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Abstract

We show that there exists a topological group G
(namely, G := L4[0, 1]) such that for a certain
reflexive Banach space X the group G can be
represented as a topological subgroup of Is(X)
(the group of all linear isometries endowed with
the strong operator topology) and such an X never
may be Hilbert. This answers a question of
V. Pestov and disproves a conjecture of A. Shtern.

1. Introduction

Let X be a real Banach space. Denote by Is(X)s (Is(X)w)
the group of all linear isometries of X endowed with the strong
(resp., weak) operator topologies.

A representation of a Hausdorff topological group G in X
is a continuous group homomorphism G → Is(X)s. Let K
be a subclass of the class Ban of all Banach spaces. We say
that G is K-representable if for a certain X ∈ K there ex-
ists a topological group embedding G ↪→ Is(X)s. Denote by
KR the class of all K-representable groups. For instance, this
leads to the definitions of the following classes BanR, RefR, and
HilbR, where Ref and Hilb denote all reflexive and all Hilbert
spaces, respectively. We say that G is reflexively representable
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(unitarily representable) if G ∈ RefR (resp., G ∈ HilbR).
Denote by TopGr the class of all Hausdorff topological groups.
We have

TopGr = BanR ⊇ RefR ⊇HilbR.

Indeed, the inclusions are trivial. As to TopGr = BanR,
recall that every Hausdorff topological group G can be embedded
into the group Is(E)s of all linear isometries of a suitable Banach
space E endowed with the strong operator topology. As in the
paper of Teleman [23], take for example X := Cb

r(G), the Banach
space of all bounded right uniformly continuous functions on G.

It is also well known that TopGr 6= HilbR. Moreover, there
are many examples of so-called exotic groups (that is, the groups
whose unitary representations are trivial), see Herer-Christensen
[12] and Banasczyk [3]. Among many interesting examples from
[3], note that l2/D is exotic for some discrete subgroup D of l2.
Not every separable Banach space (as a topological group) is
unitarily representable. It is well known that l2 is not uniformly
universal in the class of separable metrizable uniform spaces
(Enflo [10], Aharoni [1]). These arguments lead to the fact that
C[0, 1], c0 /∈ HilbR (see Proposition 3.7 below).

Recently, it has been proved in [18] that TopGr 6= RefR.
Denote by H+[0, 1] the group of all orientation preserving self-
homeomorphisms of the closed interval endowed with the com-
pact open topology. It turns out that every (weakly) continuous
representation of H+[0, 1] in a reflexive Banach space by linear
isometries is trivial. This result answers a question discussed by
Ruppert [20] and conjectured by V. Pestov.

A natural question arises about coincidence of RefR and
HilbR. This question is posed in the recent paper by V. Pestov
[19]. Earlier the positive answer was conjectured by A. Shtern
[22]. The main result of the present work disproves this con-
jecture. Theorem 3.1 below implies that L4[0, 1] ∈ RefR and
L4[0, 1] /∈ HilbR.
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2. Weakly Almost Periodic Functions

Recall that a continuous bounded function f ∈ Cb(G) on a
topological group G is called weakly almost periodic (in short:
wap) in the sense of Eberlein [9, 8] if the orbit of f in Cb(G)
is relatively weakly compact. The subset WAP (G) of all wap
functions in Cb(G) forms a closed (left and right) translation-
invariant subalgebra. Every positive definite function is wap [5].

A semigroup S is semitopological if the multiplication S×S →
S is separately continuous. The compactification j : G → Gw

induced by the algebra WAP (G) is the universal semitopological
compactification of G.

For every reflexive Banach space E, the semigroup

Θ(E)w := {s ∈ L(E,E) : ‖s‖ ≤ 1}

of all contractive linear operators forms a compact semitopo-
logical semigroup in the weak operator topology [8]. Hence,
the same is true for its closed subsemigroups. Conversely, an
arbitrary compact Hausdorff semitopological semigroup can be
obtained in this way (see Fact 2.2). By a result of Lawson [7,
Corollary 6.3] every subgroup of a compact Hausdorff semitopo-
logical semigroup is a topological group.

Fact 2.1. Let G be a Hausdorff topological group. Then the
following conditions are equivalent:

(i) There exists a reflexive Banach space E such that G is
embedded as a topological subgroup into Is(E)s (equivalently,
G is reflexively representable);

(ii) There exists a reflexive Banach space E such that G is
embedded as a topological subgroup into Is(E)w;

(iii) The algebra WAP (G) separates points and closed sub-
sets;

(iv) The canonical map j : G → Gw is a topological embed-
ding;
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(v) G is a topological subgroup of a Hausdorff compact semi-
topological semigroup.

The equivalence of (iii), (iv) and (v) is well known [20, 5].
The part (ii) =⇒ (iii) follows from the fact that for every

reflexive Banach space E and a norm-bounded semigroup S of
linear operators on E the generalized matrix coefficients

{mv,f : S → R}f∈E∗,v∈E mv,f(s) = f(sv)

all are wap.
The part (iii) =⇒ (ii), is a direct consequence of the following

result of A. Shtern.

Fact 2.2. ([22, 15, 17]) The following conditions are equivalent:
(a) WAP (S) separates points and closed subsets;
(b) S can be embedded into Θ(E)w for a certain reflexive

Banach space E.

As to the equivalence (i)⇐⇒ (ii), note that by [16, 17], strong
and weak operator topologies coincide on Is(X) for a wide class
of Banach spaces with PCP (the point of continuity property)
including the class of all reflexive Banach spaces.

3. Main Results

Let (Ω, B, µ) be a measure space. The corresponding standard
space Lp(Ω, B, µ) (1 ≤ p <∞) will be denoted simply by Lp(µ).

Theorem 3.1. (i) L2k(µ) ∈ RefR for every natural k ∈ N;

(ii) Lp[0, 1] /∈ HilbR for every 2 < p <∞.

We say that a function F : A×B → R has Double Limit Prop-
erty (in short: DLP) if for every pair of sequences {an}, {bm} in
A and B respectively,

limn limm F (an, bm) = limm limn F (an, bm)

whenever both of the limits exist.
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We need Grothendieck’s characterization of wap in terms of
Double Limit Property.

Fact 3.2. ([5, 20]) A function f ∈ Cb(G) is wap iff the induced
map F : G×G→ R defined by F (g, h) := f(gh) has DLP, that
is, for every pair of sequences {gn}, {hm} in G,

lim
n

lim
m

f(gnhm) = lim
m

lim
n

f(gnhm)

whenever both of the limits exist.

Lemma 3.3. Let a topological group G admit a left-invariant
metric d with DLP. Then G is reflexively representable.

Proof. Define the norm ‖g‖ :=d(e, g). Then ‖gnhm‖=d(g−1
n , hm).

By Grothendieck’s characterization (Fact 3.2), the bounded
function

φe : G→ R g 7→ 1

1 + ‖g‖
is wap. Then its left or right translations are also wap. There-
fore, for every fixed z ∈ G the function

φz : G→ R g 7→ 1

1 + ‖gz‖

is a wap function. Since the norm generates the original topology
on G, the family {φz}z∈G of wap functions separates points and
closed subsets of G. Hence, by Fact 2.1 we can conclude that
G ∈ RefR.

Lemma 3.4. The norm in the Banach space L2k(µ) (k ∈ N)
has DLP.

Proof. We have to show that for every pair {un(t)}, {vm(t)} of
sequences in L2k(µ)

lim
n

lim
m
‖un + vm‖ = lim

m
lim

n
‖un + vm‖



620 Michael G. Megrelishvili

whenever both of the limits exist. We can suppose that the
sequences are norm-bounded. Computing the norm ‖un + vm‖,
we get

‖un + vm‖ = (

∫

Ω

(un(t) + vm(t))2kdµ)
1
2k

= (‖un‖2k +
2k−1∑

i=1

C i
2k < u2k−i

n , vi
m > +‖vm‖2k)

1
2k

where

< u2k−i
n , vi

m >=

∫

Ω

u2k−i
n (t)vi

m(t)dµ

and
u2k−i

n ∈ L 2k
2k−i

(µ), vi
m ∈ L 2k

i
(µ) = L∗

2k
2k−i

(µ).

Passing to subsequences if necessary, we may assume that
there exist

lim
n
‖un‖, lim

m
‖vm‖.

By reflexivity, every bounded subset of Lp(µ) (p > 1) is rel-
atively weakly compact and hence, relatively sequentially com-
pact (as it follows by the classical Eberlein-Šmulian theorem).
Therefore, we can suppose in addition (again by passing to sub-
sequences) that there exist weak limits

weak − lim
n

u2k−i
n , weak − lim

m
vi

m

for every i ∈ {1, 2, · · · , 2k − 1}.
Now, in order to complete the proof of the lemma it remains

to observe that for every reflexive Banach space X and bounded
subsets A ⊂ X, B ⊂ X∗, the canonical duality

A×B → R, < x, f >= f(x)

has DLP. This fact easily follows using once again the Eberlein-
Šmulian theorem.
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By Lemmas 3.4 and 3.3 we get L2k(µ) ∈ RefR ∀k ∈ N .

Now, we prove the second part of Theorem 3.1.

We need the following fundamental fact.

Fact 3.5. (Aharoni-Maurey-Mityagin [2])
For 2 < p <∞, an infinite-dimensional Lp(µ) space is not uni-
formly embedded into a Hilbert space.

Additional information about uniform embeddings into Hilbert
spaces can be found in [4].

The following Lemma is inspired by [14, Counterexample
2.13].

Lemma 3.6. The uniform space (Is(l2)s,L), where L denotes
the left uniformity on Is(l2)s, can be uniformly embedded into
l2.

Proof. Since Is(l2)s is separable and metrizable, there exists a
sequence {vn} in l2 such that:

(a) ‖vn‖ = 1
2n

(b) {ṽn : Is(l2)→ l2, g 7→ gvn}n generates the left uniformity
on Is(l2).

Denote by B 1
2n

the closed 1
2n -ball centered at the origin with

its usual uniformity. Then the uniform product
∏

n B 1
2n

is uni-

formly embedded in a natural way into the l2−sum (
∑

n(l2)n)l2

of countably many copies of the Hilbert space l2. Eventually we
have

Is(l2)s
unif
↪→

∏
n B 1

2n

unif
↪→ (

∑
n(l2)n)l2 ←→ l2.

Now we prove the second part (ii) of Theorem 3.1. Assum-
ing the contrary, suppose that Lp[0, 1] (2 < p < ∞) is unitar-
ily representable in the (infinite-dimensional) Hilbert space H.
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Then, using the separability of Lp[0, 1] and passing to an ap-
propriate separable infinite-dimensional closed linear subspace
E of H, we can suppose even that there exists a topological
group embedding Lp[0, 1] ↪→ Is(E)s. Since Is(E)s and Is(l2)s

are topologically isomorphic, it is clear that Fact 3.5 and Lemma
3.6 will lead to a contradiction.

Therefore, we have Lp[0, 1] /∈ HilbR (2 < p <∞) .

Theorem 3.1 is proved.

Proposition 3.7. C[0, 1], c0 /∈ HilbR.

Proof. Follows from Lemma 3.6 because l2 is not uniformly uni-
versal space for separable Banach spaces (Enflo [10]) in contrast
to c0 (Aharoni [1]) or C[0, 1] (Banach-Mazur).

4. Questions

Question 4.1 Is it true that every Banach space X, as a topo-
logical group, is reflexively representable? Or, equivalently, does
WAP (X) separate points and closed subsets?

By Lemma 3.4, the answer is yes for Lp(µ) spaces,
where p = 2k is an arbitrary even integer. Using results of
Shoenberg [21], we easily can extend this result to the case of
1 ≤ p ≤ 2. Indeed, the function f(v) = e−‖x‖p

is positive def-
inite (and hence, wap) on Lp(µ) spaces for every 1 ≤ p ≤ 2.
Moreover, Chaatit [6] proved that every stable Banach space in
the sense of Krivine-Maurey [13], in particular, every separable
Lp(µ) space (1 ≤ p <∞), is reflexively representable.

By Lemma 3.3, a closely related question is: for which Banach
spaces does the original norm (or its some renorming) satisfy
DLP?

It is easy to show that the original norm of the Banach space
c0 does not satisfy DLP. Indeed, define un := en (the standard
basis vectors) and vm := Σm

i=1ei. Then the corresponding double
limits are 1 and 2.
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Lemma 3.3 suggests also the following questions:

Question 4.2 Let G be a reflexively representable group. Is
it true that the topology of G is generated by a family of left-
invariant pseudometrics with DLP?

Question 4.3 Which (non-locally compact) metrizable topolog-
ical groups admit a left-invariant metric with DLP?

For instance, it would be interesting to know for which metric
spaces (X, d) does the corresponding Graev’s metric ([11, 24])
on the free group F (X) satisfy DLP?

Lemma 3.6 leads to the following natural question.
Question 4.4 Suppose a topological group G is such that the left
uniformity of G admits a uniform embedding into l2. Is then G
unitarily representable?
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