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CARDINAL INVARIANTS RELATED TO STAR
COVERING PROPERTIES

JILING CAO†, J. KIM, T. NOGURA, AND Y. SONG

Abstract. We investigate cardinal invariants which are re-
lated to star covering properties of a topological space. We
compare them in the class of Tychonoff spaces and figure out
how big the gaps between them are. In particular, we show
that in most cases a cardinal invariant has no upper bounds
when the cardinal invariants smaller than it are ℵ0.

1. Introduction

Although the study of star covering properties of a topological
space could be dated to 1970s or even earlier, a systematic inves-
tigation on them was done by van Douwen et al. [8] in the 1990s.
Since then, this area has attracted many topologists. One of the
most influential study in this area is Matveev’s survey article [14].
The aim of the present paper is to study star covering properties
from the point of view of cardinal functions. Let X be a topolog-
ical space, and let P(X) denote the collection of all subsets of X.
[X]<κ ([X]≤κ) is the collection of all subsets of X with cardinality
< κ (≤ κ). For U ⊆ P(X) and B ⊆ X, let st(B,U) = st1(B,U) =⋃{U ∈ U : U ∩ B 6= Ø}; stn+1(B,U) = st(stn(B,U),U) for each
n ∈ N. As usual, we write stn(x,U) for stn({x},U).
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Definition 1.1. [8, 14] A space X is called n-starcompact (n1
2 -

starcompact) if for every open cover U of X, there exists a finite
A ⊆ X (V ⊆ U) such that stn(A,U) = X (stn(

⋃V,U) = X).

Clearly, n-starcompact→ n1
2 -starcompact→ (n+1)-starcompact.

We notice that n-starcompact spaces are also called n-pseudocom-
pact in [1]. In [8], n-starcompact spaces are called strongly n-
starcompact , while n1

2 -starcompact spaces are named n-starcompact .
For convenience, 1-starcompact spaces are simply called starcom-
pact . Every countably compact space is starcompact [8].

Definition 1.2. [3, 13] A space X is absolutely countably compact
if for every open cover U of X and every dense subset D ⊆ X, there
exists a finite F ⊆ D such that st(F,U) = X.

It is natural to extend properties in definitions 1.1 and 1.2 by in-
troducing n-star-Lindelöf number stn-l(X), n1

2 -star-Lindelöf num-
ber stn 1

2
-l(X), and absolute star-Liundeöf number a-st-l(X) [3] as

follows:

stn-l(X) = ℵ0 ·min{κ : for every open cover U of X,

there exists an A ∈ [X]≤κ such that stn(A,U) = X};
stn 1

2
-l(X) = ℵ0 ·min{κ : for every open cover U of X,

there exists a V ∈ [U ]≤κ such that stn(
⋃V,U) = X};

a-st-l(X) = ℵ0 ·min{κ : for every open cover U of X, every
dense D ⊆ X, there is an A ∈ [D]≤κ such that st(A,U) = X}.
A space X is said to be n-star-Lindelöf (n1

2 -star-Lindelöf , abso-
lutely star-Lindeöf , respectively) if stn-l(X) = ℵ0 (stn 1

2
-l(X) = ℵ0,

a-st-l(X) = ℵ0, respectively). We write st-l(X) instead of st1-l(X).
Another relevant cardinal function is the Aquaro number. Recall
that the Aquaro number Aqu(X) of a T1 space X is the smallest
infinite cardinal κ such that for each open cover U of X there is a
closed and discrete A ∈ [X]≤κ with st(A,U) = X. If Aqu(X) = ℵ0,
then X is called discretely star-Lindelöf [17].

In section 2, we shall investigate general relationships among
cardinal invariants defined above, as well as cellularity, discrete cel-
lularity, extent, etc. A new cardinal invariant called L-star-Lindelöf
number is introduced and studied in section 3. The last section is
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dedicated to investigate those cardinal invariants between discrete
cellularity and cellularity. Specifically, we shall show the following
fact: In the class of Tychonoff spaces, a particular cardinal invari-
ant does not have upper bounds under the restriction that certain
smaller cardinal invariants are countable. These improve some re-
cent results of Matveev and Tree.

Throughout this paper, D(κ) stands for the discrete space of
cardinality κ. The cofinality of κ is denoted by cf(κ). Ordinals are
always given the usual order topology. For undefined terms and
symbols, refer to [9], [11] and [14].

2. Preliminary results

For a space X, e(X), c(X) and l(X) shall stand for the ex-
tent, the cellularity, and the Lindelöf number of X, respectively.
The discrete cellularity of X is defined as dc(X) = ℵ0 · sup{ |V| :
V is a discrete open family in X} [2]. In addition, if every pairwise
disjoint subfamily of a family F ⊆ P(X) is countable, then F is
said to be a ccc-family in X.

Proposition 2.1. Let X be a space. Then the following (1)-(4)
hold:

(1) st-l(X) ≤ a-st-l(X) ≤ l(X);
(2) st2-l(X) ≤ st1 1

2
-l(X) ≤ st-l(X);

(3) dc(X) ≤ c(X);
(4) stn 1

2
-l(X) ≤ stn-l(X) ≤ st2 1

2
-l(X) ≤ min{st2-l(X), dc(X)}

for all n ≥ 3.
If X is a T1 space, then the following (5) and (6) hold:

(5) st-l(X) ≤ Aqu(X) ≤ e(X) ≤ l(X);
(6) dc(X) ≤ l(X).

Furthermore, if X is a regular space, then
(7) stn 1

2
-l(X) = stn-l(X) = st2 1

2
-l(X) = dc(X) for all n ≥ 3.

Proof: Most of proofs are either straightforward or similar to those
in [8] and [14]. For the sake of completeness, we shall include a
simple proof of the inequality st2 1

2
-l(X) ≤ dc(X) here. Let κ be

an infinite cardinal. Suppose st2 1
2
-l(X) > κ. Then there exists an

open cover U of X such that for any subfamily V ⊆ U with |V| ≤ κ,
st2(

⋃V,U) 6= X. By using transfinite induction, we can select a
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sequence {Uα : α < κ+} ⊆ U such that Uα ∩ st((
⋃

β<α Uβ),U) = Ø
for all α < κ+, where κ+ is the smallest cardinal greater than κ. It
can be checked readily that {Uα : α < κ+} is discrete, which implies
dc(X) > κ. Since κ is arbitrary, then st2 1

2
-l(X) ≤ dc(X). ¤

The para-Lindelöf number of a space X is defined as the smallest
infinite cardinal κ such that each open cover of X has a locally κ
open refinement [2]. Clearly, X is para-Lindelöf iff pl(X) = ℵ0. Let
Ñ = N ∪ {n1

2 : n ∈ N}.
Theorem 2.2. For any space X and n ∈ Ñ, pl(X) · stn-l(X) =
l(X).

Proof: Since stn 1
2
-l(X) ≤ stn-l(X) ≤ l(X) and pl(X) ≤ l(X), it

suffices to prove l(X) ≤ pl(X)·stn 1
2
-l(X) for any n ∈ N. To do this,

let pl(X) = α and stn 1
2
-l(X) = β. We shall show that l(X) ≤ α ·β.

Let U be any open cover of X, then there exists an open refinement
V1 of U such that every point x ∈ X has an open neighbourhood
Ox with |{V ∈ V1 : V ∩ Ox 6= Ø}| ≤ α. So, we can choose an
open refinement W1 of V1 such that |{V ∈ V1 : W ∩ V 6= Ø}| ≤ α
for each W ∈ W1. By applying pl(X) = α to W1, there exists
an open refinement V2 of W1 such that every point x ∈ X has
an open neighbourhood Gx with |{V ∈ V2 : V ∩ Gx 6= Ø}| ≤
α. Again, we can select an open refinement W2 of V2 such that
|{V ∈ V2 : W ∩ V 6= Ø}| ≤ α for each W ∈ W2. Continuing
the above process in n many steps, we obtain two finite sequences
{Vk : 1 ≤ k ≤ n} and {Wk : 1 ≤ k ≤ n} of open covers of X
such that Wk ¹ Vk ¹ Wk−1 ¹ Vk−1 for 2 ≤ k ≤ n and |{V ∈
Vk : V ∩W 6= Ø}| ≤ α for W ∈ Wk and 1 ≤ κ ≤ n. Since stn 1

2
-

l(X) = β, there exists a Cn ∈ [Wn]≤β such that stn(
⋃ Cn,Wn) = X.

Thus, we have |{V ∈ Vn : V ∩ (
⋃ Cn) 6= Ø}| ≤ α · β, which can be

combined with X = stn(
⋃ Cn,Wn) to obtain a Cn-1 ∈ [Vn]≤α·β such

that stn-1(
⋃ Cn-1,Vn) = X. On the other hand, each member of

Cn-1 is contained in some member of Wn-1, so it intersects at most
α many elements of Vn-1. Inductively, we could define Ci = {V ∈
Vi : V ∩(

⋃ Ci+1) 6= Ø} for 0 ≤ i < n. Then |Ci| ≤ α ·β for 0 ≤ i < n
and C0 is a subcover of V1. Therefore, l(X) ≤ α · β. ¤
Corollary 2.3. A space X is Lindelöf if and only if it is para-
Lindelöf and n-star-Lindelöf for some n ∈ Ñ.
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Remark 2.4. Blair [2] has shown for any space X, pl(X) ·dc(X) =
l(X). Furthermore, Bonanzinga and Matveev [4] proved that a
para-Lindelöf and 11

2 -star-Lindelöf space is star-Lindelöf. It is clear
that Theorem 2.2 improves both of these two results.

A family F ⊆ P(X) is said to be n-linked (centered) if every
A ∈ [F ]≤n (A ∈ [F ]<ω) has nonempty intersection. The n-linked
Lindelöf number lnl(X) (centered Lindelöf number ct-l(X)) of a
space X is defined to be the smallest infinite cardinal κ such that
every open cover of X has a subcover representable as the union
of at most κ many n-linked (centered) subfamilies [5]. We simply
write l2l(X) as ll(X). The ccc-Lindelöf number ccc-l(X) of a space
X is defined to be the smallest infinite cardinal κ such that every
open cover U of X has a subcover V such that the cardinality of each
pairwise disjoint subfamily of V is at most κ [5]. If lnl(X) = ℵ0

(ct-l(X) = ℵ0, ccc-l(X) = ℵ0, respectively), then X is called n-
linked Lindelöf (centered Lindelöf, ccc-Lindelöf , respectively).

Proposition 2.5. The following statements hold for any space X:
(1) ccc-l(X) ≤ c(X);
(2) ccc-l(X) ≤ lnl(X) ≤ ln+1l(X) ≤ ct-l(X) ≤ st-l(X) for any

n ≥ 2;
(3) st1 1

2
-l(X) ≤ ccc-l(X).

Recall that a space X is (strongly) collectionwise Hausdorff , ab-
breviated as (strongly) CWH, if for every closed discrete set A in
X, the points can be separated by a (discrete) disjoint collection of
open sets.

Proposition 2.6. Let X be a T1 space.
(1) If X is CWH, then ccc-l(X) = e(X).
(2) If X is strongly CWH, then st2-l(X) = e(X).

Proof: Since (1) and (2) are similar, we only need to show (2). It
suffices to show e(X) ≤ st2-l(X). For any closed discrete subset
A = {xα : α < κ} of X with cardinality κ. Since X is strongly
CWH, then there exists a discrete family {Uα : α < κ} of open
subsets such that Uα ∩ A = {xα} for each α < κ. For any x 6∈
A, there exists an open neighbourhood U(x) of x such that U(x)
intersects at most one element of {Uα : α < κ}. Consider the open
cover U = {Uα : α < κ}∪{U(x)rA : x 6∈ A} of X. Let F ⊆ X with
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|F | < κ. We can choose an α < κ such that Uα ∩ (U(x)r A) = Ø
for all x ∈ F r A, which implies Uα ∩ st(F,U) = Ø. Now, since
Uα is the only element of U containing xα, then xα 6∈ st2(F,U).
Therefore, st2-l(X) ≥ |A|. Since A is arbitrary, it follows that
e(X) ≤ st2-l(X). ¤
Remark 2.7. First, for regular strongly CWH spaces (thus, for col-
lectionwise normal spaces), all cardinal functions mentioned in this
section, except the cellularity, coincide. Second, it is noticed in [6,
Remark 5.2] that the extent of a normal ccc-star-Lindelöf space can
be arbitrarily large. Thus, the (strong) collectionwise Hausdorffness
in Proposition 2.6 cannot be replaced by non-collectionwise sepa-
ration properties, such as normality. Finally, we shall show in sec-
tion 4 (see Remark 4.3) that the word “strongly” in Proposition 2.6
(2) cannot be dropped.

3. L-star-Lindelöf number

Recall that a space X is said to be L-starcompact if for every
open cover U of X there exists a Lindelöf subspace L ⊆ X such
that st(L,U) = X [10], [12]. By definition, we have the following
implications:

star-Lindelöf → L-starcompact → 11
2 -star-Lindelöf.

It is not difficult to find examples of Tychonoff spaces to show that
none of the above implications is reversible. In this section, we shall
study a new cardinal invariant and show that the gaps between the
above three notions could be arbitrarily large.

Definition 3.1. The L-star-Lindelöf number of a space X, denoted
by L-st-l(X), is defined as the smallest infinite cardinal κ such that
for every open cover U of X there exists a subspace L ⊆ X with
l(L) ≤ κ and st(L,U) = X.

By definition, st1 1
2
-l(X) ≤ L-st-l(X) ≤ st-l(X) for any space X.

Obviously, a space X is L-starcompact iff L-st-l(X) = ℵ0.

Theorem 3.2. For each cardinal κ ≥ ℵ0, there exists an L-star-
compact Tychonoff space X with st-l(X) ≥ κ.

Proof: Let X = (β(D(κ))× (ω + 1))r ((β(D(κ))rD(κ))× {ω})
be the subspace of β(D(κ))× (ω + 1), where β(D(κ)) is the Stone-
Čech compactification of D(κ). Then X is L-starcompact, since
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β(D(κ))× ω is a dense Lindelöf subspace of X. Consider the open
cover

U = {{d} × (ω + 1) : d ∈ D(κ)} ∪ {β(D(κ))× ω}
of X. For every subset F of X with |F | < κ, there exists a point
d∗ ∈ D(κ) such that F ∩ ({d∗} × (ω + 1)) = Ø. Since U = {d∗} ×
(ω + 1) is the only element of U containing 〈d∗, ω〉, then 〈d∗, ω〉 /∈
st(F,U). This shows that st-l(X) ≥ κ. ¤

In fact, the conclusion of Theorem 3.2 can be improved slightly
(see the remark after Corollary 4.2). Next, we shall show that the
L-star-Lindelöf number of a 11

2 -star-Lindelöf Tychonoff space could
be arbitrarily large. To achieve this, we need some preparation.
For each α < κ, let zα ∈ κ2 be the point such that zα(α) = 1 and
zα(β) = 0 for all β ∈ κ r {α}. Let Z = {zα : α < κ}. Define a
subspace Y of κ2× (ω + 1) as

Y = (κ2× (ω + 1))r ((κ2r Z)× {ω}).
Then Z × {ω} ⊆ Y is closed discrete with |Z × {ω}| = κ. Hence,
e(Y ) = κ.

Lemma 3.3. [15] Assume that there exists a family {Uα : α < κ}
of open subsets in κ2 such that zα ∈ Uα for each α < κ. Then there
exists a countable S ⊆ κ2 such that S ∩ Uα 6= Ø for all α < κ and
(Clκ2S) ∩ Z = Ø, where Clκ2S denotes the closure of S in κ2.

Theorem 3.4. For every cardinal κ ≥ ℵ0, there exists a 11
2 -star-

Lindelöf Tychonoff space X with L-st-l(X) ≥ κ.

Proof: We may assume cf(κ) > ω (otherwise, select a cardinal
k′ > k with cf(κ′) > ω). Let Y be the space given in the above.
Now, define X as

X = (Y × κ)r (Z × {ω} × (κr {0})).
We topologize X as follows: κ2 × ω × κ has the usual product
topology and is an open subspace of X. A basic neighborhood of
any point in X with 〈zα, ω, 0〉 ∈ Z × {ω} × {0} takes the form

GU,n,β(〈zα, ω, 0〉) = ((U ∩ Z)× {ω} × {0}) ∪ (U × [n, ω)× [β, κ)),

where U is a neighborhood of zα in κ2, n < ω and β < κ. For
each n < ω, let Xn = κ2 × {n} × κ and Xω = Z × {ω} × {0}.
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Then X = Xω ∪
⋃

n<ω Xn, and X equipped with this topology is
Tychonoff.

To show st1 1
2
-l(X) = ω, let U be an open cover of X. By refining

U or taking a subcover of U , we may assume that U = Vω∪
⋃

n<ω Vn,
where Vω and Vn (n < ω) are defined as follows: Vω = {Vα : α < κ},
where each Vα takes the form Vα = GUα,nα,βα(〈zα, ω, 0〉) for some
open neighborhood Uα of zα in κ2, some nα ∈ ω and some βα < κ;
Vn = {V (x) : x ∈ Xn}, where each V (x) is an open neighborhood
of x in Xn. For each n ∈ ω, since Xn is countably compact, we can
find a finite subfamily V ′n ⊆ Vn such that Xn ⊆ st(

⋃V ′n,U). If we
put W =

⋃{V ′n : n ∈ ω}, then W is countable and κ2 × ω × κ ⊆
st(

⋃W,U). By Lemma 3.3, there exists an S ∈ [κ2]≤ω such that
S ∩ Uα 6= Ø for every α < κ. Define T = S × ω. For each α < κ,
there exists a point f(α) ∈ T such that {f(α)} × [βα, κ) ⊆ Vα. Let
P = {f(α) : α < κ}. Now, f : κ → P is a surjective mapping with
|P | ≤ ω. For each p ∈ P , choose an α(p) ∈ f−1(p). Let W ′ =
{Vα(p) ∈ Vω : p ∈ P}. Then W ′ ∈ [Vω]≤ω. Since 〈zα, ω, 0〉 ∈ Vα

and {f(α)} × [βα, κ) ⊆ Vα ∩ Vα(f(α)), we obtain Xω ⊆ st(
⋃W ′,U).

Consequently, if we put G = W ∪ W ′, then G ∈ [U ]≤ω and X =
st(

⋃G,U). Hence, st1 1
2
-l(X) = ω.

Next, we show L-st-l(X) ≥ κ. Since Z × {ω} is closed and
discrete in Y , then there exists an open set Uα in κ2 and a nα < ω
such that (Uα × [nα, ω]) ∩ (Z × {ω}) = {〈zα, ω〉} for every α < κ.
Let us consider the open cover U of X defined by

U = {GUα,nα,α(〈zα, ω, 0〉) : α < κ} ∪ {κ2× ω × [0, α) : α < κ}.
For every subspace F ⊆ X with l(F ) < κ, since |F ∩ (Z × {ω} ×
{0})| < κ, we can pick some β′ < κ such that F ∩ {〈zα, ω, 0〉 :
α > β′} = Ø. For each n < ω, there exists a βn < κ such that
F ∩ (κ2×{n}× [βn, κ)) = Ø. Hence, we can pick β′′ < κ such that
β′′ > βn for all n ∈ ω. Then, (κ2 × ω × [β′′, κ)) ∩ F = Ø. Pick an
ordinal β > max{β′, β′′}, then GUβ ,nβ ,β(〈zβ, ω, 0〉) ∩ F = Ø. Since
GUβ ,nβ ,β(〈zβ, ω, 0〉) is the only element of U containing 〈zβ, ω, 0〉,
〈zβ, ω, 0〉 6∈ st(F,U). This implies L-st-l(X) ≥ κ. ¤
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4. Cardinal invariants between
discrete cellularity and cellularity

In this section, we shall distinguish those cardinal invariants
which are between discrete cellularity and cellularity in the class
of Tychonoff spaces. Let X be a Tychonoff space. From the dis-
cussion in section 2,

dc(X)(= st2 1
2
-l(X)) ≤ st2-l(X) ≤ st1 1

2
-l(X) ≤ ccc-l(X) ≤ c(X).

Now, for any infinite cardinal κ with cf(κ) > ω, the Noble plank of
X, which is denoted by Nκ[X], is constructed by

Nκ[X] = (βX × (κ + 1))r ((βX rX)× {κ}),
where βX stands for the Stone-Čech compactification of X. It is
known that Nκ[X] is a pseudocompact space which contains X ×
{κ} as a closed subspace [19], [22].

Theorem 4.1. Let κ and τ be two infinite cardinals.
(1) If κ is a regular cardinal, then Nκ[D(κ)] is a 2-starcompact

space with st1 1
2
-l(Nκ[D(κ)]) = κ.

(2) If τ is a cardinal with cf(τ) > κ, then Nτ [D(κ)] is a 11
2 -

starcompact space with ccc-l(Nτ [D(κ)]) = κ.

Proof: (1) Since β(D(κ)) × κ is a dense countably compact sub-
space of Nκ[D(κ)], then Nκ[D(κ)] is 2-starcompact. Enumerate
D(κ) as D(κ) = {xα : α < κ}. For every α < κ, define open sub-
sets Uα and Vα as Uα = {xα} × (α, κ] and Vα = β(D(κ)) × [0, α)
respectively. Then U = {Uα : α < κ} ∪ {Vα : α < κ} is an open
cover of Nκ[D(κ)]. Let V be a subcollection of U with |V| < κ.
Since κ is regular, there exists an α∗ < κ such that α∗ > sup{α <
κ : Uα ∈ V, Vα ∈ V}. Then Uα∗ ∩ (

⋃V) = Ø. As Uα∗ is the
only element of U containing 〈xα∗ , κ〉, 〈xα∗ , κ〉 6∈ st(

⋃V,U). Thus,
st1 1

2
-l(Nκ[D(κ)]) ≥ κ. Since β(D(κ)) × κ is countably compact,

st1 1
2
-l(Nκ[D(κ)]) is at most κ. Therefore, st1 1

2
-l(Nκ[D(κ)]) = κ.

(2) Since cf(τ) > l(D(κ)), by Theorem 36 (2) of [14] (cf. [14, p.
31]), the space Nτ [D(κ)] is 11

2 -starcompact. Let Ux = {x}×(τ +1)
for each x ∈ D(κ), and consider the open cover U = {Ux : x ∈
D(κ)}∪{β(D(κ))×τ} of Nτ [D(κ)]. Note that U is irreducible, so it
has no proper subcover. Since {Ux : x ∈ D(κ)} is a pairwise disjoint
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subfamily of U with cardinality of κ, ccc-l(Nτ [D(κ)]) ≥ κ. As in
(1), ccc-l(Nτ [D(κ)]) is at most κ. Hence, ccc-l(Nτ [D(κ)]) = κ. ¤
Corollary 4.2. Let κ be an infinite cardinal. Then there exist

(1) a 2-starcompact Tychonoff space X with st1 1
2
-l(X) ≥ κ;

(2) a 11
2 -starcompact Tychonoff space Y with ccc-l(Y ) ≥ κ.

Remark 4.3. In fact, by the same argument as that in Theorem 4.1
(2), we can show ccc-l(X) = κ for the space X defined in Theo-
rem 3.2. Furthermore, we notice that if cf(τ) > κ then Nτ [D(κ)]
is CWH, but not strongly CWH. By combining this observation
and Theorem 4.1(2), we conclude that either ccc-l(X) in Propo-
sition 2.6 (1) cannot be replaced by the smaller cardinal function
st1 1

2
-l(X), or the strong collectionwise Hausdorffness in Proposi-

tion 2.6(2) cannot be weakened as collectionwise Hausdorffness.

It is fairly easy to find a ccc-Lindelöf Tychonoff (even normal)
space whose cellularity is equal to any given cardinal, for exam-
ple, any uncountable cardinal κ with the order topology. Recently,
Matveev [18] also gave an example of Tychonoff spaces with prop-
erties described in Corollary 4.2 (1). In [21], Tree gave a pseudo-
compact space Y + which is not 2-star-Lindelöf. We observe that
st2-l(Y +) is precisely 2ℵ0 . In addition, Matveev [18] also pointed
out that the difference between dc(X) and st2-l(X) is at least one
exponential step for Tychonoff spaces. Thus, the following natural
question arises.

Question 4.4. How big can the difference be between dc(X) and
st2−l(X) for a Tychonoff space X?

We shall answer this question in our next theorem by showing
that the difference between discrete cellularity and 2-star-Lindelöf
number is arbitrarily large in the class of Tychonoff spaces. Clearly,
this also improves the main result of Tree in [21]. The key idea is
to use a well-known construction of Shakhmatov in [20]. Roughly
speaking, Shakhmatov started with any zero-dimensional and non-
pseudocompact T1 space X0 with a point-countable base and with-
out isolated points, then constructed an increasing chain (Xα :
α < δ) of zero-dimensional T1 space with point-countable bases
and without isolated points, where δ (cf(δ) > ω) is large enough
such that each sequence of locally finite open sets in Xβ (β < δ)
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has a cluster point in Xα for some β < α < δ. Then X =
⋃

α<δ Xα

is a pseudocompact zero-dimensional and T1 space with a point-
countable base which contains X0 as a closed subspace.

Theorem 4.5. For every infinite cardinal κ, there exists a pseu-
docompact Tychonoff space S[X] (hence, dc(S[X]) = ℵ0) with st2-l
(S[X]) ≥ κ.

Proof: Without loss of generality, we may assume that κ is reg-
ular. Let Z be any zero-dimensional and non-pseudocompact T1

space with a point-countable base and without isolated points (For
instance, Z can be the space of rationals, or the Pixley-Roy space
over reals). Let X0 be the free sum of κ many copies of Z, that is,
X0 =

⊕
λ<κ Zλ. Using the method in [20], we can define an increas-

ing chain (Xα : α < δ) of zero-dimensional T1 spaces with point-
countable bases. For every α < δ, we assign a triple (Bα,Bα, θα)
to Xα, where Bα and Bα are sets such that Bα = Bα × N, and
θα : Bα → P(Xα)r {Ø} is a mapping such that θα(Bα) is a point-
countable base consisting of clopen sets for the space Xα. Further-
more, as it is done in [20], the family {(Bα,Bα, θα) : α < δ} can be
chosen to satisfy the following additional properties (a)-(f) for any
β < α < δ:

(a) Bβ ⊆ Bα and θα(b, n) ∩Xβ = Ø whenever (b, n) ∈ Bα r Bβ,
(b) θα(b, n) ∩Xβ = θβ(b, n) whenever (b, n) ∈ Bβ,
(c) for each x ∈ Xα r Xβ, there is (b, n) ∈ Bα r Bβ with x ∈

θα(b, n),
(d) for each x ∈ Xβ, there is (b, n) ∈ Bβ with x ∈ θβ+1(b, n) ⊆

Xβ,
(e) θβ(a, m) ∩ θβ(b, n) = Ø implies θα(a,m) ∩ θα(b, n) = Ø,
(f) for any family {(bn, in) : n ∈ N} ⊆ Bβ, there exists an ordinal

γ such that β < γ < δ and some z∗ ∈ Xγ such that if (a, j) ∈ Bγ

and z∗ ∈ θγ(a, j), then {n ∈ N : θγ(a, j) ∩ θγ(bn, in) 6= Ø} must be
infinite.

Let S[X] =
⋃

α<δ Xα, B =
⋃

α<δ Bα, and B = B × N. We
define a mapping θ : B → P(S[X]) r {Ø} such that θ(b, n) =⋃{θα(b, n) : α < δ, (b, n) ∈ Bα} for all (b, n) ∈ B. As it is observed
in [20], θ(B) is a point-countable base consisting of clopen sets for
a pseudocompact T1 topology on S[X]. Next, we shall show that
st2-l(S[X]) ≥ κ. To do this, let Yα+1 = Xα+1 rXα for each α < δ,
and Y0 = X0. If x ∈ S[X], then there exists a unique α < δ such
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that x ∈ Yα. For each α < δ and x ∈ Yα+1, by (b)-(d), we can pick
a pair (b(x), n(x)) ∈ Bα+1 such that

(g) x ∈ θα+1(b(x), n(x)) ⊆ Yα+1, and θα+2(b(x), n(x)) ⊆ Xα+1.
For each x ∈ X0, pick a pair (b(x), n(x)) ∈ B0 with x ∈ θ1(b(x),
n(x)) ⊆ X0. It follows from (e) and (g) that θ(b(x), n(x)) ∩ θ(b(y),
n(y)) = Ø whenever x ∈ Yα, y ∈ Yβ for α 6= β. Now, U =
{θ(b(x), n(x)) : x ∈ S[X]} is an open cover of S[X]. For an ar-
bitrary A ⊆ S[X] with |A| < κ, define

V = {θ(b(x), n(x)) : θ(b(x), n(x)) ∩A 6= Ø and x ∈ S[X]},
α0 = sup{α < δ : θ(b(x), n(x)) ∈ V for some x ∈ Yα}.

Let ∆ = {λ < κ : (
⋃V) ∩ Zλ 6= Ø}. Since V is a point-countable

family of subsets of S[X], then |V| = |A| < κ. By the regularity of
κ, α0 < κ and |∆| < κ. Hence, by (f), we can select a locally finite
sequence (Un : n < ω) of nonempty open subsets in X0 such that
Un ⊆

⋃
λ∈κr∆ Zλ for all n < ω, and (Un : n < ω) has a cluster point

z∗ ∈ Yα for some α ∈ δ r (α0 + 1). It can be easily checked that
z∗ 6∈ st2(

⋃V,U), which implies st2(
⋃V,U) 6= S[X]. Therefore,

st2-l(S[X]) ≥ κ. ¤
We conclude the paper with some additional remarks. In [6], Cao

and Song have considered some cardinal invariants between star-
Lindelöf number and Lindelöf number for Tychonoff spaces, and
have shown the gaps among them could be arbitrarily big. They
also observed that the linked Lindelöf number of a normal ccc-
Lindelöf space could be arbitrarily large. It is still not clear how
big the gaps are among those cardinal invariants between linked
Lindelöf number and centered Lindelöf number for Tychonoff spaces
(even in larger classes of spaces).
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Proc. 11 (1986), 247–266.
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spaces, Houston J. Math. 27 (2001), 45–57.

[6] J. Cao and Y. Song, Aquaro number versus absolute star-Lindelöf number.
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