Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CONTINUOUS MAPS OF DENDRITES WITH FINITELY MANY BRANCH POINTS AND NONWANDERING SETS

TATSUYA ARAI, NAOTSUGU CHINEN, AND TAKAYUKI SUDA

ABSTRACT. Let f be a continuous map of a dendrite X with finitely many branch points into itself and $\Omega(f)$ the set of nonwandering points for f. We show the following two results: (1) if $\Omega(f)$ is finite, it always is not the set of periodic points of f and (2) $\Omega(f)$ is contained in the closure of the set of eventually periodic points of f.

1. INTRODUCTION

Let f be a continuous map from a dendrite X to itself, $\Omega(f)$ the set of nonwandering points for f, P(f) the set of periodic points of f and EP(f) the set of eventually periodic points of f. And \overline{A} implies the closure of a space A. When X is the interval, in [1], Block examined $\Omega(f)$ and P(f) and showed the following:

(1) if $\Omega(f)$ is finite, we have $\Omega(f) = P(f)$ and

(2) $\Omega(f) \subset \overline{EP(f)}$.

Then, after about 20 years, Hosaka and Kato examined dendrites in [3], and they showed that (1) and (2) hold when X is a tree. And they constructed two dendrites X_1, X_2 and two maps $g_1 : X_1 \to$ $X_1, g_2 : X_2 \to X_2$ such that $\Omega(g_1)$ is finite, that $\Omega(g_1) \neq P(g_1)$, and that $\Omega(g_2) \not\subset \overline{EP(g_2)}$. Since the sets of branch points of X_1

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H20; Secondary 54F50, 54B20.

Key words and phrases. nonwandering set, dendrite, periodic point.

This paper is the third author's master's thesis.

and X_2 are infinite, Arai asks the following question: When the set of branch points of X is finite, do (1) and (2) hold?

In [3], they proved many lemmas to show the above (1). Lemma 2.6, an important one, is able to be extended from a tree to a dendrite with finitely many branch points.

Theorem 1. (Invariance of the unstable manifold) Let f be a map from a dendrite X with finitely many branch points to itself and pa periodic point of f. If W(p, f) is the unstable manifold of p, then f(W(p, f)) = W(p, f).

Theorem 1 is proved by the method which is different from the proof of [3, Lemma 2.6]. We should notice that the proof of the above Theorem 1 is more simple and geometrical.

But, for dendrites with finitely many branch points which are not trees, the above (1) doesn't always be true.

Example. Let S be a subspace $\{re^{i\theta} : n = 1, 2, \dots, \theta = 2\pi/n \text{ and } 0 \leq r \leq 1/n\}$ of the complex plane. For each m > n, there exists a continuous map $f_{m,n} : S \to S$ such that $|\Omega(f_{m,n})| = m$ and $|P(f_{m,n})| = n$.

The space S is the easiest space in dendrites with finitely many branch points and the above example is more simple than Example 1.5 in [3].

But, even when X has finitely many branch points, the above (2) holds.

Theorem 2. Let f be a map from a dendrite X with finitely many branch points to itself. Then $\Omega(f) \subset \overline{EP(f)}$.

Theorem 2 is proved by using the relation between infinite edges and finitely many branch points, that is to say, we use the property that some infinite sequence of nonwandering points converges a branch point.

2. NOTATIONS AND DEFINITIONS

Let X be a compact metric space and f denote a continuous map of X into itself. We denote the n-fold composition of f with itself by $f \circ ... \circ f$. Let f^0 denote the identity map. A point $x \in X$ is a *periodic point of period* $n \ge 1$ for f if $f^n(x) = x$. The least positive integer n for which $f^n(x) = x$ is called the prime period of

30

x. Especially, $x \in X$ is a fixed point for f if n = 1. A point $x \in X$ is an eventually periodic point of period n for f if there exists $m \ge 0$ such that $f^{n+i}(x)=f^i(x)$ for all $i\ge m$. That is, $f^i(x)$ is a periodic point of period n for $i\ge m$. A point $x\in X$ is nonwandering point for f if for any open set U containing x there exist $y \in U$ and n > 0 such that $f^n(y) \in U$.

We denote the set of fixed points for f, periodic points for f, eventually periodic points for f, and nonwandering points for f by F(f), P(f), EP(f) and $\Omega(f)$, respectively. \overline{A} denotes the closure of a set A. Notice that $P(f) \subset \Omega(f), P(f) \subset EP(f), f(P(f)) \subset$ $P(f), f(\Omega(f)) \subset \Omega(f)$ and $\Omega(f)$ is closed.

An *arc* is any space which is homeomorphic to the closed interval [0,1]. A continuum is nonempty, compact and connected metric space. A graph is a continuum which can be written as the union of finitely many arcs, any two of which are disjoint or intersect only in one or both of their end points. A tree is a graph without circuits, that is, a uniquely arcwise connected graph. A *dendrite* is a locally connected, uniquely arcwise connected continuum. We say subcontinuum A of a continuum X is of order less than or equal to β in X, written $\operatorname{Ord}(A, X) \leq \beta$, provided that for each open subset U of X with $A \subset U$ there exists an open subset V of X such that $A \subset V \subset U$ and $|Bd(V)| < \beta$, where Bd(V) means the boundary of V. We say that A is of order β in X, written $Ord(A, X) = \beta$, if $\operatorname{Ord}(A, X) \leq \beta$ and $\operatorname{Ord}(A, X) \not\leq \alpha$ for any cardinal number $\alpha < \beta$. A point $x \in X$ is a branch point of X provided that $Ord(x,X) \geq C$ 3. Let B = $\{b_1, b_2, ..., b_n\}$ be the set of branch points of a dendrite X. For $x \in X \setminus B$, there exists an open neighborhood V of x such that V is homeomorphic to (0,1) or (0,1].

And the unstable manifold W(p, f) for some periodic point p is as follows:

 $W(p, f) = \{x \in X | \text{for any neighborhood } V \text{ of } p, x \in f^n(V) \text{ for some } n > 0\}$

Let X be a dendrite and Y a subspace of X. We denote the maximal connected set containing Y by [Y]. Particularly, if $Y = \{x, y\}$, write [Y] = [x, y].

3. Lemmas

By the proof of [5, Lemma 2.8], we have the following:

Figure 1

Lemma 1. Let X be a dendrite, f a continuous map from X into itself, and $X \setminus B = \bigcup_{j=1}^{\infty} I_j$. If an open interval $J \subset I_j$ for some $j = 1, 2, \cdots$ satisfies $J \cap P(f) = \emptyset$, then $J \cap f^n(J \cap \Omega(f)) = \emptyset$ for any positive integer n.

By the proof of [3, Lemma 2.4], we have the following:

Lemma 2. Let f be a continuous map from a dendrite X to itself and p a fixed point of f. Then W(p, f) is connected.

Lemma 3. Let f be a continuous map from a dendrite X with finitely many branch points to itself and p a fixed point of f. Then f(W(p, f)) = W(p, f). (See Figure 1.)

Proof: By definition, we see that $f(W(p, f)) \subset W(p, f)$. We show that $f(W(p, f)) \supset W(p, f)$. It suffices to show that $f^{-1}(z) \cap W(p, f) \neq \emptyset$ for each $z \in W(p, f)$. We suppose that $f^{-1}(z) \cap W(p, f) = \emptyset$ for some $z \in W(p, f)$.

Since $z \in W(p, f)$, there exists an increasing sequence n_1, n_2, \cdots and $x_i \in X(i = 1, 2, \cdots)$ such that $f^{n_i}(x_i) = z$ for each $i = 1, 2, \cdots$ and $x_i \to p(i \to \infty)$. We notice that $Y = \{f^{n_i-1}(x_i) : i = 1, 2, \cdots\} \subset f^{-1}(z)$. We suppose that $|\{i : y = f^{n_i-1}(x_i)\}| = \infty$ for some $y \in f^{-1}(z)$. Since p is a fixed point of f, we have $y \in W(p, f)$ and a contradiction. We may assume that $f^{n_i-1}(x_i) \neq f^{n_j-1}(x_j)(i \neq j)$. Moreover, we may assume that $y_i = f^{n_i-1}(x_i) \to x_0(i \to \infty)$ and all y_i are contained in some small neighborhood of x_0 .

Since $f^{-1}(z)$ is closed, we have $x_0 \in f^{-1}(z)$. Note that if u is any point which is in infinitely many of the intervals $[p, y_i]$, then $u \in$

W(p, f). Since x_0 is a limit point of Y, at least one point of $\{x_0\} \cup Y$ must be such a point u, contradicting that $f^{-1}(z) \cap W(p, f) = \emptyset$. \Box

Lemma 4. Let f be a continuous map from a dendrite X with finitely many branch points to itself and p a point of X with $f^n(p) = p(n > 1)$. Then $f(W(p, f^n)) = W(f(p), f^n)$.

Proof: By definition, we have $f(W(p, f^n)) \subset W(f(p), f^n)$. Thinking of p as $f^k(p)$ $(k = 1, 2, \dots, n)$, we have $f(W(f^k(p), f^n)) \subset W(f^{k+1}(p), f^n)$. We see that $f^n(W(f(p), f^n)) \subset f^{n-1}(W(f^2(p), f^n)) \subset \dots \subset f(W(f^n(p), f^n)) = f(W(p, f^n))$. Since f(p) is a fixed point of f^n , by Lemma 3, we have $f^n(W(f(p), f^n) = W(f(p), f^n)$ and $W(f(p), f^n) \subset f(W(p, f^n))$. We conclude that $f(W(p, f^n)) = W(f(p), f^n)$.

4. Proofs

Proof of Theorem 1: Let p be an n-periodic point of f. We have f(W(p, f))

 $= f(W(p, f^{n})) \cup f(W(f(p), f^{n})) \cup \dots \cup f(W(f^{n-1}(p), f^{n}))$ (by [3, Lemma 2.5])

 $= W(f(p), f^n) \cup W(f^2(p), f^n) \cup \dots \cup W(f^n(p), f^n) \text{ (by Lemma 4)}$

= W(p, f) (by [3, Lemma 2.5]).

In [3, Example 1.5], for each point $p \in P(g_1)$ we have f(W(p, f)) = W(p, f).

Question. Let f be a map from a dendrite X to itself and p a periodic point of f. Do we have f(W(p, f)) = W(p, f)?

Example. Let S be a subspace $\{re^{i\theta} : n = 1, 2, \dots, \theta = 2\pi/n \text{ and } 0 \le r \le 1/n\}$ of the complex plane. Take integers m > n. We construct a continuous map $f_{m,n} : S \to S$ such that $|\Omega(f_{m,n})| = m$ and $|P(f_{m,n})| = n$.

First, we construct a continuous map $f: S \to S$ such that $\Omega(f) = \{(0,0), (1/2,0)\}$ and $P(f) = \{(0,0)\}$. Denote $I_n = \{re^{2\pi i/n} : 0 \le r \le 1/n\} \subset S$, $J_n = \{(x,0): 1/2 + 1/2n \le x \le 1/2 + 1/2(n-1)\}$ for each $n = 2, 3, \cdots$ and $J = \{(x,0): 1/2 < x \le 1\} = \bigcup_{n=2}^{\infty} J_n$. (See Figure 2.)

Define $f(\{(x,0) : 0 \le x \le 1/2 \text{ or } x = 1/2 + 1/2n \text{ for each} n = 2, 3, \dots\}) = \{(0,0)\}, f(I_n) = I_{n-1} \text{ for each } n > 2, f(I_2) = \{(x,0) : 0 \le x \le 1/2\} \text{ and } f(J_n) = I_n \text{ for each } n = 2, 3, \dots$ Since $f^n(I_n) = \{(0,0)\}$ for each $n = 2, 3, \dots$, we have $\Omega(f) \cap I_n = \{(0,0)\}$ for each $n = 2, 3, \dots$ and we see that $\Omega(f) \cap \{(x,0) : 0 < x \le 1/2\} = \{(1/2,0)\}.$

Since $f^m(J) \cap J = \emptyset$ for each m, we have $\Omega(f) \cap I_n = \emptyset$. We conclude that $\Omega(f) = \{(0,0), (1/2,0)\}$ and $P(f) = \{(0,0)\}$.

There exists a continuous map $g : [0,1] \to [0,1]$ such that $\Omega(g) = P(g) = \{0,1\}$. (See Figure 3.)

FIGURE 3

Denote the space $S \cup_{(0,0)=0} [0,1]$ attached by a point (0,0) of Sand a point 0 of [0,1]. We see that $S \cup_{(0,0)=0} [0,1]$ is homeomorphic to S. Define $f_{3,2} = f \cup g : S \cup_{(0,0)=0} [0,1] \to S \cup_{(0,0)=0} [0,1]$. We have $|\Omega(f_{3,2})| = 3$ and $|P(f_{3,2})| = 2$.

FIGURE 4

Denote the space $S \cup_{(0,0)=(0,0)} S$ attached by a point (0,0) of Sand a point (0,0) of another space S. We see that $S \cup_{(0,0)=(0,0)} S$ is homeomorphic to S. Define $f_{3,1} = f \cup f : S \cup_{(0,0)=(0,0)} S \rightarrow$ $S \cup_{(0,0)=(0,0)} S$. We have $|\Omega(f_{3,1})| = 3$ and $|P(f_{3,1})| = 1$.

By the above, we have a continuous map $f_{m,n}: S \to S$ such that $|\Omega(f_{m,n})| = m$ and $|P(f_{m,n})| = n$.

Proof of Theorem 2: We suppose that $\Omega(f) \not\subset \overline{EP(f)}$, i.e., $V \cap \Omega(f) \neq \emptyset$, where $V = X \setminus \overline{EP(f)}$. Let x be an element of $V \cap \Omega(f)$ and W the component of V containing x. Since V is open, W is a neighborhood of x. Since $x \in \Omega(f)$, there exists a positive integer n such that $f^n(W) \cap W \neq \emptyset$. Denote $g = f^n$ and $T = \bigcup_{i=0}^{\infty} g^i(W)$ which is connected containing x. We see that $Y = \{g^i(x) : i = 0, 1, \dots\} \subset T \supset g(T)$, that $T \cap EP(f) = \emptyset$, and that \overline{T} is a dendrite.

Let *B* be the set of branch points of *X*. By [3, Theorem 1.2], we may assume that $\bigcup_{j=1}^{\infty} I_j = \overline{T} \setminus B$, where each I_j is a component of $\overline{T} \setminus B$. If there exist distinct integers i_1, i_2 and $j = 0, 1, \cdots$ such that $g^{i_1}(x), g^{i_2}(x) \in I_j$, by Lemma 1, then $I_j \cap P(f) \neq \emptyset$ and we have a contradiction. We may assume that $|Y \cap I_j| \leq 1$ for each *j*. This shows that $\overline{Y} \setminus Y \subset B \cap T$. Since $g(Y) \subset Y$ and $g(\overline{Y}) \subset \overline{Y}$, we have $g(\overline{Y} \setminus Y) \subset \overline{Y} \setminus Y$.

We have $n(1) < n(2) < \cdots$ and $b \in B \cap T$ that $|Y \cap I_{n(j)}| = 1$ for each j and that $\{b\} = \bigcap_{j=1}^{\infty} \overline{I_{n(j)}}$. Since B is finite, we have $b \notin Y$ and $b \in EP(f)$. And since $|Y \cap I_{n(j)}| = 1$ for each j and $\{b\} = \bigcap_{j=1}^{\infty} \overline{I_{n(j)}}$, we have $b \in T$. This contradicts because $T \cap EP(f) = \emptyset$. (See Figure 4.)

References

- L. S. Block, Continuous maps of the interval with finite nonwandering set, Trans. Amer. Math. Soc. 240 (1978), 221–230.
- [2] L. S. Block and W. A. Coppel, *Dynamics in One Dimension*, Lecture Notes in Math. 1513, Springer-Verlag, 1992.
- [3] H. Hosaka and H. Kato, Continuous maps of trees and nonwandering sets, Top. Appl. 81 (1997), 35–46.
- [4] S. B. Nadler Jr., *Continuum Theory: An Introduction*, Marcel Dekker, 1992.
- [5] X. Ye, The center and the depth of the center of a tree map, Bull. Austral. Math. Soc. 48 (1993), 347–350.

(Arai) Department of General Education for the Hearing Impaired, Tsukuba College of Technology, Ibaraki 305-0005, Japan

E-mail address: tatsuya@a.tsukuba-tech.ac.jp

(Chinen) INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, IBRAKI 305-8571 JAPAN

E-mail address: naochin@math.tsukuba.ac.jp

(Suda) Kaiyo High School of Ibaraki Prefecture, 3-1-6 Wada-cho, Hitachinaka-shi, Ibaraki 311-1214 Japan

E-mail address: ttn3hdn2cx@mx10.ttcn.ne.jp