exists A0

ξ ∈ [ω]ω

for each ξ ∈ D \ ω such that f(ξ) is the limit of a sequence
{
∑

µ∈dom hξ(n) hξ(n)(µ)f(µ) : n ∈ A0
ξ}.

Applying Lemma 14, we can define by induction φn : D −→
T and a ⊆-decreasing chain {An

ξ : n ∈ ω} for each ξ ∈ D such
that φn(ξ) is the limit of the sequence

{
∑

µ∈dom hξ(n)

hξ(n)(µ)φn(µ) : n ∈ An
ξ}

and
∑

µ∈F jn(µ)φn(µ) 6= 0 ∈ T. Define Dq = D, αq = α+ω and
let fq : D −→ αqT such that fq(ξ) � α = f(ξ) and fq(ξ)(α+n) =
φn(ξ) for each ξ ∈ D \ω and n ∈ ω. Clearly q = 〈αq,Dq, fq〉 ∈ P
and q extends both pη and pν .

For fact 3, let p an element of P and ξ ∈ κ arbitrary. If ξ ∈ Dp

we are done. So, we suppose that ξ /∈ Dq. We can find a count-
able subset D of κ such that Dp ∪{ξ} ⊆ D and D ⊇

⋃
ξ∈D S(ξ).

We define f : D −→αp T by induction as follows: set f � Dp =
fp and let ξ ∈ D\Dp be the least for which f(ξ) has not been de-
fined. Then the sequence {

∑
µ∈dom hξ(n) hξ(n)(µ)f(µ) : n ∈ ω}

is already defined. Thus, let f(ξ) ∈ αpT be an accumulation
point for this sequence. Now, D and f satisfy conditions (1)
and (2) from the definition of the partial order. Applying the
same argument from fact 2, we can obtain q ∈ P extending p
with Dq = D 3 ξ and αq = αp + ω.

For fact 4, given p ∈ P with αp < α let f whose domain is
Dp and for each β ∈ Dp, let f(β) � αp = fp(β) and f � [αp, α) =
0. 2
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Note: By standard closing-off arguments, it is possible to
obtain countably compact group topologies on each infinite free
Abelian group of size λ = λω ≤ 2c.

Recently the method of forcing was used to construct a count-
ably compact topological group of size ℵω [16], answering in
the negative a question of van Douwen [6]. In that paper, van
Douwen showed that under the Generalized Continuum Hypoth-
esis, the size of a countably compact topological group cannot
have countable cofinality.
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