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NONSEPARATING SUBCONTINUA AND
MAPPINGS

JANUSZ J. CHARATONIK

Abstract. Various kinds of nonseparating subcontinua of a
given continuum, as end continua, extremal, terminal, ab-
solutely terminal continua, and several related concepts are
studied in the paper. A special attention is paid to their map-
ping properties with respect to a variety of classes of map-
pings: open, monotone, atomic, confluent, and many other
applicable ones.

1. Introduction

One of outstanding early results in continuum theory, exploited
as a useful tool in proofs of numerous theorems, says that the con-
cept of an end point of a curve is an invariant under open mappings.
The result has been extended in several directions. In a number of
papers one can find studies of nonseparating points and/or nonsep-
arating subcontinua, but with an emphasis on structural properties
rather than to mapping ones, see e.g. [2], [28], [32], [34], [41], [47],
[50], [54], [56], [57], [58], [64], [65].

Further, in the literature of the subject, the same name is often
used for different objects; for example the term “end point” has
various meanings in [3], [40], [50], etc. The same concerns the
name “terminal continuum” in some papers. Thus it has become
necessary to systematize these concepts, and to study some of their
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mapping properties. This is just the main goal of the present paper.
Special attention is paid to the following problem.

(1.1) Let C be a family of nonseparating subcontinua of a given
continuum, and let M be a class of mappings between con-
tinua. For what C and M implication

A ∈ C and f ∈ M =⇒ f(A) ∈ C

is true?

The paper consists of five chapters. After Introduction and Pre-
liminaries, we consider properties of end points and of end continua
in the third chapter. End points in the sense of Menger-Urysohn
and in the classical sense are discussed first. Next, we study prop-
erties of ends in the sense of Bing, absolute end points, and ends
in the sense of Bennett and Fugate. We close this chapter with
E-continua in the sense defined by Miller. The fourth chapter is
devoted to terminal continua. We start with terminal continua in
the sense of Bennett and Fugate; next, we consider extremal con-
tinua as defined by Owens, followed by terminal continua in the
sense of Gordh, and finally, terminal continua in the sense of Wal-
lace. In the last chapter, a direction of a further study in the area
is indicated.

2. Preliminaries

The term space means a topological Hausdorff space, and a map-
ping is a continuous function.

Given a subset A of a space X, we denote by card A, cl A, intA
and bd A its cardinality, closure, interior and boundary, respec-
tively. In a case when X is metric, the symbol diamA denotes the
diameter of A.

A continuum means a compact connected space. A point p of a
space X disconnects X between some points a and b of X provided
that a and b belong to different components of the set X \ {p}.
A point p of a space X disconnects X provided that there are two
points of X such that p disconnects X between them. A continuum
A is called an arc provided that there are exactly two points of A
each of which does not disconnect A. These points are called the
end points of the arc. A continuum X is said to be arcwise connected
provided that for every two points of X there is an arc containing
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these points and contained in X. The union of two arcs having just
their end points in common is called a simple closed curve.

A concept of an order of a point p in a space X (in the sense of
Menger-Urysohn), written ord (p, X), is defined as follows. Let n
be a cardinal number. We write:

• ord (p,X) ≤ n provided that for every open neighborhood U
of p there is an open neighborhood V of p such that V ⊂ U
and card bdV ≤ n;

• ord (p,X) = n provided that ord (p,X) ≤ n and for each
cardinal number m < n the condition ord (p,X) ≤ m does
not hold;

• ord (p,X) = ω provided that for every open neighborhood
U of p there are open neighborhoods V of p such that V ⊂ U
with finite boundaries bdV and the numbers card bdV are
not bounded by any positive integer n.

Thus for any continuum X we have

ord (p,X) ∈ {1, 2, . . . , n, . . . , ω,ℵ0, 2ℵ0}
(convention: ω < ℵ0); see [40, §51, I, p. 274]. A point p ∈ X
such that ord (p,X) = 1 is called an end point of X (in the sense
of Menger-Urysohn); compare [66, Chapter IV, 1, p. 64].

Replacing in the above definition the point p by a subcontinuum
P of the space X we get the concept of the (Menger-Urysohn) order
of a subcontinuum P in the space X, writing ord (P, X).

By a simple n-od with the center p we mean the union of n arcs
every two of which have p as the only common point which is an end
point of each of the arcs. Let a space X be given. A point p ∈ X is
said to be a point of order at least n in the classical sense provided
that p is the center of an n-od contained in X. We say that p is
a point of order n in the the classical sense provided that n is the
minimum cardinality for which the above condition is satisfied; see
[4, p. 229]. In particular, if n = 1, then p is called an end point of
X (in the classical sense); see e.g., [41, §2, p. 301], [54] and [56];
if n ≥ 3, then p is called a ramification point of X (in the classical
sense); see e.g., [4, p. 229] and [55].

A subcontinuum I of a continuum X is said to be irreducible
about a subset S ⊂ X provided that no proper subcontinuum of X
contains S. A continuum X is said to be irreducible provided that
there are two points a and b in X such that X is irreducible about
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{a, b}. A continuum is said to be hereditarily unicoherent provided
that the intersection of any two of its subcontinua is connected.
A dendrite means a locally connected metric continuum containing
no simple closed curve. A hereditarily unicoherent and arcwise
connected metric continuum is called a dendroid. A dendroid X is
said to be smooth provided that there exists a point v ∈ X such
that for each point x ∈ X and each sequence of points xn tending
to x the sequence of arcs vxn in X tends to the arc vx.

Given a space X and a point p ∈ X, the set C of all points of X
that can be joined with p by a closed, connected proper subset of
X is called a composant of p in X. By a composant of the space we
mean a composant of some point in the space, see [40, §48, VI, p.
208] or [52, Exercise 5.20, p. 83].

A continuum X is said to be acyclic provided that each mapping
from X into the unit circle S1 = {z ∈ C : |z| = 1} (here C stands
for the complex plane) is homotopic to a constant mapping; i.e.,
for all mappings f : X → S1 and c : X → {p} ⊂ S1, there exists a
mapping h : X× [0, 1] → S1 such that for each point x ∈ X we have
h(x, 0) = f(x) and h(x, 1) = c(x). A tree means a one-dimensional
acyclic connected polyhedron, i.e., a dendrite with finitely many
end points. A continuum X is said to be tree-like (arc-like) provided
that every open cover of X can be refined by a finite open cover
whose nerve is a tree (an arc); equivalently, for the metric case, if
for each ε > 0 there is a tree (an arc) T and a surjective mapping
f : X → T such that f is an ε-mapping, (i.e., diam f−1(y) < ε for
each y ∈ T ). Let us mention that a metric continuum X is tree-like
(arc-like) if and only if it is the inverse limit of an inverse sequence
of trees (of arcs) with surjective bonding mappings; see [52, p. 24];
for the original definition using tree-chains see Bing’s paper [3, p.
653].

Definitions of various concepts of end, terminal, extremal, etc.
subcontinua (or points) are given at their proper places, in sections
where they are discussed. Needed definitions of classes of mappings
are collected below.

A surjective mapping f : X → Y between topological spaces is
said to be:
– open provided that the images of open sets under f are open;
– interior at a point p ∈ X provided that for every open set U
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p ∈ U implies f(p) ∈ int f(U); see [66, p. 149]; thus f is open if
and only if it is interior at each point of its domain;
– a local homeomorphism provided that for each point x ∈ X there
exists an open neighborhood of x such that f(U) is an open neigh-
borhood of f(x) and that f |U : U → f(U) is a homeomorphism;
thus any local homeomorphism is open;
– monotone provided that for each point y ∈ Y , the set f−1(y) is
connected;
– quasi-monotone provided that for each subcontinuum Q of Y with
nonempty interior, the inverse image f−1(Q) has finitely many com-
ponents, each of which is mapped onto Q under f ;
– feebly monotone provided that if A and B are proper subcontinua
of Y such that Y = A ∪ B, then their inverse images f−1(A) and
f−1(B) are connected;
– atomic provided that for each subcontinuum K of X such that
the set f(K) is nondegenerate condition K = f−1(f(K)) holds, see
[1]; any atomic mapping is known to be (hereditarily) monotone,
see [31, Theorem 1, p. 49] and [44, 4.14, p. 17];
– light provided that for each point y ∈ Y the set f−1(y) has
one-point components (note that if the point-inverses are com-
pact, this condition is equivalent to the property that they are
zero-dimensional);
– confluent provided that for each subcontinuum Q of Y each com-
ponent of f−1(Q) is mapped onto Q under f ; see [5];
– semi-confluent provided that for each subcontinuum Q of Y and
for every two components C1 and C2 of f−1(Q) either f(C1) ⊂
f(C2) or f(C2) ⊂ f(C1);
– weakly confluent provided that for each subcontinuum Q of Y
some component of f−1(Q) is mapped onto Q under f .

Given a class M of mappings between continua, a mapping f :
X → Y is said to be hereditarily M provided that for each subcon-
tinuum K ⊂ X the partial mapping f |K : K → f(K) ⊂ Y is in M.
The reader is referred to [44, Table II, p. 28] to see interrelations
between most of the classes of mappings mentioned above.

A space X is said to be homogeneous with respect to a class
M of mappings provided that for every two points p and q of X
there exists a surjective mapping f : X → X such that f ∈ M
and f(p) = q. If M is the class of homeomorphisms, we get the
well-known notion of a homogeneous space.
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If a closed subset C of a continuum X is given, then X/C is the
quotient space obtained by shrinking C to a point. Thus, if C is a
continuum, the quotient mapping q : X → X/C is monotone. See
[66, Chapter 7, p. 122] for the details. If f : X → Y is a surjection
between continua, K is a subcontinuum of X, and q : X → X/K
and r : Y → Y/f(K) are the quotient mappings, then f determines
the induced mapping f∗ : X/K → Y/f(K) defined by f∗(q(x)) =
r(f(x)) for each x ∈ X (see e.g. [30, Theorem 7.7, p. 17]).

3. End continua

3A. Around Whyburn’s theorem. A classical Whyburn’s result
says that order of a point in a locally compact space cannot be
increased under an open mapping [66, Corollary 7.31, p. 147].
The result can be extended by using the concept of the order of
a subcontinuum in place of the order of a point. The proof of
the extension is the same one as of the original result, namely a
consequence of [66, (7.3), p. 147]. Thus, we have the following
theorem.

Theorem 3.1. The Menger-Urysohn order of a continuum in a
locally compact space never increases under an open mapping.

Corollary 3.2. If K is a continuum contained in a locally compact
space X such that ord (K, X) = 1, and if a mapping f : X → Y is
open, then ord (f(K), f(X)) = 1.

Recall that the conclusion of the above theorem is not true if the
concept of the order is understood in the classical sense. This can
be seen from [21, Example 2.1, p. 3728] where an open mapping
f : X → T is defined on a smooth dendroid X onto a simple triod
T such that there is a point p ∈ X which is of order two in the
classical sense, while the order of f(p) in T is three. Further, in
[21, Example 2.2, p. 3729], an open mapping f : X → A of a plane
dendroid X onto an arc A is defined such that an end point (in the
classical sense) of X is mapped onto an interior point of A. The
dendroid X in this example is not smooth. The following question
is asked in [21, Question 2.3, p. 3730], where the set of all end
points in the classical sense of a continuum X is denoted by E(X).
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Question 3.3. Let f : X → f(X) be an open mapping defined on
a smooth dendroid X. Does then the inclusion f(E(X)) ⊂ E(f(X))
hold true?

Whyburn’s result is still true if we assume that the domain space
is a hereditarily unicoherent continuum and the mapping under
consideration is light, even for a larger class of mappings than open
ones. Namely, we have the following theorem, see [21, Theorem 3.1,
p. 3731].

Theorem 3.4. Let a continuum X be hereditarily unicoherent, and
let a mapping f : X → Y = f(X) be confluent and light. Then, for
each point p ∈ X, the order in the classical sense of f(p) in Y is
not greater than the order in the classical sense of p in X.

Remark 3.5. Examples 2.1 and 2.2 of [21, p. 3728 and 3729],
mentioned above, show that lightness of the mapping is essential
in Theorem 3.4. Confluence of f is indispensable and cannot be
weakened to semi-confluence, [21, Remark 3.4, p. 3731]. Hereditary
unicoherence of X is essential as well, see [21, Example 3.5, p. 3731].

Note that the set of all end points in the classical sense in a
continuum X is, by its definition, a boundary subset of X. Thus,
Theorem 3.4 leads to the following result.

Corollary 3.6. Let a hereditarily unicoherent continuum X contain
an end point p in the classical sense, and let a mapping f : X →
Y = f(X) be confluent and light. Then f(p) is an end point in the
classical sense of Y .

Since each dendroid X contains (at least two) end points in the
classical sense, Corollary 3.6 gives an easy argument for the follow-
ing result, which is both new and interesting.

Corollary 3.7. No dendroid is homogeneous with respect to the
class of light confluent mappings.

Remark 3.8. One can ask if lightness of the mappings can be
omitted in Corollary 3.7. A partial positive answer to the above
question is known, under an additional assumption that the set of
all ramification points (in the classical sense) of the considered den-
droid is finite, see [39, Proposition 2.2, p. 59]. The same conclusion
holds for the class of open mappings, see [8, Theorem, p. 409]. But
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in general the answer is negative: there exist dendrites which are
homogeneous with respect to the class of monotone mappings, see
[39, Example 2.4, p. 59]. For more results and problems in this
direction see [11, Section 7, pp. 185–186], [10], [16], [24], [17], [18],
[22], [19, Section 2, pp. 80–82], and references therein.

3B. Ends in the sense of Bing. Besides the concepts of an end
point in the sense of Menger-Urysohn and in the classical sense,
which apply to any continua, recall the following, introduced by
Bing, which applies to arc-like continua only (see [3, Condition
(C), p. 660]).

Definition 3.9. A point p of a continuum X is called an end point
in the sense of Bing provided that the continuum X is arc-like and
for each chain C covering X there is a chain D which refines C,
which also covers X, and such that only the first link of D contains
p.

This definition of an end point p ∈ X is equivalent (for arc-like
continua X) to the following two, which are mutually equivalent in
the realm of all continua, see [3, theorems 12 and 13, p. 661]:

(3.10.A) each nondegenerate subcontinuum of X containing the point
p is irreducible from p to some other point;

(3.10.B) for every two subcontinua K and L of X, if p ∈ K ∩L then
either K ⊂ L or L ⊂ K.

Remark 3.11. A condition close to (3.10.A) was considered earlier
by Miller. Namely in [50, p. 190], a point p of a (metric) continuum
X is defined to be a terminal point of X provided that every irre-
ducible subcontinuum of X which contains p is irreducible between
p and some other point.

Since each subcontinuum of an arc-like continuum is arc-like,
thus irreducible, we see by (3.10.A) that

(3.11.1) if a continuum X is arc-like, then a point of X is terminal
if and only if it is an end point in the sense of Bing.

The concept of an end point of a continuum X in the sense of
condition (3.10.B) above (that can be applied to an arbitrary con-
tinuum X) can easily be extended to a concept of an end continuum
of X as follows.
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Definition 3.12. A subcontinuum E of a continuum X is called an
end continuum in the sense of Bing (abbreviated B-end continuum)
provided that for every two subcontinua K and L of X the condition
E ⊂ K ∩L implies that either K ⊂ L or L ⊂ K. If E is a singleton
{p}, then p will be named B-end point.

Remark 3.13. Note that X is a B-end continuum of itself. Fur-
ther, a subcontinuum E of X is a B-end continuum of X if and
only if E is a B-end point of the decomposition space X/E of the
monotone upper semicontinuous decomposition of X whose only
nondegenerate element is E, see [28, p. 385].

The next theorem says that the notion of a B-end continuum is
invariant under confluent mappings.

Theorem 3.14. Let a mapping f : X → Y between continua X
and Y be confluent. If E ⊂ X is a B-end continuum of X, then
f(E) is a B-end continuum of Y .

Proof: Let K and L be subcontinua of Y with f(E) ⊂ K ∩L, and
let A and B be components of f−1(K) and f−1(L), respectively.
Since E is a B-end continuum of X, we have either A ⊂ B or
B ⊂ A. Further, f(A) = K and f(B) = L by confluence of f .
Thus, either K ⊂ L or L ⊂ K, as needed. ¤

As a consequence we get the following result (see [6, Lemma 1,
p. 288] and [7, Lemma 1, p. 270]).

Corollary 3.15. If f is a confluent mapping from a continuum X
onto f(X), then the image of each B-end point of X is a B-end
point of f(X).

Corollary 3.16. If f is a confluent mapping between arc-like con-
tinua X and Y then the concept of an end point in the sense of
Bing is preserved under f .

Since the pseudo-arc is characterized as an arc-like continuum,
each point of which is an end point in the sense of Bing, see [3,
Theorem 16, p. 662], we get the following consequence of Corollary
3.16.

Corollary 3.17. If f : X → Y is a confluent mapping from the
pseudo-arc X onto an arc-like continuum Y , then Y is the pseudo-
arc.
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We do not know if the arc-likeness of Y is essential in corollaries
3.16 and 3.17. This question is related to the following famous
problem of Lelek (see [42, Problem 4, p. 94]).

Question 3.18. Let a curve X be the image of an arc-like curve
under a confluent mappings. Is X arc-like?

A partial answer to this question for the metric case was given
by McLean who proved that such a continuum must be tree-like,
[49, Theorem 2.1, p. 468, and Corollary 2.2, p. 472]. An extension
of this result to Hausdorff continua and semi-confluent mappings is
given in [35, Corollary 4.6, p. 353].

Since open mappings of compact spaces are confluent, [66, The-
orem 7.5, p. 148], and since they preserve arc-likeness of continua,
[63, Theorem 1.0, p. 259], we get the next two corollaries which
are due to Rosenholtz, see [63, Corollary 1.2 and Theorem 1.3, p.
260].

Corollary 3.19. The concept of an end point in the sense of Bing
is preserved under open mappings.

Corollary 3.20. A nondegenerate image of the pseudo-arc under
an open mapping is the pseudo-arc.

Remark 3.21. Corollary 3.15 is an important step in the proof of
the following result (see [27, Corollary 3.6, p. 33]).

(3.21.1) Each confluently homogeneous nondegenerate arc-like con-
tinuum is the pseudo-arc.

Remark 3.22. Confluence of the mapping f in Theorem 3.14 and
corollaries 3.15 and 3.16 is essential and cannot be relaxed to semi-
confluence, even if the continua X and Y are arcs. Namely, let
f : [−1, 2] → [0, 2] be defined by f(t) = |t| (see [44, Example 3.12,
p. 14]). Then f is semi-confluent, and the end point −1 of the
domain is mapped to the midpoint 1 of the range.

3C. Absolute end points. A more restrictive concept than that
of an end point in the sense of Bing has been introduced by Rosen-
holtz in [64], where an equivalence of seven certain conditions was
shown in [64, Theorem 1.0, p. 1308], again for arc-like continua.
Limits of application of the notion have been extended to arbitrary



NONSEPARATING SUBCONTINUA AND MAPPINGS 107

continua in [15] by taking one of these conditions as the definition.
It runs as follows.

Definition 3.23. A point p of a continuum X is called an absolute
end point of X provided that X \ {p} is a composant of X.

However, since
(3.24) if a continuum X contains an absolute end point p, then X

is irreducible between p and some other point of X, and X
is decomposable,

(see [15, Lemma 3.1, p. 22, and Proposition 3.10, p. 24]), the
results on absolute end points concern irreducible decomposable
continua only. Further,

(3.25) each continuum has, at most, two absolute end points.

The obtained structural results can be summarized as follows (see
[64, Theorem 1.0, p. 1308]; [15, Proposition 3.2, p. 22; Proposition
3.5 and Corollary 3.7, p. 23]).

3.26. Theorem. Consider the following conditions for a point p
of a continuum X.

(3.26.1) X \{p} is a composant of X (i.e., p is an absolute end point
of X);

(3.26.2) if X is irreducible between points x and y, then either x or
y is p;

(3.26.3) X is irreducible between p and some other point, and X is
connected im kleinen at p;

(3.26.4) X is irreducible between p and some other point, and X is
locally connected at p;

(3.26.5) X is irreducible between p and some other point, and X is
aposyndetic at p with respect to any other point of X;

(3.26.6) X is irreducible between p and some other point, and X is
semi-locally connected at p;

(3.26.7) X is locally connected at p, and p does not separate X;
(3.26.8) X is locally connected at p, and whenever C1, . . . , Cn is an

ε-chain in the metric continuum X with p belonging to a
connected link Ck, then either (a) k = 1, (b) k = n, (c)
k = 2, and C1 ⊂ cl C2 or (d) Cn ⊂ cl Cn−1;
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(3.26.9) for each positive number ε there is a positive number δ such
that, if C1, . . . , Cn is an δ-chain in the metric continuum X
with p belonging to Ck, then either

⋃{Cj : j ∈ {1, . . . , k}}
or

⋃{Cj : j ∈ {k, . . . , n}} is contained in an ε-neighborhood
of p.

Then

• if the continuum X is irreducible, then conditions (3.26.1)-
(3.26.6) are equivalent, and each of them implies (3.26.7);

• if the continuum X is irreducible and hereditarily unicoher-
ent at p, then (3.26.7) implies each of conditions (3.26.1)-
(3.26.6), thus (3.26.1)-(3.26.7) are equivalent;

• if the metric continuum X is arc-like (thus irreducible and
hereditarily unicoherent at each of its points), then all con-
ditions (3.26.1)-(3.26.9) are equivalent.

In general, an absolute end point need not be a B-end point,
see [15, Example 4.4, p. 25]. However, under some additional
assumptions, the implication holds. Namely we have the following
result, see [64, Remark, p. 1310] and [58, Proposition, p. 62].

Theorem 3.27. If a continuum X is either arc-like or irreducible
and atriodic, then

(3.27.1) each absolute end point of X is a B-end point of X.

Pyrih posed in [58, p. 62] the following problem.

Problem 3.28. Characterize (irreducible) continua X for which
implication (3.27.1) is true.

The concept of an absolute end point has been localized as fol-
lows, [26, p. 106].

Definition 3.29. A point p of a continuum X is called a local
absolute end point of X provided that there is a subcontinuum K
of X such that p ∈ int K and p is an absolute end point of K.

Below we collect known structural properties of local absolute
end points, see [26, theorems 3.3 and 3.4, p. 106–107].

Theorem 3.30. The following conditions on a continuum X and
a point p ∈ X are equivalent:

(3.30.1) p is a local absolute end point of X;
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(3.30.2) there is a subcontinuum K of X irreducible between p and
some other point of X, such that K is locally connected at
p and p ∈ int K;

(3.30.3) for each nondegenerate subcontinuum K of X if p ∈ K then
p ∈ int K;

(3.30.4) p is a local absolute end point of each nondegenerate sub-
continuum of X containing p.

Theorem 3.31. A local absolute end point of a continuum X is
an absolute end point of X if and only if X is irreducible.

The known mapping properties of absolute end points and lo-
cal absolute end points are connected with a concept of partially
confluent mappings, which generalizes the one of confluent map-
pings. A surjective mapping f : X → Y between continua X and
Y is said to be partially confluent at a point p ∈ X provided that
for each nondegenerate subcontinuum Q of Y such that f(p) ∈ Q
the component of f−1(Q) containing the point p is nondegenerate.
This concept should not be confused with a concept of a partially
confluent mapping considered in [53] and defined in a different way.
Below we summarize the most important mapping properties as in
[26, Section 4, pp. 107-111].

Theorem 3.32. Let a surjective mapping f : X → Y between
continua X and Y be both interior at a point p ∈ X and partially
confluent at p. If p is a local absolute end point of X, then f(p) is
a local absolute end point of Y .

Theorem 3.33. Let p be a local absolute end point of a continuum
X and let a mapping f : X → Y be a surjection. If

(3.33.1) f is both confluent and interior at p, or
(3.33.2) f is open,
then the point f(p) is a local absolute end point of Y .

Each of the following conditions implies that f(p) is an absolute
end point of Y :

(3.33.3) f is open and X is arc-like;
(3.33.4) f is both confluent and interior at p, and X and Y are

irreducible;
(3.33.5) f is open and X and Y are irreducible;
(3.33.6) f is both monotone and interior at p, and X is irreducible;
(3.33.7) f is atomic and X is irreducible.
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The reader is referred to [26, Section 4, pp. 109-111] for a discus-
sion of essentiality of the assumptions made in the quoted results.

3D. Ends in the sense of Bennett and Fugate. This section
concerns the following concept (see [2, Definition 1.9, p. 8]).

Definition 3.34. A proper subcontinuum E of a continuum X
is said to be an end continuum of X in the sense of Bennett and
Fugate (abbreviated BF-end continuum) provided that X is not the
union of two proper subcontinua each intersecting E.

The following characterization of BF-end continua is due to Rosen
[62, p. 118]; see also [2, Theorem 1.16, p. 10].

Theorem 3.35. A subcontinuum K is a BF-end continuum of a
continuum X if and only if there is a point p ∈ X \K such that X
is irreducible between p and any point of K.

Therefore, the existence of a BF-end continuum in a continuum
X implies irreducibility of X.

An essential part of the following result has been proved in [20,
Corollary 5.6, p. 22]. For a part of the conclusion, see also [33,
Theorem 3, p. 222]; (compare also [44, (8.1), p. 71] and [12,
Theorem 7, p. 278] for a more precise formulation) and see also
[44, Corollary 4.45, p. 26].

Theorem 3.36. If a continuum X is irreducible between points a
and b, and a surjective mapping f : X → Y satisfies one of the
following conditions:

(3.36.1) f is quasi-monotone,
(3.36.2) f is feebly monotone,
(3.36.3) f is confluent with point-inverses having finitely many com-

ponents,
(3.36.4) f is hereditarily confluent,
(3.36.5) f is a local homeomorphism,

then the continuum Y is irreducible between f(a) and f(b).

The next theorem summarizes several results dispersed in the
literature. In particular, compare [13, Theorem 16, p. 73, and
corollaries 17 and 18, p. 74] and [20, Theorem 7.15, p. 27].
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Theorem 3.37. Let X and Y be continua, and let a surjective
mapping satisfy one of the conditions (3.36.1)-(3.36.5). If E ⊂ X
is a BF-end continuum of X, then f(E) either equals the whole Y
or it is a BF-end continuum of Y .

Proof: Assume f(E) 6= Y . By Theorem 3.35 there is a point
p ∈ X \E such that X is irreducible between p and any point of E.
By Theorem 3.36 the continuum Y is irreducible between f(p) and
any point of f(E). Thus f(p) ∈ Y \ f(E), and applying Theorem
3.36 once more we get the conclusion. ¤

The reader is referred to [13, Remark 20, p. 75] to see that
the conclusion of Theorem 3.37 does not hold for essentially larger
classes of mappings.

Another concept which is related to the one of a BF-end con-
tinuum is the notion of an E-continuum. Its idea is taken from
[50, Lemma A, p. 183 and Definition, p. 184]. We quote here its
definition in a simpler form, after [2, Definition 1.24, p. 15].

Definition 3.38. A subcontinuum K of a continuum X is called
an E-continuum of X provided that X \K is a composant of X.

Thus, if an E-continuum of X is a singleton {p}, then p is an
absolute end point of X (see Section 3C above). The concepts of
an E-continuum and BF-end continuum are related by the following
result [2, Theorem 1.25, p. 15].

Theorem 3.39. A subcontinuum K of a continuum X is an E-
continuum of X if and only if K is a maximal BF-end continuum
of X (i.e., K is not properly contained in any BF-end continuum
of X).

A continuum X is said to be locally connected at a subcontinuum
K of X provided that for each open set U containing K there is
an open connected V such that K ⊂ V ⊂ U . Notice that this is a
weaker condition than the one saying that X is locally connected
at each point of K. The following result [2, Theorem 1.30, p. 16]
gives another characterization of E-continua.

Theorem 3.40. The E-continua of a continuum X are exactly
those BF-end continua of X at which X is locally connected.
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Theorem 3.41. Let f : X → Y be a local homeomorphism between
continua X and Y . If K is an E-continuum of X, then f(K) either
equals the whole Y or it is an E-continuum of Y .

Proof. By Theorem 3.37, used with (3.36.4), the continuum f(K)
is either Y or a BF-end continuum of Y . Assume f(K) 6= Y .
Let f(K) ⊂ U , where U is an open subset of Y . Thus, K ⊂
f−1(f(K)) ⊂ f−1(U) and f−1(U) is open in X. Hence, by Theorem
3.40, the continuum X is locally connected at K; i.e., there is a
connected open set V ′ in X such that K ⊂ V ′ ⊂ f−1(U). Since
f , being a local homeomorphism, is open, V = f(V ′) is an open
connected set such that K ⊂ V ⊂ U , as needed. ¤

4. Terminal continua

In the topological literature, or in continuum theory (to be more
precise), the term “terminal,” when applied either to subcontinua of
a given continuum or to points, has several quite different meanings.
Thus, if this concept is considered, the reader should always be
informed which definition of “terminality” is used. The term was
already defined with respect to points after [50, p. 190], and recalled
above in Remark 3.11. Below we will discuss some other, and more
frequently used, variants of this concept related to continua.

4A. Terminal continua in the sense of Bennett and Fu-
gate. We start with a definition and a nice characterization (see
[2, Definition 1.1, p. 7, and Corollary 1.14, p. 9], where the term
“terminal” was used for the defined concept).

Definition 4.1. A subcontinuum K of a continuum X is said to be
terminal in the sense of Bennett and Fugate (more succinctly BF-
terminal) subcontinuum of X, provided that K is a proper subset
of X and that if whenever A and B are proper subcontinua of X
whose union is X and such that A ∩K 6= ∅ 6= B ∩K, then either
X = A ∪K or X = B ∪K.

Theorem 4.2. A subcontinuum K of a continuum X is a BF-
terminal subcontinuum of X if and only if the continuum X/K is
irreducible from K to some point.

For various structural properties of BF-terminal continua see [2].
In particular, each BF-terminal continuum is non-separating, [2,
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Theorem 1.3, p. 7]. A relation between BF-terminal continua and
BF-end continua (Definition 3.34) is described in the next result,
[2, Theorem 1.16, p. 10].

Theorem 4.3. A subcontinuum K of a continuum X is a BF-end
subcontinuum of X if and only if K is a BF-terminal continuum
with empty interior.

The following theorem describes the main mapping property of
BF-terminal continua, see [13, Theorem 5, p. 71] and [20, Theorem
7.3, p. 25].

Theorem 4.4. Let a proper subcontinuum K of a continuum X be
given, and let a surjective mapping f : X → Y be such that
(4.4.1) the induced mapping f∗ : X/K → Y/f(K) is either feebly

monotone or quasi-monotone.
Then
(4.4.2) if K is a BF-terminal continuum of X, then f(K) either is

the whole Y or is a BF-terminal continuum of Y .

It is known that for each subcontinuum K of a continuum X and
for each quasi-monotone (feebly monotone) surjection f : X → Y
the induced mapping f∗ is quasi-monotone (feebly monotone, re-
spectively), [13, Lemma 6, p. 71] and [20, Proposition 7.5]. Further,
any mapping satisfying (3.36.3)-(3.36.5) is quasi-monotone, see [33,
theorems 5 and 7, p. 223 and 224] and [44, Corollary 4.45, p. 26].
Therefore, Theorem 4.4 implies a corollary.

Corollary 4.5. Let a proper subcontinuum K of a continuum X
be given, and let a surjective mapping f : X → Y satisfy one of the
conditions (3.36.1)-(3.36.5). Then implication (4.4.2) holds.

Recall that open retractions do not preserve BF-terminality of
subcontinua, even for arc-like continua, as it is shown in [9, Example
15, p. 379].

Now we pass to another concept.

Definition 4.6. A subcontinuum K of a continuum X is said to
be absolutely BF-terminal provided that K is BF-terminal in each
subcontinuum L of X which properly contains K.

Note that absolutely BF-terminal continua are named “abso-
lutely terminal” in [2, Definition 4.1, p. 36], and “terminal” in
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Fugate’s paper [32, p. 461] and in Nadler’s book [51, 1.54, p. 107].
See [2, p. 35] for a discussion on relations to some other concepts
for which the name “terminal” (or a similar one) is used by other
authors.

Obviously each absolutely BF-terminal continuum is BF-terminal
but not conversely. Various structural properties of absolutely BF-
terminal continua are discussed in [2, Chapter 4, p. 34]. The next
result can easily be deduced from [32, p. 461] and [51, Lemma 1.55,
p. 107].

Theorem 4.7. The following conditions are equivalent for a proper
subcontinuum K of a continuum X:
(4.7.1) K is an absolutely BF-terminal continuum of X;
(4.7.2) for every two proper subcontinua A and B of X, if A∩K 6=

∅ 6= B ∩K, then either A ⊂ B ∪K or B ⊂ A ∪K;
(4.7.3) for every two proper subcontinua A and B of X, if K ⊂

A ∩B, then either A ⊂ B or B ⊂ A.

The subsequent result concerns a mapping invariance of abso-
lutely BF-continua as shown in [9, Theorem 5, p. 378].

Theorem 4.8. Let a subcontinuum K of a continuum X be given,
and let a mapping f : X → Y satisfy the condition
(4.8.1) for each subcontinuum Q of Y containing f(K) there exists

a component C of f−1(Q) such that K ⊂ C and f(C) = Q.
Then

(4.8.2) if K is an absolutely BF-terminal continuum of X, then
f(K) either is the whole Y or is an absolutely BF-terminal
continuum of Y .

Remarks 4.9. (a) The assumption (4.8.1) holds if the mapping
f is confluent with respect to each subcontinuum Q of Y which
contains f(K), in particular if f is confluent. Therefore, for such
mappings, implication (4.8.2) holds.

(b) The assumption (4.8.1) of Theorem 4.8 cannot be relaxed to
weak confluence of f with respect to Q. See [9, Example 11, p.
379].

(c) It follows from [9, Example 18, p. 380] that if f is a quasi-
monotone retraction defined on an arc-like continuum X, then the
implication (4.8.2) need not be true.
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4B. Extremal continua. The notion of a BF-terminal continuum
has been used by Owens in [57, p. 264] to define another class of
nonseparating subcontinua of a given continuum, namely the class
of extremal continua. The definition runs as follows.

Definition 4.10. A proper subcontinuum S of a continuum X
is called an extremal subcontinuum of X provided that, for each
irreducible subcontinuum I in X such that I ∩ S 6= ∅ 6= I \ S, the
continuum S is a BF-terminal subcontinuum of the union I ∪ S.

In [57] various structural properties of these continua are shown.
In particular, they are nonseparating ones in a very strong sense:
if S is an extremal subcontinuum of a continuum X, and Y is an
arbitrary subcontinuum of X, then Y \ S is connected, see [57,
Theorem 2.2, p. 265]. In the next theorem, characterizations of
extremal continua are collected, see [57, Theorem 3.3, p. 268 and
Corollary 3.4, p. 269].

Theorem 4.11. Let S be a proper subcontinuum of a continuum
X. The following conditions are equivalent:

(4.11.1) S is an extremal subcontinuum of X;
(4.11.2) S is a point of irreducibility of each irreducible subcontin-

uum of the quotient continuum X/S that contains S;
(4.11.3) each irreducible subcontinuum of X which meets S has a

point of irreducibility in S.

If S is an extremal subcontinuum of a continuum X and if the
quotient space X/S is arcwise connected, then S is an end point of
X/S in the classical sense, [57, Corollary 3.7, p. 270]; the opposite
implication does not hold, [57, Example 3.8, p. 270].

Mapping properties of extremal continua were studied in [12]
and in [14]. Below we summarize and simplify the results obtained
there. The main one says that the concept is invariant under map-
pings which preserve some irreducible continua in both directions.
Precisely, we have the following result [12, Theorem 2, p. 276].

Theorem 4.12. Let S be an extremal subcontinuum of a con-
tinuum X. If a surjective mapping f : X → Y satisfies the two
conditions:
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(4.12.1) for each subcontinuum I of X which is irreducible from a
point p ∈ S to some point of X, its image f(I) is irreducible
from f(p) to some point of Y ,

(4.12.2) for each irreducible subcontinuum J of Y such that J ∩
f(S) 6= ∅, its inverse image f−1(J) is an irreducible sub-
continuum of X,

then the image f(S) is an extremal subcontinuum of Y .

The theorem says when the image f(S) of a particular extremal
subcontinuum S of the domain is an extremal subcontinuum of the
range. In [12] conditions are formulated under which the invariance
holds globally. In particular, we have the following corollary [12,
Corollary 5, p. 277].

Corollary 4.13. Let a surjective mapping f : X → Y between
continua X and Y satisfy the two conditions:

(4.13.1) for each subcontinuum I of X which is irreducible from a
point p ∈ X to some point of X, its image f(I) is irreducible
from f(p) to some point of Y ,

(4.13.2) for each irreducible subcontinuum J of Y , its inverse image
f−1(J) is an irreducible subcontinuum of X.

Then
(4.13.3) the images of extremal subcontinua of the domain are ex-

tremal subcontinua of the range.

It should be underlined that each of the conditions (4.12.1) and
(4.13.1) is stronger than simple preservation of irreducible continua
under f . It demands that not only irreducible continua but also
points of irreducibility have to be preserved under the mapping. A
natural question arises: What known classes of mappings satisfy
such conditions. Recall that Theorem 3.36 above concerns this.
Thus, if the mapping f : X → Y satisfies one of the conditions
(3.36.1)-(3.36.5) and condition (4.13.2), then (4.13.3) holds. How-
ever, mappings for which (4.13.1) holds need not satisfy (4.13.2),
which has to be separately assumed. Moreover, the reader can ver-
ify, simply by constructing suitable examples, that no one of the
conditions (3.36.1)-(3.36.5) implies (4.13.2). On the other hand,
(see [12, Corollary 14, p. 280])
(4.14) if a surjective mapping f : X → Y between continua X and

Y satisfy condition (4.13.2), then it is monotone
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and monotone mappings preserve points of irreducibility, see e.g.
[40, §48, I, Theorem 3, p. 192]. This leads to the following result.

Proposition 4.15. If a surjective mapping f : X → Y between
continua X and Y satisfies the two conditions: (4.13.2) and

(4.15.1) for each irreducible subcontinuum I of X the partial map-
ping f |I : I → f(I) is monotone,

then (4.13.3) holds.

Hence, one can omit (4.13.1) in Corollary 4.13 provided that f
is hereditarily monotone, see [12, Corollary 12, p. 279]. This is the
case when X is hereditarily unicoherent, in particular when X is
arc-like and f is monotone [12, Corollaries 17 and 18, p. 281].

Corollary 4.16. If the continuum X is hereditarily unicoherent,
then (4.13.2) implies (4.13.3).

Corollary 4.17. Condition (4.13.3) holds if f is a monotone map-
ping of an arc-like continuum X.

Finally, let us recall that both (4.13.1) and (4.13.2) hold for
atomic mappings, see [44, (4.14), p. 17] and [14, Theorem 2, p.
132], and therefore the following result is true, see [14, Corollary 5,
p. 133].

Corollary 4.18. If a surjective mapping between continua is atomic,
then for each extremal subcontinuum of the domain its image is an
extremal subcontinuum of the range.

Neither the inverse implication to that of Corollary 4.18 holds,
nor can it be extended to hereditarily monotone mappings [14, p.
133].

4C. Terminal continua in the sense of Gordh. To avoid
confusion or misunderstanding in the terminology, we have to use
another name for the concept of a terminal continuum as defined by
Gordh in [34]. Since he restricts his considerations to subcontinua
of hereditarily unicoherent continua only, we rename this concept,
following [9, Section 3, p. 380], as HU-terminal.

Definition 4.19. A subcontinuum K of a hereditarily unicoherent
continuum X is called an HU-terminal continuum of X, provided
that K is contained in an irreducible subcontinuum of X, and for
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each irreducible subcontinuum I of X containing K, there is a point
x ∈ X such that I is irreducible about the union K ∪ {x}.

Note that if a continuum X is irreducible (and hereditarily uni-
coherent), then it is an HU-terminal subcontinuum of itself. The
next theorem (see [34, Theorem 3.1, p. 463]) describes interrela-
tions between HU-terminal continua and absolutely BF-terminal
continua (Definition 4.6). To formulate it we have to recall some
definitions. A continuum T is called a triod provided there exists a
proper subcontinuum Q of T such that T \Q is the union of three
mutually disjoint sets. A continuum which contains no triod is said
to be atriodic. It is well known that each arc-like continuum is
hereditarily unicoherent, irreducible and atriodic.

Theorem 4.20. Let a hereditarily unicoherent continuum X be
atriodic. Then a proper subcontinuum of X is HU-terminal if and
only if it is absolutely BF-terminal.

The above equivalence (proved in [34, Theorem 3.1, p. 463])
need not be true if X is not atriodic, see [34, Example 1, p. 463]
and [2, Example 4.3, p. 35].

Theorems 4.20 and 4.8 imply that, in the realm of atriodic hered-
itarily unicoherent continua, mappings satisfying condition (4.8.1)
for some HU-terminal subcontinuum K of X (in particular con-
fluent mappings, see Remark 4.9 (a)) preserve its HU-terminality.
However, if one is looking for a suitable class of mappings which
preserve HU-terminality in the realm of all hereditarily unicoher-
ent continua, then any condition expressed in terms of confluence
is rather inadequate for such invariance. A much stronger condi-
tion is atomicity, and it works here. The next theorem answers [9,
Question 22, p. 382].

Theorem 4.21. Let f : X → Y be a surjective atomic mapping
defined on a hereditarily unicoherent continuum X. If K is an
HU-terminal subcontinuum of X, then its image f(K) is an HU-
terminal subcontinuum of Y .

Proof: Observe first that since each atomic mapping is hereditar-
ily monotone, [44, (4.14), p. 17], thus hereditarily confluent, and
since hereditarily confluent mappings preserve hereditary unicoher-
ence of continua, [44, (7.5), p. 59], the continuum Y is hereditarily
unicoherent, and therefore the concept of HU-terminality can be
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applied to f(K). If I0 is an irreducible subcontinuum of X con-
taining K, then f(K) ⊂ f(I0), and f(I0) is in turn an irreducible
subcontinuum of Y since monotone mappings preserve irreducibil-
ity [40, §48, I, Theorem 3, p. 192]. Further, if J is an irreducible
subcontinuum of Y containing f(K), then its preimage f−1(J) is
an irreducible subcontinuum of X according to [14, Theorem 2, p.
132], which obviously contains K. Thus, by the definition of HU-
terminality, there exists a point x ∈ X such that the continuum
f−1(J) is irreducible about the union K∪{x} (then K is called the
set of irreducibility of f−1(J), see [44, p. 8]). Since f is hereditarily
monotone, the partial mapping f |f−1(J) : f−1(J) → f(f−1(J)) is
monotone, so quasi-monotone. Quasi-monotone mappings preserve
sets of irreducibility, [44, (8.1), p. 71], i.e., f(f−1(J)) is irreducible
about f(K)∪{f(x)}. Finally, since f(f−1(J)) = J by atomicity of
f , the proof is complete. ¤

An example is known (see [9, p. 381]) which shows that atomicity
of f is an essential assumption in Theorem 4.21, and the result
cannot be extended to hereditarily monotone mappings.

4D. Terminal continua in the sense of Wallace. Now we will
discuss a quite different concept of terminality than that in the
sense of Bennett and Fugate (Definition 4.1), as well as in the sense
of Gordh (Definition 4.19), a concept which was used by Maćkowiak
and Tymchatyn in [48], and widely exploited in continuum theory
by various authors. The difference relies on the property of separa-
tion of the whole continuum by the considered subcontinuum: all
special subcontinua discussed above as end continua, E-continua
or terminal ones in various senses were nonseparating. Terminal
continua in the sense we intend to discuss below do not have this
property. So, discussion about this subject has been joined to the
present paper because of terminology rather than because of prop-
erties.

The idea of this notion comes from Wallace, who introduced so
called C-sets and studied their properties in semigroups, [65, p.
639]. Recall that a proper subset Q of a continuum X is called a
C-set of X provided that Q is a subset of each subcontinuum of X
which intersects both Q and its complement X \Q. Wallace proved
that C-sets are connected and have empty interior, [65, Lemma 1,
p. 639]. C-sets need not be closed: for example, a composant of
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a solenoid X is a C-set of X. If closedness is assumed, we get the
concept of a terminal continuum as defined in [48, p. 17].

Definition 4.22. A subcontinuum Q of a continuum X is called
terminal in the sense of Wallace (abbreviated W-terminal) pro-
vided that for each subcontinuum K of X the condition K ∩Q 6= ∅
implies K ⊂ Q or Q ⊂ K.

Observe that, according to the above definition, the whole con-
tinuum X is a W-terminal subcontinuum of itself, and that each
singleton is W-terminal.

A mapping f : X → Y between continua X and Y is said to be
confluent with respect to a subcontinuum Q of Y provided that for
each component C of f−1(Q) we have f(C) = Q. Ingram charac-
terized W-terminal continua in [36, Theorem 1, p. 84] as follows:

Theorem 4.23. A proper subcontinuum Q of a continuum X is
W-terminal in X if and only if each mapping from a continuum
onto X is confluent with respect to Q.

Since a continuum X is hereditarily indecomposable if and only
if each mapping from a continuum onto X is confluent (see [29,
Theorem 4, p. 243] and [43, 5.7, p. 111]); equivalently, each con-
fluent mapping from a continuum onto X is hereditarily confluent
[44, (6.11), p. 53]. It follows that a continuum is hereditarily in-
decomposable if and only if each of its subcontinua is W-terminal,
see [36, Remark, p. 85], which was used as the key argument to
show that a continuum X is hereditarily indecomposable if and
only if each monotone mapping from X is atomic [31, Theorem 4,
p. 51]. The previously mentioned characterization of hereditarily
indecomposable continua via W-terminality resembles another one
saying that they are characterized as such continua for which each
of their points is a B-end point (Definition 3.12), see [27, Fact 2.3,
p. 31]. Replacing B-end points by B-end continua, we get a similar
characterization with the same easy proof. Finally, using Theorem
4.2 and the invariance of hereditary indecomposability with respect
to monotone mappings (see [44, (8.10), p. 72]), the same can be
obtained with BF-terminal continua in place of B-end continua.
Summarizing, we have the following result.
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Theorem 4.24. The following conditions are equivalent for a con-
tinuum X:

(4.24.1) X is hereditarily indecomposable;
(4.24.2) each mapping from a continuum onto X is confluent;
(4.24.3) each confluent mapping from a continuum onto X is hered-

itarily confluent;
(4.24.4) each monotone mapping from X onto a continuum is atomic;
(4.24.5) each point of X is a B-end point of X;
(4.24.6) each subcontinuum of X is a B-end continuum of X;
(4.24.7) each subcontinuum of X is BF-terminal;
(4.24.8) each subcontinuum of X is W-terminal.

The following invariance of W-terminality has recently been shown
in [25, Proposition 3].

Proposition 4.25. If a mapping f : X → Y between continua X
and Y is confluent, and if Q is a W-terminal subcontinuum of X,
then f(Q) is a W-terminal subcontinuum of Y .

Proof. Let S be a subcontinuum of Y such that S∩f(Q) 6= ∅. Then
Q∩f−1(S) 6= ∅, so there exists a component C of f−1(S) such that
C ∩ Q 6= ∅. Since Q is W-terminal in X, we have either Q ⊂ C,
which implies f(Q) ⊂ f(C) = S, or C ⊂ Q, which implies S =
f(C) ⊂ f(Q), by the confluence of f . The proof is complete. ¤

Finally, recall that some properties of W-terminal continua were
used in [45] and [46] to investigate various properties and to con-
struct interesting examples of continua by condensation of singu-
larities. Further, the hyperspace T (X) consisting of all W-terminal
subcontinua of a given (metric) continuum X, and understood as
a subspace of the hyperspace C(X) equipped with the Hausdorff
metric, was studied in [47] and applied there to investigate homo-
geneity of continua. Also the use of W-terminal continua in the
aposyndetic decomposition theorem of Jones, see [37, Theorem 1,
p. 736] and [38, Theorem, p. 51], is known to be essential in the
study of homogeneous continua (compare [59, Section 1, p. 451],
[60, Section 2, p. 216] and [61, Section 2, p. 344]).



122 J. J. CHARATONIK

5. A final remark

We close the paper with the following remark. The main stream
of study of mapping properties of (nonseparating) subcontinua has
its source in problem (1.1) mentioned in the beginning of the paper.
Besides, an opposite implication can also be considered. Precisely,
one can consider the following problem.

(5.1) Let C be a family of nonseparating subcontinua of a given
continuum, and let M be a class of mappings between con-
tinua. For what C and M implication

f(A) ∈ C and f ∈ M =⇒ A ∈ C

is true?

Only a few results related to this problem are known. Recall some
of them.

If E(X) denotes the set of all end points (in the classical sense)
of X, then the inclusion E(Y ) ⊂ f(E(X)) holds if (a) X is a
fan (i.e., a dendroid with exactly one ramification point) and f is
confluent, [23, Theorem 4.1, (10), p. 14] or if X is a dendrite and
f is monotone, [24, Proposition 4.20, p. 11].

In [45, Proposition 4, p. 576] a characterization of atomic map-
pings via W-terminal continua is given. Namely a mapping f :
X → Y between continua X and Y is atomic if and only if the in-
verse image of any W-terminal subcontinuum of Y is a W-terminal
subcontinuum of X. For other families C of subcontinua of a given
continuum, in particular for families of nonseparating subcontinua,
and for various classes M of mappings, a systematic investigation
of problem (5.1) above is a subject for further study.
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