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CONTINUOUS MAPS OF DENDRITES WITH
FINITELY MANY BRANCH POINTS AND

NONWANDERING SETS

TATSUYA ARAI, NAOTSUGU CHINEN, AND TAKAYUKI SUDA

Abstract. Let f be a continuous map of a dendrite X with
finitely many branch points into itself and Ω(f) the set of
nonwandering points for f . We show the following two results:
(1) if Ω(f) is finite, it always is not the set of periodic points
of f and (2) Ω(f) is contained in the closure of the set of
eventually periodic points of f .

1. Introduction

Let f be a continuous map from a dendrite X to itself, Ω(f) the
set of nonwandering points for f , P (f) the set of periodic points
of f and EP (f) the set of eventually periodic points of f . And A
implies the closure of a space A. When X is the interval, in [1],
Block examined Ω(f) and P (f) and showed the following:

(1) if Ω(f) is finite, we have Ω(f) = P (f) and
(2) Ω(f) ⊂ EP (f).
Then, after about 20 years, Hosaka and Kato examined dendrites

in [3], and they showed that (1) and (2) hold when X is a tree. And
they constructed two dendrites X1, X2 and two maps g1 : X1 →
X1, g2 : X2 → X2 such that Ω(g1) is finite, that Ω(g1) 6= P (g1),
and that Ω(g2) 6⊂ EP (g2). Since the sets of branch points of X1
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and X2 are infinite, Arai asks the following question: When the set
of branch points of X is finite, do (1) and (2) hold?

In [3], they proved many lemmas to show the above (1). Lemma
2.6, an important one, is able to be extended from a tree to a
dendrite with finitely many branch points.

Theorem 1. (Invariance of the unstable manifold) Let f be a map
from a dendrite X with finitely many branch points to itself and p
a periodic point of f . If W (p, f) is the unstable manifold of p, then
f(W (p, f)) = W (p, f).

Theorem 1 is proved by the method which is different from the
proof of [3, Lemma 2.6]. We should notice that the proof of the
above Theorem 1 is more simple and geometrical.

But, for dendrites with finitely many branch points which are
not trees, the above (1) doesn’t always be true.

Example. Let S be a subspace {reiθ : n = 1, 2, · · · , θ = 2π/n
and 0 ≤ r ≤ 1/n} of the complex plane. For each m > n, there
exists a continuous map fm,n : S → S such that |Ω(fm,n)| = m and
|P (fm,n)| = n.

The space S is the easiest space in dendrites with finitely many
branch points and the above example is more simple than Example
1.5 in [3].

But, even when X has finitely many branch points, the above
(2) holds.

Theorem 2. Let f be a map from a dendrite X with finitely many
branch points to itself. Then Ω(f) ⊂ EP (f).

Theorem 2 is proved by using the relation between infinite edges
and finitely many branch points, that is to say, we use the property
that some infinite sequence of nonwandering points converges a
branch point.

2. Notations and definitions

Let X be a compact metric space and f denote a continuous
map of X into itself. We denote the n-fold composition of f with
itself by f ◦ ... ◦ f . Let f0 denote the identity map. A point x ∈ X
is a periodic point of period n ≥ 1 for f if fn(x) = x. The least
positive integer n for which fn(x) = x is called the prime period of
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x. Especially, x ∈ X is a fixed point for f if n = 1. A point x ∈ X
is an eventually periodic point of period n for f if there exists m ≥ 0
such that fn+i(x)=f i(x) for all i ≥ m. That is, f i(x) is a periodic
point of period n for i ≥ m. A point x ∈ X is nonwandering point
for f if for any open set U containing x there exist y ∈ U and n > 0
such that fn(y) ∈ U .

We denote the set of fixed points for f , periodic points for f ,
eventually periodic points for f , and nonwandering points for f by
F (f), P (f), EP (f) and Ω(f), respectively. A denotes the closure
of a set A. Notice that P (f) ⊂ Ω(f), P (f) ⊂ EP (f), f(P (f)) ⊂
P (f), f(Ω(f)) ⊂ Ω(f) and Ω(f) is closed.

An arc is any space which is homeomorphic to the closed interval
[0,1]. A continuum is nonempty, compact and connected metric
space. A graph is a continuum which can be written as the union
of finitely many arcs, any two of which are disjoint or intersect
only in one or both of their end points. A tree is a graph without
circuits, that is, a uniquely arcwise connected graph. A dendrite is
a locally connected, uniquely arcwise connected continuum. We say
subcontinuum A of a continuum X is of order less than or equal to
β in X, written Ord(A,X) ≤ β, provided that for each open subset
U of X with A ⊂ U there exists an open subset V of X such that
A ⊂ V ⊂ U and |Bd(V )| ≤ β, where Bd(V ) means the boundary
of V . We say that A is of order β in X, written Ord(A,X) = β, if
Ord(A, X) ≤ β and Ord(A,X) 6≤ α for any cardinal number α < β.
A point x ∈ X is a branch point of X provided that Ord(x,X) ≥
3. Let B ={b1, b2, ..., bn} be the set of branch points of a dendrite
X. For x ∈ X \B, there exists an open neighborhood V of x such
that V is homeomorphic to (0,1) or (0,1].

And the unstable manifold W (p, f) for some periodic point p is
as follows:

W (p, f) = {x ∈ X|for any neighborhood V of p, x ∈ fn(V ) for
some n > 0}

Let X be a dendrite and Y a subspace of X. We denote the
maximal connected set containing Y by [Y ]. Particularly, if Y =
{x, y}, write [Y ] = [x, y].

3. Lemmas

By the proof of [5, Lemma 2.8], we have the following:



32 T. ARAI, N. CHINEN, AND T. SUDA

p W (p, f) yi

yj

x0

X

Figure 1

Lemma 1. Let X be a dendrite, f a continuous map from X into
itself, and X \ B =

⋃∞
j=1 Ij. If an open interval J ⊂ Ij for some

j = 1, 2, · · · satisfies J ∩ P (f) = ∅, then J ∩ fn(J ∩ Ω(f)) = ∅ for
any positive integer n.

By the proof of [3, Lemma 2.4], we have the following:

Lemma 2. Let f be a continuous map from a dendrite X to itself
and p a fixed point of f . Then W (p, f) is connected.

Lemma 3. Let f be a continuous map from a dendrite X with
finitely many branch points to itself and p a fixed point of f . Then
f(W (p, f)) = W (p, f). (See Figure 1.)

Proof: By definition, we see that f(W (p, f)) ⊂ W (p, f). We
show that f(W (p, f)) ⊃ W (p, f). It suffices to show that f−1(z) ∩
W (p, f) 6= ∅ for each z ∈ W (p, f). We suppose that f−1(z) ∩
W (p, f) = ∅ for some z ∈ W (p, f).

Since z ∈ W (p, f), there exists an increasing sequence n1, n2, · · ·
and xi ∈ X(i = 1, 2, · · · ) such that fni(xi) = z for each i = 1, 2, · · ·
and xi → p(i → ∞). We notice that Y = {fni−1(xi) : i =
1, 2, · · · } ⊂ f−1(z). We suppose that |{i : y = fni−1(xi)}| = ∞
for some y ∈ f−1(z). Since p is a fixed point of f , we have
y ∈ W (p, f) and a contradiction. We may assume that fni−1(xi) 6=
fnj−1(xj)(i 6= j). Moreover, we may assume that yi = fni−1(xi) →
x0(i →∞) and all yi are contained in some small neighborhood of
x0.

Since f−1(z) is closed, we have x0 ∈ f−1(z). Note that if u is any
point which is in infinitely many of the intervals [p, yi], then u ∈
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W (p, f). Since x0 is a limit point of Y , at least one point of {x0}∪Y
must be such a point u, contradicting that f−1(z)∩W (p, f) = ∅. ¤

Lemma 4. Let f be a continuous map from a dendrite X with
finitely many branch points to itself and p a point of X with fn(p) =
p(n > 1). Then f(W (p, fn)) = W (f(p), fn).

Proof: By definition, we have f(W (p, fn)) ⊂ W (f(p), fn). Think-
ing of p as fk(p) (k = 1, 2, · · · , n), we have f(W (fk(p), fn)) ⊂
W (fk+1(p), fn). We see that fn(W (f(p), fn)) ⊂
fn−1(W (f2(p), fn)) ⊂ · · · ⊂ f(W (fn(p), fn)) = f(W (p, fn)). Since
f(p) is a fixed point of fn, by Lemma 3, we have fn(W (f(p), fn) =
W (f(p), fn) and W (f(p), fn) ⊂ f(W (p, fn)). We conclude that
f(W (p, fn)) = W (f(p), fn). ¤

4. Proofs

Proof of Theorem 1: Let p be an n-periodic point of f . We have
f(W (p, f))

= f(W (p, fn)) ∪ f(W (f(p), fn)) ∪ · · · ∪ f(W (fn−1(p), fn)) (by
[3, Lemma 2.5])

= W (f(p), fn) ∪W (f2(p), fn) ∪ · · · ∪W (fn(p), fn) (by Lemma
4)

= W (p, f) (by [3, Lemma 2.5]). ¤

In [3, Example 1.5], for each point p ∈ P (g1) we have f(W (p, f))
= W (p, f).

Question. Let f be a map from a dendrite X to itself and p a
periodic point of f . Do we have f(W (p, f)) = W (p, f) ?

Example. Let S be a subspace {reiθ : n = 1, 2, · · · , θ = 2π/n and
0 ≤ r ≤ 1/n} of the complex plane. Take integers m > n. We
construct a continuous map fm,n : S → S such that |Ω(fm,n)| = m
and |P (fm,n)| = n.

First, we construct a continuous map f : S → S such that Ω(f) =
{(0, 0), (1/2, 0)} and P (f) = {(0, 0)}. Denote In = {re2πi/n : 0 ≤
r ≤ 1/n} ⊂ S, Jn = {(x, 0) : 1/2 + 1/2n ≤ x ≤ 1/2 + 1/2(n − 1)}
for each n = 2, 3, · · · and J = {(x, 0) : 1/2 < x ≤ 1} =

⋃∞
n=2 Jn.

(See Figure 2.)
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Figure 2

Define f({(x, 0) : 0 ≤ x ≤ 1/2 or x = 1/2 + 1/2n for each
n = 2, 3, · · · }) = {(0, 0)}, f(In) = In−1 for each n > 2, f(I2) =
{(x, 0) : 0 ≤ x ≤ 1/2} and f(Jn) = In for each n = 2, 3, · · · . Since
fn(In) = {(0, 0)} for each n = 2, 3, · · · , we have Ω(f)∩In = {(0, 0)}
for each n = 2, 3, · · · . And we see that Ω(f) ∩ {(x, 0) : 0 < x ≤
1/2} = {(1/2, 0)}.

Since fm(J) ∩ J = ∅ for each m, we have Ω(f) ∩ In = ∅. We
conclude that Ω(f) = {(0, 0), (1/2, 0)} and P (f) = {(0, 0)}.

There exists a continuous map g : [0, 1] → [0, 1] such that Ω(g) =
P (g) = {0, 1}. (See Figure 3.)

0 1

1

Figure 3

Denote the space S ∪(0,0)=0 [0, 1] attached by a point (0,0) of S
and a point 0 of [0,1]. We see that S ∪(0,0)=0 [0, 1] is homeomorphic
to S. Define f3,2 = f ∪ g : S ∪(0,0)=0 [0, 1] → S ∪(0,0)=0 [0, 1]. We
have |Ω(f3,2)| = 3 and |P (f3,2)| = 2.
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Denote the space S ∪(0,0)=(0,0) S attached by a point (0,0) of S
and a point (0,0) of another space S. We see that S ∪(0,0)=(0,0) S
is homeomorphic to S. Define f3,1 = f ∪ f : S ∪(0,0)=(0,0) S →
S ∪(0,0)=(0,0) S. We have |Ω(f3,1)| = 3 and |P (f3,1)| = 1.

By the above, we have a continuous map fm,n : S → S such that
|Ω(fm,n)| = m and |P (fm,n)| = n.

Proof of Theorem 2: We suppose that Ω(f) 6⊂ EP (f), i.e.,
V ∩ Ω(f) 6= ∅, where V = X \ EP (f). Let x be an element of
V ∩ Ω(f) and W the component of V containing x. Since V is
open, W is a neighborhood of x. Since x ∈ Ω(f), there exists a
positive integer n such that fn(W ) ∩W 6= ∅. Denote g = fn and
T =

⋃∞
i=0 gi(W ) which is connected containing x. We see that

Y = {gi(x) : i = 0, 1, · · · } ⊂ T ⊃ g(T ), that T ∩ EP (f) = ∅, and
that T is a dendrite.

Let B be the set of branch points of X. By [3, Theorem 1.2], we
may assume that

⋃∞
j=1 Ij = T \ B, where each Ij is a component

of T \B. If there exist distinct integers i1, i2 and j = 0, 1, · · · such
that gi1(x), gi2(x) ∈ Ij , by Lemma 1, then Ij ∩ P (f) 6= ∅ and we
have a contradiction. We may assume that |Y ∩ Ij | ≤ 1 for each j.
This shows that Y \ Y ⊂ B ∩ T . Since g(Y ) ⊂ Y and g(Y ) ⊂ Y ,
we have g(Y \ Y ) ⊂ Y \ Y .

We have n(1) < n(2) < · · · and b ∈ B ∩ T that |Y ∩ In(j)| = 1
for each j and that {b} =

⋂∞
j=1 In(j). Since B is finite, we have

b 6∈ Y and b ∈ EP (f). And since |Y ∩ In(j)| = 1 for each j
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and {b} =
⋂∞

j=1 In(j), we have b ∈ T . This contradicts because
T ∩ EP (f) = ∅. (See Figure 4.) ¤
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