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CHESSBOARD THEOREM
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Abstract

Kulpa proved the existence of a stable-like point
(Equilibrium Theorem)and applied this theorem
to show the existence of rational divisions of
bounded Lebegue measurable sets in Euclidean
spaces. We present an algorithm for determin-
ing on the Euclidean plane the place where the
equilibrium points are. For this purpose, we use
the Steinhaus chessboard theorem. The existence
of market equilibrium is a classical problem in
economics (Walras, von Neumann, Nash). The
Brouwer fixed point theorem was the main
mathematical tool in Nash’s paper, for which he
won the Nobel prize in economics. The Brouwer
Theorem is an easy consequence of Kulpa’s Equi-
librium Theorem. Hence, an algorithm for deter-
mining a fixed point is also given.

1. Introduction

The existence of market equilibrium is a classical problem in
economics (Walras, von Neumann [12], Nash [9]). The Brouwer
fixed point theorem was the main mathematical tool in Nash’s
paper [9] for which he won the Nobel prize in economics ([1],
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[8]). In fact, the Brower fixed point theorem is an immediate
consequence of the Poincaré theorem announced in 1883 (see
[11]).

Poincaré Theorem
“Let f1, ..., fn be n continuous functions of n variables x1, ..., xn;
the variable xi is subjected to vary between the limits ai and
−ai. Let us suppose that for that for xi = ai, fi is constantly
positive, and that for xi = −ai, fi is constantly negative; I say
there will exist a system of values of x which all f ′s vanish”. In
the paper “Parametric extension of the Poincaré theorem” [6]
the case where the functions change in time is investigated. The
special case of this theorem from the paper mentioned above is
the following statement, by Hugo Steinhaus ( see [7] ); “Consider
a chessboard with some “mined square” on. Assume that the
king cannot go across the chessboard from the left to the right
one with out meeting a mined square. Then the rook can go
across the chessboard from upper edge to the lower one movnig
exclusively on the mined squares.”

A modified version of this theorem will be used for proving
Kulpa’s theorem. In his paper [5] Kulpa proved the existence
of a stable-like point (Equilibrium Theorem) and applied his
theorem to show the existence of rational division of bounded
Lebegue measurable sets in Euclidean spaces. His theorem gives
a generalisation of the Perron- Frobenius Theorem which states
that every square matrix {aij} with aij > 0 has at least one non-
negative real eigen value. This theorem plays a very important
role in economics models (cf. Nikaido [10]). Kulpa’s theorem
has been investigated, generalised and used in papers [3], [4] by
Idzik and Ichiishi.

The aim of this paper is to prove by presenting an algorithm
on the Euclidean plane Equilibrium Theorem applying the Stein-
haus chessboard theorem (see [7]). However, chessboard will be
of simplex shape. An algorithm allowing us to find a stable-like
point will be shown. The Brouwer fixed point theorem is an
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easy consequence of Kulpa’s Equilibrium Theorem. Hence, an
algorithm for determining a fixed point is also given (see D. Gale
[2]).

2. An Algorithm

Consider the plane R2 with Cartesian coordinates and right
hand (counter-clock) orientation. Let D be a simplex with ver-
tices (0, 0), (1, 0) and (1, 1).
Let us fix a natural number k > 1 and let

Zk = { i

k
: i ∈ {0, ..., k}}

and denote by

D2
k = (Zk × Zk) ∩ D

and by e0 = ( 1
k
, 0), e1 = (0, 1

k
) basic vectors.

Definition 1. An ordered set z = [z0, z1, z2] is said to be a
simplex iff

z1 = z0 + ei, z2 = z1 + e1−i where i ∈ {0, 1}.
Any subset [z0, z1], [z1, z2] and [z2, z0] ⊂ z is said to be a face

of the simplex z.

Observation 1. Any face of a simplex z contained in the
simplex D is a face of exactly one or two simplexes from D,
depending on whether or not lies on the boundary of D.

boundary D = union of segments [(0, 0), (1, 0)], [(0, 0), (1, 1)]
and [(1, 0), (1, 1)]

Let us consider D2
k and let P(k) be a family of all simplexes

in Dk
2 . Let P(k) be a family consisting of all faces of simplexes

from P(k), all vertices of simplexes from P(k), all simplexes
from P(k) and empty set.
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Let V(k) be a set of all vertices of simplexes from P(k) and
f : V(k) → {0, 1} be a function defined as the following one

f(p) =

{
0 if p ∈ [(1, 1), (1, 0)]
1 if p = (0, 0).

The function f is called a colouring of the partition P(k).
The face s of the simplex S is called a gate if f(s) = {0, 1}.

Lemma 1 (Sperner’s Lemma for 1 dimensional simplex).

Let C = {0, 1
k
, ..., 1} and f : C → {0, 1} be such that f(0) =

0 and f(1) = 1. Then there exists i, 1 ≤ i ≤ k such that
f({ i−1

k
, i

k
}) = {0, 1}. The number of such pairs is odd.

Lemma 2. Let w be a simplex and W be the set of vertices of
w and f : W → {0, 1}. Then w has an even number of gates.

Definition 2. Two simplexes w and v from P(k) are in the
relation ∼ if w ∩ v is a gate.

Definition 3. A subset S ⊂ P(k) is called a chain in P(k) if
S = {w0, w1, ..., wn} and for each i, i = 0, ..., n− 1, wi ∼ wi+1

From Lemma 2 it follows

Observation 2. For each chain {v1, ..., vl} ⊂ P(k) there exists
not more than one v such that {v1, ..., vl, v} is a chain.

Observation 3. Let C1 and C2 are maximal chains in P(k).
Then C1 ∩ C2 = ∅ or C1 = C2.

Proof. Suppose that v ∈ C1 ∩C2. Let C ⊂ C1 ∩C2 be a maximal
chain in C1 ∩ C2 to which v belongs, C = {w1, ..., wn}. There
exists not more than one w0 and not more than one wn+1 such
that {w0, w1, ..., wn, wn+1} is a chain in P(k). Hence C1 = C2.

Theorem 1. For any partition P(k) of a simplex D and any
colouring there exist a chain C ∈ P(k), C = {w1, ..., wn} such
that w1 ∩ [(1, 0), (1, 1)] 6= ∅ and wn ∩ [(0, 0), (1, 1)] 6= ∅.
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Proof. By the assumptions there is an odd number of gates
in the segment [(1, 0), (1, 1)]. Walking along the segment
[(1, 0), (1, 1)] from the point (1, 1) to the point (1, 0) we met
the first gate. Let v1 be the simplex to which this face belong.
Hence, by lemma 2, there exists a second face of v1 which is
a gate and which is a common face of two simplexes. Suppose
that the maximal chain {v1, ...vl} has been defined. Then

(1)vl ∩ [(1, 0), (1, 1)] 6= ∅
or

(2)vl ∩ [(0, 0), (1, 0] 6= ∅
If (2), then end. If (1), then we take the next gate in order,
which is between vl ∩ [(1, 0), (1, 1)] and the point (1, 0). Since
the number of gates is odd, hence in the end we have the case
(2) (see the figure 1).

Fig. 1.
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In the paper [6] the following Lemma has been proved

Lemma 3. Let {Am : m ∈ N} be a sequence of connected
subsets of a compact metric space X such that some sequence
{an : n ∈ N} of points an ∈ An} is converging in X. Then the
set A = Ls{An : n ∈ N} is compact and connected.

For x ∈ R3 let | x |=| x1 | + | x2 | + | x3 | where x =
(x1, x2, x3).

Theorem 2. ( Kulpa’s Equilibrium Theorem for n = 2)
Let S = [s1, s2, s3] and Si = [..., ŝi, ...]
Let f : S −→ [0,∞)3, f = (f1, f2, f3) be a continuous map such
that for each i : fi(Si) = 0.
Then for each continuous function g : S −→ [0,∞)3 there exists
a point x ∈ S such that

f(x) | g(x) |=| f(x) | g(x).

Each such point will be called an equilibrium point.

Proof. Let g=(g1, g2, g3). Define hi =fi(x) |g(x)−gi(x) |f(x) |.
Claim 1. Each point x ∈ h−1

1 (0) ∩ h−1
2 (0) is an equilibrium

point.

Proof. For x ∈ h−1
1 (0) ∩ h−1

2 (0) we have

f1(x) | g(x) |= g1(x) | f(x) |

and
f2(x) | g(x) |= g2(x) | f(x) |

Hence (f1(x) + f2(x)) | g(x) |= (g1(x) + g2(x)) | f(x) | and
since f1(x) + f2(x) =| f(x) | −f3(x) we have | f(x) | (g1(x) +
g2(x) + g3(x)) − f3(x) | g(x) |= (g1(x) + g2(x)) | f(x) |. Then
g3(x) | f(x) |= f3(x) | g(x) |. Hence x is an equilibrium point.
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Let S1 = [(1, 0), (1, 1)], S2 = [(0, 0), (1, 1)] and S3 = [(0, 0), (1, 0)].
If x ∈ S1, then

h1((0, 0)) = f1((0, 0)) | g(x) | −g1((0, 0))f1((0, 0)) > 0 and
h1(x) = f1(x) | g(x) | −g1(x) | f(x) |< 0 for x ∈ S1 Gener-
ally, the same for each i = 1, 2, 3.

Let F i
k be a colouring defined by the function hi and the

partition P(k) of S as the following one

F i
k(p) =

{
0 if hi(p) ≤ 0
1 if hi(p) > 0

where p is a vertex of some simplex from P(k). From Theorem
it follows that for any partition P(k) of S there exists a chain
Ck

i connecting two different from Si faces of S. By Lemma the
set Ci = Ls{Ck

i : k ∈ N} is a compact, connected set and
Ci ∩ Sj 6= ∅ for j 6= i, j ∈ {1, 2, 3} and hi(Ci) = 0. Let x1 =
sup(C1 ∩ [(0, 0), (1, 0)]) and x2 = inf(C2 ∩ [(0, 0), (1, 0)]).

We have h1(x1) = 0 and h2(x2) = 0. Suppose that x1 <
x2 < (1, 0). Then h1|[(0, 0), (1, 0)] + h2|[(0, 0), (1, 0)] = f1|g| −
g1(f1 + f2 + f3) + f2|g| − g2(f1 + f2 + f3) = f1g2 + f1g3 − g1f2 +
f2g1 + f2g3 − g2f1 = f1g3 + f2g3 ≥ 0. From this we have that
h1(x2) > 0. Hence between x2 and (1, 0) we have an odd number
of gates. Since C1 is the first chain which connects [(0, 0), (1, 0)]
and [(0, 0), (1, 1)], hence there exists a gate between x1 and x2

and the chain which connects this gate with a gate which lies
between x2 and (1, 0). Hence, by Lemma, we have a connected
set C such that h1(C) = 0 and inf{C ∩ [(0, 0), (1, 0)]} < x2 <
sup{C ∩ [(0, 0), (1, 0)]}. Then C2 ∩ S3 and C2 ∩ S1 are in disjoint
components of S \ C. Hence C ∩ C2 6= ∅. By the claim we have
that each point x ∈ C ∩ C2 is an equilibrium point. If x2 < x1,
then C2 ∩ S3 and C2 ∩ S1 are in disjoint components of S \ C1.
Hence C1 ∩ C2 6= ∅. From Claim it follows that each point x in
C1 ∩ C2 is an equilibrium point.



652 Marian Turzański

Fig. 2.

Corollary 1. (Brouwer fixed point theorem)
Let S = {x ∈ R3 :| x |= 1}.If g : S −→ S, then there exists
x ∈ S such that g(x) = x.

Proof. Let f : S −→ S be the identity map. Since for x ∈ S
there is | x |= 1, hence, by the equilibrium theorem, there exists
point x such that x | g(x) |=| x | g(x). Since | x |= 1 and
| g(x) |= 1, hence g(x) = x.
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